Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Small ; 20(26): e2310149, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38233200

RESUMEN

Bioinspired nanotopography is a promising approach to generate antimicrobial surfaces to combat implant-associated infection. Despite efforts to develop bactericidal 1D structures, the antibacterial capacity of 2D structures and their mechanism of action remains uncertain. Here, hydrothermal synthesis is utilized to generate two 2D nanoflake surfaces on titanium (Ti) substrates and investigate the physiological effects of nanoflakes on bacteria. The nanoflakes impair the attachment and growth of Escherichia coli and trigger the accumulation of intracellular reactive oxygen species (ROS), potentially contributing to the killing of adherent bacteria. E. coli surface appendages type-1 fimbriae and flagella are not implicated in the nanoflake-mediated modulation of bacterial attachment but do influence the bactericidal effects of nanoflakes. An E. coli ΔfimA mutant lacking type-1 fimbriae is more susceptible to the bactericidal effects of nanoflakes than the parent strain, while E. coli cells lacking flagella (ΔfliC) are more resistant. The results suggest that type-1 fimbriae confer a cushioning effect that protects bacteria upon initial contact with the nanoflake surface, while flagella-mediated motility can lead to elevated membrane abrasion. This finding offers a better understanding of the antibacterial properties of nanoflake structures that can be applied to the design of antimicrobial surfaces for future medical applications.


Asunto(s)
Escherichia coli , Propiedades de Superficie , Titanio , Titanio/química , Titanio/farmacología , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Especies Reactivas de Oxígeno/metabolismo , Nanoestructuras/química , Adhesión Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/metabolismo
2.
Microb Drug Resist ; 27(12): 1624-1632, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34077284

RESUMEN

This study reported the involvement of a gene cluster from a conjugative plasmid in the biofilm formation of Escherichia coli. We used a novel EZ-Tn5 transposon technique to generate a transposon library and used arbitrarily primed PCR to detect the insertion sites in biofilm formation-deficient mutants. To validate the function of candidate biofilm formation genes, the genes were cloned into plasmid pBluescript II SK (+) and transformed into E. coil DH5α. Biofilm production from the transformants was then assessed by phenotypic biofilm formation using Crystal Violet staining and microscopy. A total of 3,000 transposon mutants of E. coli DH5α-p253 were screened, of which 28 were found to be deficient in biofilm formation. Further characterization revealed that 24/28 mutations were detected with their insertions in chromosome, while the remaining 4 mutations were evidenced that the functional genes for biofilm formation were harbored in the plasmid. Interestingly, the plasmid sequencing showed that these four transposon mutations were all inserted into a fimbriae-associated gene cluster (fim-cluster). This fim-cluster is a hybrid segment spanning a 7,949 bp sequence, with a terminal inverted repeat sequence and two coding regions. In summary, we performed a high-efficiency screening to a library constructed with the EZ-Tn5-based transposon approach and identified the gene clusters responsible for the biofilm production of E. coli, especially the genes harbored in the plasmid. Further studies are needed to understand the spread of this novel plasmid-mediated biofilm formation gene in clinical E. coli isolates and the clinical impacts.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Escherichia coli/genética , Fimbrias Bacterianas/genética , Plásmidos/genética , Escherichia coli/efectos de los fármacos , Fimbrias Bacterianas/efectos de los fármacos , Genes Bacterianos , Pruebas de Sensibilidad Microbiana , Fenotipo , Plásmidos/efectos de los fármacos
3.
mSphere ; 6(2)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658276

RESUMEN

The bacterial type IV pilus (T4P) is a prominent virulence factor in many significant human pathogens, some of which have become increasingly antibiotic resistant. Antivirulence chemotherapeutics are considered a promising alternative to antibiotics because they target the disease process instead of bacterial viability. However, a roadblock to the discovery of anti-T4P compounds is the lack of a high-throughput screen (HTS) that can be implemented relatively easily and economically. Here, we describe the first HTS for the identification of inhibitors specifically against the T4P assembly ATPase PilB in vitroChloracidobacterium thermophilum PilB (CtPilB) had been demonstrated to have robust ATPase activity and the ability to bind its expected ligands in vitro. We utilized CtPilB and MANT-ATP, a fluorescent ATP analog, to develop a binding assay and adapted it for an HTS. As a proof of principle, we performed a pilot screen with a small compound library of kinase inhibitors and identified quercetin as a PilB inhibitor in vitro Using Myxococcus xanthus as a model bacterium, we found quercetin to reduce its T4P-dependent motility and T4P assembly in vivo. These results validated our HTS as effective in identifying PilB inhibitors. This assay may prove valuable in seeking leads for the development of antivirulence chemotherapeutics against PilB, an essential and universal component of all bacterial T4P systems.IMPORTANCE Many bacterial pathogens use their type IV pili (T4P) to facilitate and maintain infection of a human host. Small chemical compounds that inhibit the production or assembly of T4P hold promise in the treatment and prevention of infections, especially in the era of increasing threats from antibiotic-resistant bacteria. However, few chemicals are known to have inhibitory or anti-T4P activity. Their identification has not been easy due to the lack of a method for the screening of compound collections or libraries on a large scale. Here, we report the development of an assay that can be scaled up to screen compound libraries for inhibitors of a critical T4P assembly protein. We further demonstrate that it is feasible to use whole cells to examine potential inhibitors for their activity against T4P assembly in a bacterium.


Asunto(s)
Acidobacteria/efectos de los fármacos , Proteínas Bacterianas/antagonistas & inhibidores , Fimbrias Bacterianas/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Oxidorreductasas/antagonistas & inhibidores , Factores de Virulencia/antagonistas & inhibidores , Acidobacteria/enzimología , Acidobacteria/genética , Proteínas Bacterianas/metabolismo , Fimbrias Bacterianas/fisiología , Modelos Moleculares , Oxidorreductasas/metabolismo , Quercetina/farmacología , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Virulencia/metabolismo
4.
PLoS Pathog ; 17(2): e1009251, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33524048

RESUMEN

Biofilm formation protects bacteria from antibiotics. Very little is known about the response of biofilm-dwelling bacteria to antibiotics at the single cell level. Here, we developed a cell-tracking approach to investigate how antibiotics affect structure and dynamics of colonies formed by the human pathogen Neisseria gonorrhoeae. Antibiotics targeting different cellular functions enlarge the cell volumes and modulate within-colony motility. Focusing on azithromycin and ceftriaxone, we identify changes in type 4 pilus (T4P) mediated cell-to-cell attraction as the molecular mechanism for different effects on motility. By using strongly attractive mutant strains, we reveal that the survivability under ceftriaxone treatment depends on motility. Combining our results, we find that sequential treatment with azithromycin and ceftriaxone is synergistic. Taken together, we demonstrate that antibiotics modulate T4P-mediated attractions and hence cell motility and colony fluidity.


Asunto(s)
Antibacterianos/farmacología , Azitromicina/farmacología , Ceftriaxona/farmacología , Neisseria gonorrhoeae/efectos de los fármacos , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Sinergismo Farmacológico , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/fisiología , Movimiento/efectos de los fármacos
5.
J Biol Chem ; 296: 100279, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33450229

RESUMEN

Pseudomonas aeruginosa is a significant threat in both healthcare and industrial biofouling. Surface attachment of P. aeruginosa is particularly problematic as surface association induces virulence and is necessary for the ensuing process of biofilm formation, which hampers antibiotic treatments. Previous efforts have searched for dispersal agents of mature biofilm collectives, but there are no known factors that specifically disperse individual surface-attached P. aeruginosa. In this study, we develop a quantitative single-cell surface-dispersal assay and use it to show that P. aeruginosa itself produces factors that can stimulate its dispersal. Through bioactivity-guided fractionation, mass spectrometry, and nuclear magnetic resonance, we elucidated the structure of one such factor, 2-methyl-4-hydroxyquinoline (MHQ). MHQ is an alkyl quinolone with a previously unknown activity and is synthesized by the PqsABC enzymes. Pure MHQ is sufficient to disperse P. aeruginosa, but the dispersal activity of natural P. aeruginosa conditioned media requires additional factors. Whereas other alkyl quinolones have been shown to act as antibiotics or membrane depolarizers, MHQ lacks these activities and known antibiotics do not induce dispersal. In contrast, we show that MHQ inhibits the activity of Type IV Pili (TFP) and that TFP targeting can explain its dispersal activity. Our work thus identifies single-cell surface dispersal as a new activity of P. aeruginosa-produced small molecules, characterizes MHQ as a promising dispersal agent, and establishes TFP inhibition as a viable mechanism for P. aeruginosa dispersal.


Asunto(s)
Biopelículas/efectos de los fármacos , Hidroxiquinolinas/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Compuestos de Anilina/química , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/patogenicidad , Quinolonas/farmacología , Análisis de la Célula Individual , Virulencia/efectos de los fármacos
6.
PLoS One ; 15(10): e0240101, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33007036

RESUMEN

Bacterial phytopathogen Xylella fastidiosa specifically colonizes the plant vascular tissue through a complex process of cell adhesion, biofilm formation, and dispersive movement. Adaptation to the chemical environment of the xylem is essential for bacterial growth and progression of infection. Grapevine xylem sap contains a range of plant secondary metabolites such as phenolics, which fluctuate in response to pathogen infection and plant physiological state. Phenolic compounds are often involved in host-pathogen interactions and influence infection dynamics through signaling activity, antimicrobial properties, and alteration of bacterial phenotypes. The effect of biologically relevant concentrations of phenolic compounds coumaric acid, gallic acid, epicatechin, and resveratrol on growth of X. fastidiosa was assessed in vitro. None of these compounds inhibited bacterial growth, but epicatechin and gallic acid reduced cell-surface adhesion. Cell-cell aggregation decreased with resveratrol treatment, but the other phenolic compounds tested had minimal effect on aggregation. Expression of attachment (xadA) and aggregation (fimA) related genes were altered by presence of the phenolic compounds, consistent with observed phenotypes. All four of the phenolic compounds bound to purified X. fastidiosa lipopolysaccharide (LPS), a major cell-surface component. Information regarding the impact of chemical environment on pathogen colonization in plants is important for understanding the infection process and factors associated with host susceptibility.


Asunto(s)
Adhesión Bacteriana/efectos de los fármacos , Membrana Celular/metabolismo , Lipopolisacáridos/metabolismo , Fenoles/farmacología , Vitis/química , Xylella/citología , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana/genética , Catequina/farmacología , Membrana Celular/efectos de los fármacos , Medios de Cultivo/química , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/genética , Ácido Gálico/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos , Resveratrol/farmacología , Xylella/efectos de los fármacos , Xylella/genética , Xylella/crecimiento & desarrollo
7.
J Appl Microbiol ; 128(2): 387-400, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31573730

RESUMEN

AIMS: To study the individual and combined contribution of catechin, protocatechuic and vanillic acids to inhibit the adhesion of uropathogenic Escherichia coli (UPEC) on the surface of silicone catheters. METHODS AND RESULTS: The adhesion of UPEC to silicone catheters during the exposure to nonlethal concentrations of phenolic compounds was measured, as well as changes in motility, presence of fimbriae, extra-cellular polymeric substances, surface charge, hydrophobicity and membrane fluidity. The phenolic combination reduced 26-51% of motility, 1 log CFU per cm2 of adhered bacteria and 20-40% the carbohydrate and protein content in the biofilm matrix. Curli fimbriae, surface charge and cell hydrophobicity were affected to a greater extent by the phenolic combination. In the mixture, vanillic acid was the most effective for reducing bacterial adhesion, extra-polymeric substance production, motility, curli fimbriae and biofilm structure. Notwithstanding, protocatechuic acid caused major changes in the bacterial cell surface properties, whereas catechin affected the cell membrane functionality. CONCLUSION: Catechin, protocatechuic and vanillic acids have different bacterial cell targets, explaining the synergistic effect of their combination against uropathogenic E. coli. SIGNIFICANCE AND IMPACT OF STUDY: This study shows the contribution of catechin, protocatechuic and vanillic acids in producing a synergistic mixture against the adhesion of uropathogenic E. coli on silicone catheters. The action of catechin, vanillic and protocatechuic acids included specific contributions of each compound against the E. coli membrane's integrity, motility, surface properties and production of extracellular polymeric substances. Therefore, the studied mixture of phenolic compounds could be used as an antibiotic alternative to reduce urinary tract infections associated with silicone catheters.


Asunto(s)
Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Catequina/farmacología , Hidroxibenzoatos/farmacología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/efectos de los fármacos , Ácido Vanílico/farmacología , Catéteres/microbiología , Sinergismo Farmacológico , Infecciones por Escherichia coli/microbiología , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Humanos , Fenoles/farmacología , Siliconas/análisis , Escherichia coli Uropatógena/crecimiento & desarrollo , Escherichia coli Uropatógena/fisiología
8.
J Bacteriol ; 201(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31451543

RESUMEN

We investigate the effect of bacteriophage infection and antibiotic treatment on the coordination of swarming, a collective form of flagellum- and pilus-mediated motility in bacteria. We show that phage infection of the opportunistic bacterial pathogen Pseudomonas aeruginosa abolishes swarming motility in the infected subpopulation and induces the release of the Pseudomonas quinolone signaling molecule PQS, which repulses uninfected subpopulations from approaching the infected area. These mechanisms have the overall effect of limiting the infection to a subpopulation, which promotes the survival of the overall population. Antibiotic treatment of P. aeruginosa elicits the same response, abolishing swarming motility and repulsing approaching swarms away from the antibiotic-treated area through a PQS-dependent mechanism. Swarms are entirely repelled from the zone of antibiotic-treated P. aeruginosa, consistent with a form of antibiotic evasion, and are not repelled by antibiotics alone. PQS has multiple functions, including serving as a quorum-sensing molecule, activating an oxidative stress response, and regulating the release of virulence and host-modifying factors. We show that PQS serves additionally as a stress warning signal that causes the greater population to physically avoid cell stress. The stress response at the collective level observed here in P. aeruginosa is consistent with a mechanism that promotes the survival of bacterial populations.IMPORTANCE We uncover a phage- and antibiotic-induced stress response in the clinically important opportunistic pathogen Pseudomonas aeruginosa Phage-infected P. aeruginosa subpopulations are isolated from uninfected subpopulations by the production of a stress-induced signal. Activation of the stress response by antibiotics causes P. aeruginosa to physically be repelled from the area containing antibiotics altogether, consistent with a mechanism of antibiotic evasion. The stress response observed here could increase P. aeruginosa resilience against antibiotic treatment and phage therapy in health care settings, as well as provide a simple evolutionary strategy to avoid areas containing stress.


Asunto(s)
Fimbrias Bacterianas/metabolismo , Flagelos/metabolismo , Pseudomonas aeruginosa/genética , Quinolonas/metabolismo , Percepción de Quorum/fisiología , Antibacterianos/farmacología , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/genética , Flagelos/efectos de los fármacos , Flagelos/genética , Viabilidad Microbiana/efectos de los fármacos , Movimiento/fisiología , Fagos Pseudomonas/genética , Fagos Pseudomonas/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/virología , Quinolonas/farmacología , Transducción de Señal , Estrés Fisiológico
9.
Subcell Biochem ; 92: 369-413, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214993

RESUMEN

To interact with the external environments, bacteria often display long proteinaceous appendages on their cell surface, called pili or fimbriae. These non-flagellar thread-like structures are polymers composed of covalently or non-covalently interacting repeated pilin subunits. Distinct pilus classes can be identified on basis of their assembly pathways, including chaperone-usher pili, type V pili, type IV pili, curli and fap fibers, conjugative and type IV secretion pili, as well as sortase-mediated pili. Pili play versatile roles in bacterial physiology, and can be involved in adhesion and host cell invasion, DNA and protein secretion and uptake, biofilm formation, cell motility and more. Recent advances in structure determination of components involved in the various pilus systems has enabled a better molecular understanding of their mechanisms of assembly and function. In this chapter we describe the diversity in structure, biogenesis and function of the different pilus systems found in Gram-positive and Gram-negative bacteria, and review their potential as anti-microbial targets.


Asunto(s)
Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Antibacterianos/farmacología , Proteínas Fimbrias/biosíntesis , Proteínas Fimbrias/química , Fimbrias Bacterianas/efectos de los fármacos , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo
10.
Trends Microbiol ; 27(8): 658-661, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31182345

RESUMEN

In the age of antibiotic resistance, strategies targeting virulence traits of bacteria are the focus of intense study. Two such studies came out independently a week apart showing that bacterial type IV pili are a promising therapeutic target.


Asunto(s)
Antibacterianos/farmacología , Fimbrias Bacterianas/efectos de los fármacos , Adenosina Trifosfatasas , Animales , Sistemas de Liberación de Medicamentos , Fimbrias Bacterianas/enzimología , Humanos
11.
Proc Natl Acad Sci U S A ; 116(17): 8481-8486, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30948644

RESUMEN

Despite the availability of antibiotics and vaccines, Neisseria meningitidis remains a major cause of meningitis and sepsis in humans. Due to its extracellular lifestyle, bacterial adhesion to host cells constitutes an attractive therapeutic target. Here, we present a high-throughput microscopy-based approach that allowed the identification of compounds able to decrease type IV pilus-mediated interaction of bacteria with endothelial cells in the absence of bacterial or host cell toxicity. Compounds specifically inhibit the PilF ATPase enzymatic activity that powers type IV pilus extension but remain inefficient on the ATPase that promotes pilus retraction, thus leading to rapid pilus disappearance from the bacterial surface and loss of pili-mediated functions. Structure activity relationship of the most active compound identifies specific moieties required for the activity of this compound and highlights its specificity. This study therefore provides compounds targeting pilus biogenesis, thereby inhibiting bacterial adhesion, and paves the way for a novel therapeutic option for meningococcal infections.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Fimbrias Bacterianas , Adenosina Trifosfatasas/antagonistas & inhibidores , Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Células Cultivadas , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/metabolismo , Ensayos Analíticos de Alto Rendimiento , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neisseria meningitidis/enzimología , Neisseria meningitidis/patogenicidad
12.
EcoSal Plus ; 8(2)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30873935

RESUMEN

The chaperone-usher (CU) pathway is a conserved secretion system dedicated to the assembly of a superfamily of virulence-associated surface structures by a wide range of Gram-negative bacteria. Pilus biogenesis by the CU pathway requires two specialized assembly components: a dedicated periplasmic chaperone and an integral outer membrane assembly and secretion platform termed the usher. The CU pathway assembles a variety of surface fibers, ranging from thin, flexible filaments to rigid, rod-like organelles. Pili typically act as adhesins and function as virulence factors that mediate contact with host cells and colonization of host tissues. Pilus-mediated adhesion is critical for early stages of infection, allowing bacteria to establish a foothold within the host. Pili are also involved in modulation of host cell signaling pathways, bacterial invasion into host cells, and biofilm formation. Pili are critical for initiating and sustaining infection and thus represent attractive targets for the development of antivirulence therapeutics. Such therapeutics offer a promising alternative to broad-spectrum antibiotics and provide a means to combat antibiotic resistance and treat infection while preserving the beneficial microbiota. A number of strategies have been taken to develop antipilus therapeutics, including vaccines against pilus proteins, competitive inhibitors of pilus-mediated adhesion, and small molecules that disrupt pilus biogenesis. Here we provide an overview of the function and assembly of CU pili and describe current efforts aimed at interfering with these critical virulence structures.


Asunto(s)
Sistemas de Secreción Bacterianos/efectos de los fármacos , Fimbrias Bacterianas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Chaperonas Moleculares/metabolismo , Adhesinas Bacterianas/metabolismo , Ensayos Clínicos como Asunto , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Humanos , Modelos Moleculares , Escherichia coli Uropatógena , Virulencia
13.
Nat Microbiol ; 4(6): 972-984, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30911127

RESUMEN

Bacterial virulence factors are attractive targets for the development of therapeutics. Type IV pili, which are associated with a remarkable array of properties including motility, the interaction between bacteria and attachment to biotic and abiotic surfaces, represent particularly appealing virulence factor targets. Type IV pili are present in numerous bacterial species and are critical for their pathogenesis. In this study, we report that trifluoperazine and related phenothiazines block functions associated with Type IV pili in different bacterial pathogens, by affecting piliation within minutes. Using Neisseria meningitidis as a paradigm of Gram-negative bacterial pathogens that require Type IV pili for pathogenesis, we show that piliation is sensitive to altered activity of the Na+ pumping NADH-ubiquinone oxidoreductase (Na+-NQR) complex and that these compounds probably altered the establishment of the sodium gradient. In vivo, these compounds exert a strong protective effect. They reduce meningococcal colonization of the human vessels and prevent subsequent vascular dysfunctions, intravascular coagulation and overwhelming inflammation, the hallmarks of invasive meningococcal infections. Finally, they reduce lethality. This work provides a proof of concept that compounds with activity against bacterial Type IV pili could beneficially participate in the treatment of infections caused by Type IV pilus-expressing bacteria.


Asunto(s)
Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/fisiología , Infecciones Meningocócicas/prevención & control , Neisseria meningitidis/efectos de los fármacos , Factores de Virulencia , Animales , Antibacterianos/farmacología , Vasos Sanguíneos/lesiones , Vasos Sanguíneos/microbiología , Vasos Sanguíneos/patología , Combinación de Medicamentos , Complejo I de Transporte de Electrón , Femenino , Fimbrias Bacterianas/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Bacterias Gramnegativas , Humanos , Ratones , Neisseria meningitidis/genética , Neisseria meningitidis/crecimiento & desarrollo , Fenotiazinas/farmacología , Piel/patología , Trasplante de Piel , ATPasa Intercambiadora de Sodio-Potasio , Trifluoperazina/farmacología
14.
Med Hypotheses ; 124: 17-20, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30798908

RESUMEN

Urinary tract infections are among the most common infectious diseases worldwide, primarily caused by uropathogenic Escherichia coli (UPEC) strains that harbor type I pili and P pili on the surface. Standard E. coli therapy still entails antibiotic consumption, but urinary tract infections tend to recur at a very high rate. Due to the emergence of antibiotic resistant strains of UPEC, as well as high infection recurrence rates, there is a need for new approaches to efficiently treat and prevent urinary tract infections. Since aforementioned adhesive organelles are the principal virulence factors in UPEC, anti-adhesion strategy seems to be the most promising (and hitherto unexplored) treatment option. Here we propose an antiadhesive dual targeting approach towards FimH and PapG adhesive proteins placed on two key virulence factors for UPEC - type I fimbriae and P pili. Such dual antagonists will contain appropriate pharmacophores (mannose and natural cranberry-containing polyphenol) joined together and will more efficiently block the infection and prevent the progression of the disease in comparison to FimH and PapG as isolated targets. More specifically, polyphenol mannosides (due to the structural similarities with the most potent biaryl inhibitors) can act as high-affinity FimH ligands, while cranberry-associated polyphenol moiety can additionally inhibit the PapG-mediated adhesion. Proposed compound may also contribute to the antioxidant capacity of the human organism. In conclusion, this dual-target hypothesis for the prevention and treatment of UPEC infections represents an important foundation for further research on this topic.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Escherichia coli/prevención & control , Infecciones Urinarias/prevención & control , Escherichia coli Uropatógena/efectos de los fármacos , Progresión de la Enfermedad , Células Epiteliales/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Fimbrias Bacterianas/efectos de los fármacos , Humanos , Ligandos , Manosa/química , Manósidos/química , Modelos Moleculares , Estrés Oxidativo , Fenol/química , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/microbiología , Infecciones Urinarias/tratamiento farmacológico , Vaccinium macrocarpon/química , Factores de Virulencia/metabolismo
15.
Anal Chem ; 90(20): 12314-12321, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30284810

RESUMEN

Many pathogens use host glycans as docking points for adhesion. Therefore, the use of compounds blocking carbohydrate-binding adhesins is a promising strategy for fighting infections. In this work, we describe a simple and rapid microarray approach for assessing the bacterial adhesion and efficiency of antiadhesive compounds targeting uropathogenic Escherichia coli UTI89, which displays mannose-specific adhesin FimH at the tip of fimbriae. The approach consisted in direct detection of live fluorescently labeled bacteria bound to mannan printed onto microarray slides. The utility of the arrays for binding/inhibition assays was first validated by comparing array-derived results for the model mannose-binding lectin concanavalin A with data obtained by isothermal titration calorimetry. Growth phase-dependent binding of UTI89 to the arrays was observed, proving the usefulness of the setup for detecting differences in FimH expression. Importantly, bacteria labeling and binding assays entailed minimal manipulation, helping to preserve the integrity of fimbriae. The efficiency of three different dodecamannosylated fullerenes as FimH-targeted antiadhesives was next evaluated in competition assays. The results revealed a superior activity of the mannofullerenes (5- to 18-fold per mannose residue) over methyl α-d-mannopyranoside. Moreover, differences in activity were detected for mannofullerenes differing in the structure/length of the spacer used for grafting mannose onto the fullerene core, further demonstrating the sensitivity of the assay. Overall, the approach combines straightforward and time-saving protocols for microarray preparation, bacteria labeling, and binding assays, and it can be easily tailored to other bacteria bearing carbohydrate-binding adhesins.


Asunto(s)
Adhesión Bacteriana/efectos de los fármacos , Fulerenos/farmacología , Análisis por Micromatrices , Escherichia coli Uropatógena/efectos de los fármacos , Calorimetría , Concanavalina A/antagonistas & inhibidores , Fimbrias Bacterianas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Escherichia coli Uropatógena/crecimiento & desarrollo
16.
Molecules ; 23(8)2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30060568

RESUMEN

An efficient study of carbohydrate-protein interactions was achieved using multivalent glycodendrimer library. Different dendrimers with varied peripheral sugar densities and linkers provided an arsenal of potential novel therapeutic agents that could be useful for better specific action and greater binding affinities against their cognate protein receptors. Highly effective click chemistry represents the basic method used for the synthesis of mannosylated dendrimers. To this end, we used propargylated scaffolds of varying sugar densities ranging from 2 to 18 for the attachment of azido mannopyranoside derivatives using copper catalyzed click cycloaddition. Mannopyranosides with short and pegylated aglycones were used to evaluate their effects on the kinetics of binding. The mannosylated dendrons were built using varied scaffolds toward the accelerated and combined "onion peel" strategy These carbohydrates have been designed to fight E. coli urinary infections, by inhibiting the formation of bacterial biofilms, thus neutralizing the adhesion of FimH type 1 lectin present at the tip of their fimbriae against the natural multiantennary oligomannosides of uroplakin 1a receptors expressed on uroepithelial tissues. Preliminary DLS studies of the mannosylated dendrimers to cross- link the leguminous lectin Con A used as a model showed their high potency as candidates to fight the E. coli adhesion and biofilm formation.


Asunto(s)
Antibacterianos/síntesis química , Biopelículas/efectos de los fármacos , Dendrímeros/síntesis química , Lectinas/química , Manosa/química , Oligosacáridos/química , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Azidas/química , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Química Clic , Concanavalina A/química , Concanavalina A/metabolismo , Reacción de Cicloadición , Dendrímeros/metabolismo , Dendrímeros/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/metabolismo , Expresión Génica , Glicosilación , Humanos , Lectinas/metabolismo , Modelos Biológicos , Polietilenglicoles/química , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Uroplaquina Ia/genética , Uroplaquina Ia/metabolismo , Urotelio/efectos de los fármacos , Urotelio/metabolismo , Urotelio/microbiología
17.
Nat Commun ; 9(1): 2635, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980663

RESUMEN

Pseudomonas aeruginosa colonises the upper airway of cystic fibrosis (CF) patients, providing a reservoir of host-adapted genotypes that subsequently establish chronic lung infection. We previously experimentally-evolved P. aeruginosa in a murine model of respiratory tract infection and observed early-acquired mutations in pmrB, encoding the sensor kinase of a two-component system that promoted establishment and persistence of infection. Here, using proteomics, we show downregulation of proteins involved in LPS biosynthesis, antimicrobial resistance and phenazine production in pmrB mutants, and upregulation of proteins involved in adherence, lysozyme resistance and inhibition of the chloride ion channel CFTR, relative to wild-type strain LESB65. Accordingly, pmrB mutants are susceptible to antibiotic treatment but show enhanced adherence to airway epithelial cells, resistance to lysozyme treatment, and downregulate host CFTR expression. We propose that P. aeruginosa pmrB mutations in CF patients are subject to an evolutionary trade-off, leading to enhanced colonisation potential, CFTR inhibition, and resistance to host defences, but also to increased susceptibility to antibiotics.


Asunto(s)
Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , Evolución Biológica , Interacciones Huésped-Patógeno , Pseudomonas aeruginosa/metabolismo , Factores de Transcripción/metabolismo , Células A549 , Adaptación Fisiológica/efectos de los fármacos , Animales , Antiinfecciosos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Recuento de Colonia Microbiana , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulación hacia Abajo , Células Epiteliales/metabolismo , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Pulmón/microbiología , Pulmón/patología , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Movimiento , Muramidasa/metabolismo , Mutación/genética , Análisis de Componente Principal , Proteómica , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación
18.
Artículo en Inglés | MEDLINE | ID: mdl-29760140

RESUMEN

The opportunistic Gram-negative pathogen Pseudomonas aeruginosa, known for its intrinsic and acquired antibiotic resistance, has a notorious ability to form biofilms, which often facilitate chronic infections. The evolutionary paths to antibiotic resistance have mainly been investigated in planktonic cultures and are less studied in biofilms. We experimentally evolved P. aeruginosa PAO1 colony biofilms and stationary-phase planktonic cultures for seven passages in the presence of subinhibitory levels (0.1 mg/liter) of ciprofloxacin (CIP) and performed a genotypic (whole-bacterial population sequencing) and phenotypic assessment of the populations. We observed a higher proportion of CIP resistance in the CIP-evolved biofilm populations than in planktonic populations exposed to the same drug concentrations. However, the MICs of ciprofloxacin were lower in CIP-resistant isolates selected from the biofilm population than the MICs of CIP-resistant isolates from the planktonic cultures. We found common evolutionary trajectories between the different lineages, with mutations in known CIP resistance determinants as well as growth condition-dependent adaptations. We observed a general trend toward a reduction in type IV-pilus-dependent motility (twitching) in CIP-evolved populations and a loss of virulence-associated traits in the populations evolved in the absence of antibiotic. In conclusion, our data indicate that biofilms facilitate the development of low-level mutational resistance, probably due to the lower effective drug exposure than in planktonic cultures. These results provide a framework for the selection process of resistant variants and the evolutionary mechanisms involved under the two different growth conditions.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Ciprofloxacina/farmacología , Genoma Bacteriano , Plancton/genética , Pseudomonas aeruginosa/genética , Biopelículas/crecimiento & desarrollo , Evolución Molecular Dirigida/métodos , Farmacorresistencia Microbiana , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Genotipo , Pruebas de Sensibilidad Microbiana , Fenotipo , Plancton/efectos de los fármacos , Plancton/crecimiento & desarrollo , Plancton/patogenicidad , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/patogenicidad , Virulencia , Secuenciación Completa del Genoma
19.
FEMS Microbiol Lett ; 365(4)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29408987

RESUMEN

Bioleaching is a promising process for 350 million tons of Jinchuan low-grade pentlandite. But high concentration of Mg2+ is harmful to bioleaching microorganisms. Interestingly, biofilm formation can improve leaching rate. Thus, it is actually necessary to investigate the effect of Mg2+ stress on Acidithiobacillus ferrooxidans biofilms formation. In this study, we found that 0.1 and 0.5 M Mg2+ stress significantly reduced the total biomass of biofilm in a dose-dependent manner. The observation results of extracellular polymeric substances and bacteria using confocal laser scanning microscopy showed that the biofilm became thinner and looser under Mg2+ stress. Whereas 0.1 and 0.5 M Mg2+ stress had no remarkable effect on the bacterial viability, the attachment rate of Acidithiobacillus ferrooxidans to pentlandite was reduced by Mg2+ stress. Furthermore, sliding motility, twitching motility and the gene expression level of pilV and pilW were inhibited under Mg2+ stress. These results suggested that Mg2+ reduced biofilm formation through inhibiting pilV and pilW gene expression, decreasing Type IV pili formation and then attenuating the ability of attachment, subduing the active expansion of biofilms mediated by twitching motility. This study provided more information about the effect of Mg2+ stress on biofilm formation and may be useful for increasing the leaching rate in low-grade pentlandit.


Asunto(s)
Acidithiobacillus/efectos de los fármacos , Acidithiobacillus/fisiología , Biopelículas/efectos de los fármacos , Fimbrias Bacterianas/metabolismo , Magnesio/farmacología , Acidithiobacillus/genética , Adhesión Bacteriana/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...