Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.725
Filtrar
1.
Curr Biol ; 34(11): R539-R541, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38834027

RESUMEN

Strain-specific pili enable Vibrio cholerae bacteria to adhere to each other and form aggregates in liquid culture. A new study focuses on strains with less specific, promiscuous pili and suggests a role for contact-dependent bacterial killing in shaping the composition of these aggregates.


Asunto(s)
Fimbrias Bacterianas , Vibrio cholerae , Vibrio cholerae/fisiología , Vibrio cholerae/genética , Fimbrias Bacterianas/fisiología , Fimbrias Bacterianas/metabolismo , Adhesión Bacteriana/fisiología
2.
Nat Commun ; 15(1): 5051, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877024

RESUMEN

Type IV pili are filamentous appendages found in most bacteria and archaea, where they can support functions such as surface adhesion, DNA uptake, aggregation, and motility. In most bacteria, PilT-family ATPases disassemble adhesion pili, causing them to rapidly retract and produce twitching motility, important for surface colonization. As archaea do not possess PilT homologs, it was thought that archaeal pili cannot retract and that archaea do not exhibit twitching motility. Here, we use live-cell imaging, automated cell tracking, fluorescence imaging, and genetic manipulation to show that the hyperthermophilic archaeon Sulfolobus acidocaldarius exhibits twitching motility, driven by retractable adhesion (Aap) pili, under physiologically relevant conditions (75 °C, pH 2). Aap pili are thus capable of retraction in the absence of a PilT homolog, suggesting that the ancestral type IV pili in the last universal common ancestor (LUCA) were capable of retraction.


Asunto(s)
Fimbrias Bacterianas , Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/metabolismo , Sulfolobus acidocaldarius/fisiología , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/genética
3.
Nat Commun ; 15(1): 5049, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877064

RESUMEN

Type IV pili (T4P) represent one of the most common varieties of surface appendages in archaea. These filaments, assembled from small pilin proteins, can be many microns long and serve diverse functions, including adhesion, biofilm formation, motility, and intercellular communication. Here, we determine atomic structures of two distinct adhesive T4P from Saccharolobus islandicus via cryo-electron microscopy (cryo-EM). Unexpectedly, both pili were assembled from the same pilin polypeptide but under different growth conditions. One filament, denoted mono-pilus, conforms to canonical archaeal T4P structures where all subunits are equivalent, whereas in the other filament, the tri-pilus, the same polypeptide exists in three different conformations. The three conformations in the tri-pilus are very different from the single conformation found in the mono-pilus, and involve different orientations of the outer immunoglobulin-like domains, mediated by a very flexible linker. Remarkably, the outer domains rotate nearly 180° between the mono- and tri-pilus conformations. Both forms of pili require the same ATPase and TadC-like membrane pore for assembly, indicating that the same secretion system can produce structurally very different filaments. Our results show that the structures of archaeal T4P appear to be less constrained and rigid than those of the homologous archaeal flagellar filaments that serve as helical propellers.


Asunto(s)
Proteínas Arqueales , Microscopía por Crioelectrón , Proteínas Fimbrias , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/ultraestructura , Proteínas Arqueales/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/ultraestructura , Modelos Moleculares , Fimbrias Bacterianas/ultraestructura , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/química , Conformación Proteica , Secuencia de Aminoácidos
4.
Nat Commun ; 15(1): 5050, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877033

RESUMEN

Amongst the major types of archaeal filaments, several have been shown to closely resemble bacterial homologues of the Type IV pili (T4P). Within Sulfolobales, member species encode for three types of T4P, namely the archaellum, the UV-inducible pilus system (Ups) and the archaeal adhesive pilus (Aap). Whereas the archaellum functions primarily in swimming motility, and the Ups in UV-induced cell aggregation and DNA-exchange, the Aap plays an important role in adhesion and twitching motility. Here, we present a cryoEM structure of the Aap of the archaeal model organism Sulfolobus acidocaldarius. We identify the component subunit as AapB and find that while its structure follows the canonical T4P blueprint, it adopts three distinct conformations within the pilus. The tri-conformer Aap structure that we describe challenges our current understanding of pilus structure and sheds new light on the principles of twitching motility.


Asunto(s)
Microscopía por Crioelectrón , Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/metabolismo , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/fisiología , Proteínas Arqueales/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Fimbrias Bacterianas/ultraestructura , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/fisiología , Fimbrias Bacterianas/química , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Modelos Moleculares
5.
Curr Biol ; 34(11): 2403-2417.e9, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38749426

RESUMEN

The bacterial type VI secretion system (T6SS) is a widespread, kin-discriminatory weapon capable of shaping microbial communities. Due to the system's dependency on contact, cellular interactions can lead to either competition or kin protection. Cell-to-cell contact is often accomplished via surface-exposed type IV pili (T4Ps). In Vibrio cholerae, these T4Ps facilitate specific interactions when the bacteria colonize natural chitinous surfaces. However, it has remained unclear whether and, if so, how these interactions affect the bacterium's T6SS-mediated killing. In this study, we demonstrate that pilus-mediated interactions can be harnessed by T6SS-equipped V. cholerae to kill non-kin cells under liquid growth conditions. We also show that the naturally occurring diversity of pili determines the likelihood of cell-to-cell contact and, consequently, the extent of T6SS-mediated competition. To determine the factors that enable or hinder the T6SS's targeted reduction of competitors carrying pili, we developed a physics-grounded computational model for autoaggregation. Collectively, our research demonstrates that T4Ps involved in cell-to-cell contact can impose a selective burden when V. cholerae encounters non-kin cells that possess an active T6SS. Additionally, our study underscores the significance of T4P diversity in protecting closely related individuals from T6SS attacks through autoaggregation and spatial segregation.


Asunto(s)
Fimbrias Bacterianas , Sistemas de Secreción Tipo VI , Vibrio cholerae , Vibrio cholerae/fisiología , Vibrio cholerae/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/fisiología , Interacciones Microbianas/fisiología
6.
mBio ; 15(6): e0061624, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38771052

RESUMEN

Pseudomonas aeruginosa is one of the most common nosocomial pathogens worldwide, known for its virulence, drug resistance, and elaborate sensor-response network. The primary challenge encountered by pathogens during the initial stages of infection is the immune clearance arising from the host. The resident macrophages of barrier organs serve as the frontline defense against these pathogens. Central to our understanding is the mechanism by which bacteria modify their behavior to circumvent macrophage-mediated clearance, ensuring their persistence and colonization. To successfully evade macrophage-mediated phagocytosis, bacteria must possess an adaptive response mechanism. Two-component systems provide bacteria the agility to navigate diverse environmental challenges, translating external stimuli into cellular adaptive responses. Here, we report that the well-documented histidine kinase, LadS, coupled to a cognate two-component response regulator, PA0034, governs the expression of a vital adhesin called chaperone-usher pathway pilus cupA. The LadS/PA0034 system is susceptible to interference from the reactive oxygen species likely to be produced by macrophages and further lead to a poor adhesive phenotype with scantily cupA pilus, impairing the phagocytosis efficiency of macrophages during acute infection. This dynamic underscores the intriguing interplay: as macrophages deploy reactive oxygen species to combat bacterial invasion, the bacteria recalibrate their exterior to elude these defenses. IMPORTANCE: The notoriety of Pseudomonas aeruginosa is underscored by its virulence, drug resistance, and elaborate sensor-response network. Yet, the mechanisms by which P. aeruginosa maneuvers to escape phagocytosis during acute infections remain elusive. This study pinpoints a two-component response regulator, PA0034, coupled with the histidine kinase LadS, and responds to macrophage-derived reactive oxygen species. The macrophage-derived reactive oxygen species can impair the LadS/PA0034 system, resulting in reduced expression of cupA pilus in the exterior of P. aeruginosa. Since the cupA pilus is an important adhesin of P. aeruginosa, its deficiency reduces bacterial adhesion and changes their behavior to adopt a planktonic lifestyle, subsequently inhibiting the phagocytosis of macrophages by interfering with bacterial adhesion. Briefly, reactive oxygen species may act as environmental cues for the LadS/PA0034 system. Upon recognition, P. aeruginosa may transition to a poorly adhesive state, efficiently avoiding engulfment by macrophages.


Asunto(s)
Macrófagos , Fagocitosis , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/metabolismo , Macrófagos/microbiología , Macrófagos/inmunología , Ratones , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/inmunología , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/genética , Regulación Bacteriana de la Expresión Génica , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Histidina Quinasa/metabolismo , Histidina Quinasa/genética , Humanos , Células RAW 264.7
7.
Infect Immun ; 92(6): e0013224, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38700334

RESUMEN

Adherent and invasive Escherichia coli (AIEC) is a pathobiont that is involved in the onset and exacerbation of Crohn's disease. Although the inducible expression of virulence traits is a critical step for AIEC colonization in the host, the mechanism underlying AIEC colonization remains largely unclear. We here showed that the two-component signal transduction system CpxRA contributes to AIEC gut competitive colonization by activating type 1 fimbriae expression. CpxRA from AIEC strain LF82 functioned as a transcriptional regulator, as evidenced by our finding that an isogenic cpxRA mutant exhibits reduced expression of cpxP, a known regulon gene. Transcription levels of cpxP in LF82 increased in response to envelope stress, such as exposure to antimicrobials compromising the bacterial membrane, whereas the cpxRA mutant did not exhibit this response. Furthermore, we found that the cpxRA mutant exhibits less invasiveness into host cells than LF82, primarily due to reduced expression of the type 1 fimbriae. Finally, we found that the cpxRA mutant is impaired in gut competitive colonization in a mouse model. The colonization defects were reversed by the introduction of a plasmid encoding the cpxRA gene or expressing the type 1 fimbriae. Our findings indicate that modulating CpxRA activity could be a promising approach to regulating AIEC-involved Crohn's disease.


Asunto(s)
Adhesión Bacteriana , Modelos Animales de Enfermedad , Células Epiteliales , Infecciones por Escherichia coli , Escherichia coli , Fimbrias Bacterianas , Regulación Bacteriana de la Expresión Génica , Animales , Ratones , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Escherichia coli/genética , Escherichia coli/patogenicidad , Células Epiteliales/microbiología , Infecciones por Escherichia coli/microbiología , Adhesión Bacteriana/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Intestinos/microbiología , Femenino
8.
PLoS Comput Biol ; 20(5): e1012063, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743804

RESUMEN

In this work, we quantitatively compare computer simulations and existing cell tracking data of P. aeruginosa surface motility in order to analyse the underlying motility mechanism. We present a three dimensional twitching motility model, that simulates the extension, retraction and surface association of individual Type IV Pili (TFP), and is informed by recent experimental observations of TFP. Sensitivity analysis is implemented to minimise the number of model parameters, and quantitative estimates for the remaining parameters are inferred from tracking data by approximate Bayesian computation. We argue that the motility mechanism is highly sensitive to experimental conditions. We predict a TFP retraction speed for the tracking data we study that is in a good agreement with experimental results obtained under very similar conditions. Furthermore, we examine whether estimates for biologically important parameters, whose direct experimental determination is challenging, can be inferred directly from tracking data. One example is the width of the distribution of TFP on the bacteria body. We predict that the TFP are broadly distributed over the bacteria pole in both walking and crawling motility types. Moreover, we identified specific configurations of TFP that lead to transitions between walking and crawling states.


Asunto(s)
Biología Computacional , Simulación por Computador , Fimbrias Bacterianas , Modelos Biológicos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/fisiología , Fimbrias Bacterianas/fisiología , Teorema de Bayes , Movimiento/fisiología
9.
mBio ; 15(5): e0069024, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717196

RESUMEN

Extracellular cytochrome filaments are proposed to serve as conduits for long-range extracellular electron transfer. The primary functional physiological evidence has been the reported inhibition of Geobacter sulfurreducens Fe(III) oxide reduction when the gene for the filament-forming cytochrome OmcS is deleted. Here we report that the OmcS-deficient strain from that original report reduces Fe(III) oxide as well as the wild-type, as does a triple mutant in which the genes for the other known filament-forming cytochromes were also deleted. The triple cytochrome mutant displayed filaments with the same 3 nm diameter morphology and conductance as those produced by Escherichia coli heterologously expressing the G. sulfurreducens PilA pilin gene. Fe(III) oxide reduction was inhibited when the pilin gene in cytochrome-deficient mutants was modified to yield poorly conductive 3 nm diameter filaments. The results are consistent with the concept that 3 nm diameter electrically conductive pili (e-pili) are required for G. sulfurreducens long-range extracellular electron transfer. In contrast, rigorous physiological functional evidence is lacking for cytochrome filaments serving as conduits for long-range electron transport. IMPORTANCE: Unraveling microbial extracellular electron transfer mechanisms has profound implications for environmental processes and advancing biological applications. This study on Geobacter sulfurreducens challenges prevailing beliefs on cytochrome filaments as crucial components thought to facilitate long-range electron transport. The discovery of an OmcS-deficient strain's unexpected effectiveness in Fe(III) oxide reduction prompted a reevaluation of the key conduits for extracellular electron transfer. By exploring the impact of genetic modifications on G. sulfurreducens' performance, this research sheds light on the importance of 3-nm diameter electrically conductive pili in Fe(III) oxide reduction. Reassessing these mechanisms is essential for uncovering the true drivers of extracellular electron transfer in microbial systems, offering insights that could revolutionize applications across diverse fields.


Asunto(s)
Citocromos , Compuestos Férricos , Geobacter , Oxidación-Reducción , Transporte de Electrón , Geobacter/genética , Geobacter/metabolismo , Citocromos/metabolismo , Citocromos/genética , Compuestos Férricos/metabolismo , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo
10.
Sci Adv ; 10(18): eadl4450, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701202

RESUMEN

Caulobacter crescentus Tad (tight adherence) pili, part of the type IV pili family, are crucial for mechanosensing, surface adherence, bacteriophage (phage) adsorption, and cell-cycle regulation. Unlike other type IV pilins, Tad pilins lack the typical globular ß sheet domain responsible for pilus assembly and phage binding. The mechanisms of Tad pilus assembly and its interaction with phage ΦCb5 have been elusive. Using cryo-electron microscopy, we unveiled the Tad pilus assembly mechanism, featuring a unique network of hydrogen bonds at its core. We then identified the Tad pilus binding to the ΦCb5 maturation protein (Mat) through its ß region. Notably, the amino terminus of ΦCb5 Mat is exposed outside the capsid and phage/pilus interface, enabling the attachment of fluorescent and affinity tags. These engineered ΦCb5 virions can be efficiently assembled and purified in Escherichia coli, maintaining infectivity against C. crescentus, which presents promising applications, including RNA delivery and phage display.


Asunto(s)
Caulobacter crescentus , Fimbrias Bacterianas , Caulobacter crescentus/virología , Caulobacter crescentus/metabolismo , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/ultraestructura , Unión Proteica , Microscopía por Crioelectrón , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Fagos ARN/metabolismo , Fagos ARN/química , Modelos Moleculares
11.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791440

RESUMEN

The pil gene cluster for Type IV pilus (Tfp) biosynthesis is commonly present and highly conserved in Streptococcus sanguinis. Nevertheless, Tfp-mediated twitching motility is less common among strains, and the factors determining twitching activity are not fully understood. Here, we analyzed the functions of three major pilin proteins (PilA1, PilA2, and PilA3) in the assembly and activity of Tfp in motile S. sanguinis CGMH010. Using various recombinant pilA deletion strains, we found that Tfp composed of different PilA proteins varied morphologically and functionally. Among the three PilA proteins, PilA1 was most critical in the assembly of twitching-active Tfp, and recombinant strains expressing motility generated more structured biofilms under constant shearing forces compared to the non-motile recombinant strains. Although PilA1 and PilA3 shared 94% identity, PilA3 could not compensate for the loss of PilA1, suggesting that the nature of PilA proteins plays an essential role in twitching activity. The single deletion of individual pilA genes had little effect on the invasion of host endothelia by S. sanguinis CGMH010. In contrast, the deletion of all three pilA genes or pilT, encoding the retraction ATPase, abolished Tfp-mediated invasion. Tfp- and PilT-dependent invasion were also detected in the non-motile S. sanguinis SK36, and thus, the retraction of Tfp, but not active twitching, was found to be essential for invasion.


Asunto(s)
Biopelículas , Proteínas Fimbrias , Fimbrias Bacterianas , Streptococcus sanguis , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/genética , Streptococcus sanguis/metabolismo , Streptococcus sanguis/genética , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
12.
Chemosphere ; 358: 142174, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685325

RESUMEN

Silver (Ag) is a pivotal transition metal with applications in multiple industries, necessitating efficient recovery techniques. Despite various proposed methods for silver recovery from wastewaters, challenges persist especially for low concentrations. In this context, bioreduction by bacteria like Geobacter sulfurreducens, offers a promising approach by converting Ag(I) to Ag nanoparticles. To reveal the mechanisms driving microbial Ag(I) reduction, we conducted transcriptional profiling of G. sulfurreducens under Ag(I)-reducing condition. Integrated transcriptomic and protein-protein interaction network analyses identified significant transcriptional shifts, predominantly linked to c-type cytochromes, NADH, and pili. When compared to a pilus-deficient strain, the wild-type strain exhibited distinct cytochrome gene expressions, implying specialized functional roles. Additionally, despite a down-regulation in NADH dehydrogenase genes, we observed up-regulation of specific downstream cytochrome genes, highlighting NADH's potential role as an electron donor in the Ag(I) reduction process. Intriguingly, our findings also highlight the significant influence of pili on the morphology of the resulting Ag nanoparticles. The presence of pili led to the formation of smaller and more crystallized Ag nanoparticles. Overall, our findings underscore the intricate interplay of cytochromes, NADH, and pili in Ag(I) reduction. Such insights suggest potential strategies for further enhancing microbial Ag(I) reduction.


Asunto(s)
Citocromos , Fimbrias Bacterianas , Geobacter , NAD , Oxidación-Reducción , Plata , Transcriptoma , Geobacter/metabolismo , Geobacter/genética , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Citocromos/metabolismo , Citocromos/genética , NAD/metabolismo , Nanopartículas del Metal/química
13.
Curr Opin Microbiol ; 79: 102468, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579360

RESUMEN

Bacteria utilize type IV pili (T4P) to interact with their environment, where they facilitate processes including motility, adherence, and DNA uptake. T4P require multisubunit, membrane-spanning nanomachines for assembly. The tight adherence (Tad) pili are an Archaea-derived T4P subgroup whose machinery exhibits significant mechanistic and architectural differences from bacterial type IVa and IVb pili. Most Tad biosynthetic genes are encoded in a single locus that is widespread in bacteria due to facile acquisition via horizontal gene transfer. These loci experience extensive structural rearrangements, including the acquisition of novel regulatory or biosynthetic genes, which fine-tune their function. This has permitted their integration into many different bacterial lifestyles, including the Caulobacter crescentus cell cycle, Myxococcus xanthus predation, and numerous plant and mammalian pathogens and symbionts.


Asunto(s)
Fimbrias Bacterianas , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/fisiología , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Caulobacter crescentus/fisiología , Bacterias/genética , Bacterias/metabolismo , Adhesión Bacteriana/genética , Transferencia de Gen Horizontal , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Myxococcus xanthus/genética , Myxococcus xanthus/fisiología , Myxococcus xanthus/metabolismo
14.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38647527

RESUMEN

Pseudomonas aeruginosa is a cause of chronic respiratory tract infections in people with cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Prolonged infection allows the accumulation of mutations and horizontal gene transfer, increasing the likelihood of adaptive phenotypic traits. Adaptation is proposed to arise first in bacterial populations colonizing upper airway environments. Here, we model this process using an experimental evolution approach. Pseudomonas aeruginosa PAO1, which is not airway adapted, was serially passaged, separately, in media chemically reflective of upper or lower airway environments. To explore whether the CF environment selects for unique traits, we separately passaged PAO1 in airway-mimicking media with or without CF-specific factors. Our findings demonstrated that all airway environments-sinus and lungs, under CF and non-CF conditions-selected for loss of twitching motility, increased resistance to multiple antibiotic classes, and a hyper-biofilm phenotype. These traits conferred increased airway colonization potential in an in vivo model. CF-like conditions exerted stronger selective pressures, leading to emergence of more pronounced phenotypes. Loss of twitching was associated with mutations in type IV pili genes. Type IV pili mediate surface attachment, twitching, and induction of cAMP signalling. We additionally identified multiple evolutionary routes to increased biofilm formation involving regulation of cyclic-di-GMP signalling. These included the loss of function mutations in bifA and dipA phosphodiesterase genes and activating mutations in the siaA phosphatase. These data highlight that airway environments select for traits associated with sessile lifestyles and suggest upper airway niches support emergence of phenotypes that promote establishment of lung infection.


Asunto(s)
Adaptación Fisiológica , Biopelículas , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/metabolismo , Infecciones por Pseudomonas/microbiología , Biopelículas/crecimiento & desarrollo , Animales , Pulmón/microbiología , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Sistemas de Mensajero Secundario , Fibrosis Quística/microbiología , Ratones , Humanos , Antibacterianos/farmacología , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Mutación , Fenotipo
15.
Nat Commun ; 15(1): 3032, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589417

RESUMEN

Type 1 pili are important virulence factors of uropathogenic Escherichia coli that mediate bacterial attachment to epithelial cells in the urinary tract. The pilus rod is comprised of thousands of copies of the main structural subunit FimA and is assembled in vivo by the assembly platform FimD. Although type 1 pilus rods can self-assemble from FimA in vitro, this reaction is slower and produces structures with lower kinetic stability against denaturants compared to in vivo-assembled rods. Our study reveals that FimD-catalysed in vitro-assembled type 1 pilus rods attain a similar stability as pilus rods assembled in vivo. Employing structural, biophysical and biochemical analyses, we show that in vitro assembly reactions lacking FimD produce pilus rods with structural defects, reducing their stability against dissociation. Overall, our results indicate that FimD is not only required for the catalysis of pilus assembly, but also to control the assembly of the most stable quaternary structure.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Fimbrias , Proteínas Fimbrias/genética , Proteínas Fimbrias/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Fimbrias Bacterianas/química
16.
Sci Total Environ ; 927: 172242, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582122

RESUMEN

Bacterial adhesion plays a vital role in forming and shaping the structure of electroactive biofilms that are essential for the performance of bioelectrochemical systems (BESs). Type IV pili are known to mediate cell adhesion in many Gram-negative bacteria, but the mechanism of pili-mediated cell adhesion of Geobacter species on anode surface remains unclear. Herein, a minor pilin PilV2 was found to be essential for cell adhesion ability of Geobacter sulfurreducens since the lack of pilV2 gene depressed the cell adhesion capability by 81.2% in microplate and the anodic biofilm density by 23.1 % at -0.1 V and 37.7 % at -0.3 V in BESs. The less cohesiveness of mutant biofilms increased the charge transfer resistance and biofilm resistance, which correspondingly lowered current generation of the pilV2-deficient strain by up to 63.2 % compared with that of the wild-type strain in BESs. The deletion of pilV2 posed an insignificant effect on the production of extracellular polysaccharides, pili, extracellular cytochromes and electron shuttles that are involved in biofilm formation or extracellular electron transfer (EET) process. This study demonstrated the significance of pilV2 gene in cell adhesion and biofilm formation of G. sulfurreducens, as well as the importance of pili-mediated adhesion for EET of electroactive biofilm.


Asunto(s)
Adhesión Bacteriana , Biopelículas , Proteínas Fimbrias , Geobacter , Geobacter/fisiología , Geobacter/genética , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/fisiología , Fimbrias Bacterianas/metabolismo , Fuentes de Energía Bioeléctrica
17.
Proc Natl Acad Sci U S A ; 121(17): e2321989121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625941

RESUMEN

Type IVa pili (T4aP) are ubiquitous cell surface filaments important for surface motility, adhesion to surfaces, DNA uptake, biofilm formation, and virulence. T4aP are built from thousands of copies of the major pilin subunit and tipped by a complex composed of minor pilins and in some systems also the PilY1 adhesin. While major pilins of structurally characterized T4aP have lengths of <165 residues, the major pilin PilA of Myxococcus xanthus is unusually large with 208 residues. All major pilins have a conserved N-terminal domain and a variable C-terminal domain, and the additional residues of PilA are due to a larger C-terminal domain. We solved the structure of the M. xanthus T4aP (T4aPMx) at a resolution of 3.0 Å using cryo-EM. The T4aPMx follows the structural blueprint of other T4aP with the pilus core comprised of the interacting N-terminal α1-helices, while the globular domains decorate the T4aP surface. The atomic model of PilA built into this map shows that the large C-terminal domain has more extensive intersubunit contacts than major pilins in other T4aP. As expected from these greater contacts, the bending and axial stiffness of the T4aPMx is significantly higher than that of other T4aP and supports T4aP-dependent motility on surfaces of different stiffnesses. Notably, T4aPMx variants with interrupted intersubunit interfaces had decreased bending stiffness, pilus length, and strongly reduced motility. These observations support an evolutionary scenario whereby the large major pilin enables the formation of a rigid T4aP that expands the environmental conditions in which the T4aP system functions.


Asunto(s)
Proteínas Fimbrias , Myxococcus xanthus , Proteínas Fimbrias/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Fimbrias Bacterianas/metabolismo , Estructura Secundaria de Proteína , Virulencia
18.
Science ; 384(6691): eadl0635, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574145

RESUMEN

The retractile type IV pilus (T4P) is important for virulence of the opportunistic human pathogen Pseudomonas aeruginosa. The single-stranded RNA (ssRNA) phage PP7 binds to T4P and is brought to the cell surface through pilus retraction. Using fluorescence microscopy, we discovered that PP7 detaches T4P, which impairs cell motility and restricts the pathogen's virulence. Using cryo-electron microscopy, mutagenesis, optical trapping, and Langevin dynamics simulation, we resolved the structure of PP7, T4P, and the PP7/T4P complex and showed that T4P detachment is driven by the affinity between the phage maturation protein and its bound pilin, plus the pilus retraction force and speed, and pilus bending. Pilus detachment may be widespread among other ssRNA phages and their retractile pilus systems and offers new prospects for antibacterial prophylaxis and therapeutics.


Asunto(s)
Fimbrias Bacterianas , Fagos Pseudomonas , Pseudomonas aeruginosa , Virus ARN , Internalización del Virus , Humanos , Microscopía por Crioelectrón , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/virología , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/virología , Virus ARN/química , Virus ARN/fisiología , Fagos Pseudomonas/química , Fagos Pseudomonas/fisiología , Proteínas Virales/metabolismo
19.
mBio ; 15(5): e0069324, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587426

RESUMEN

Among genes present in all group A streptococci (GAS), those encoding M-fibril and T-pilus proteins display the highest levels of sequence diversity, giving rise to the two primary serological typing schemes historically used to define strain. A new genotyping scheme for the pilin adhesin and backbone genes is developed and, when combined with emm typing, provides an account of the global GAS strain population. Cluster analysis based on nucleotide sequence similarity assigns most T-serotypes to discrete pilin backbone sequence clusters, yet the established T-types correspond to only half the clusters. The major pilin adhesin and backbone sequence clusters yield 98 unique combinations, defined as "pilin types." Numerous horizontal transfer events that involve pilin or emm genes generate extensive antigenic and functional diversity on the bacterial cell surface and lead to the emergence of new strains. Inferred pilin genotypes applied to a meta-analysis of global population-based collections of pharyngitis and impetigo isolates reveal highly significant associations between pilin genotypes and GAS infection at distinct ecological niches, consistent with a role for pilin gene products in adaptive evolution. Integration of emm and pilin typing into open-access online tools (pubmlst.org) ensures broad utility for end-users wanting to determine the architecture of M-fibril and T-pilus genes from genome assemblies.IMPORTANCEPrecision in defining the variant forms of infectious agents is critical to understanding their population biology and the epidemiology of associated diseases. Group A Streptococcus (GAS) is a global pathogen that causes a wide range of diseases and displays a highly diverse cell surface due to the antigenic heterogeneity of M-fibril and T-pilus proteins which also act as virulence factors of varied functions. emm genotyping is well-established and highly utilized, but there is no counterpart for pilin genes. A global GAS collection provides the basis for a comprehensive pilin typing scheme, and online tools for determining emm and pilin genotypes are developed. Application of these tools reveals the expansion of structural-functional diversity among GAS via horizontal gene transfer, as evidenced by unique combinations of surface protein genes. Pilin and emm genotype correlations with superficial throat vs skin infection provide new insights on the molecular determinants underlying key ecological and epidemiological trends.


Asunto(s)
Variación Genética , Genotipo , Streptococcus pyogenes , Streptococcus pyogenes/genética , Streptococcus pyogenes/clasificación , Humanos , Recombinación Genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Fimbrias/genética , Transferencia de Gen Horizontal , Antígenos Bacterianos/genética , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/epidemiología , Impétigo/microbiología , Impétigo/epidemiología , Faringitis/microbiología , Fimbrias Bacterianas/genética , Proteínas Portadoras
20.
Nat Commun ; 15(1): 2746, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553443

RESUMEN

Acinetobacters pose a significant threat to human health, especially those with weakened immune systems. Type IV pili of acinetobacters play crucial roles in virulence and antibiotic resistance. Single-stranded RNA bacteriophages target the bacterial retractile pili, including type IV. Our study delves into the interaction between Acinetobacter phage AP205 and type IV pili. Using cryo-electron microscopy, we solve structures of the AP205 virion with an asymmetric dimer of maturation proteins, the native Acinetobacter type IV pili bearing a distinct post-translational pilin cleavage, and the pili-bound AP205 showing its maturation proteins adapted to pilin modifications, allowing each phage to bind to one or two pili. Leveraging these results, we develop a 20-kilodalton AP205-derived protein scaffold targeting type IV pili in situ, with potential for research and diagnostics.


Asunto(s)
Acinetobacter , Bacteriófagos , Virus ARN , Humanos , Proteínas Fimbrias/metabolismo , Acinetobacter/metabolismo , Microscopía por Crioelectrón , Fimbrias Bacterianas/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA