Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.357
Filtrar
1.
J Tradit Chin Med ; 44(3): 496-504, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38767633

RESUMEN

OBJECTIVE: To investigate the effects of Hippeastrum hybridum (HH) as a free radical scavenger, and an inhibitor of the two enzymes i-e Alpha-amylase (α-amylase) and acetylcholinesterase (AChE). METHODS: In this study, HH plant was preliminary analyzed for phytochemical screening and then tested for its antioxidant, anti-α-amylase, and anti-AChE efficiency via standard procedures. RESULTS: Phytochemical analysis shows the existence of different compounds; while Coumarins and quinones were absent. The total phenolic, flavonoid, and tannins content were found to be (78.52 ± 0.69) mg GAE/g, (2.01 ± 0.04) mg RUE/g, and (58.12 ± 0.23) mg TAE/g of plant extract respectively. 28.02% ± 0.02% alkaloid and 2.02% ± 0.05% saponins were present in the HH extract. The HH extract showed the anti-oxidant property with IC50 (50% inhibition) of (151.01 ± 0.13) (HH), (79.01 ± 0.04) (Ascorbic acid) for ferric reducing, (91.48 ± 0.13) (HH), (48.02 ± 0.11) (Ascorbic acid) against Ammonium molybdenum, (156.02 ± 0.31) (HH), (52.38 ± 0.21) (Ascorbic acid) against DPPH, 136.01 ± 0.21 (HH), 52.02± 0.31 (Ascorbic acid) against H2O2, and 154.12 ± 0.03 (HH), (40.05 ± 0.15) (Ascorbic acid) µg/mL against ABTS respectively. Statistical analysis indicated that HH caused a competitive type of inhibition of α-amylase (Vmax remained constant and Km increases from 10.65 to 84.37%) while Glucophage caused the un-competitive type of inhibition i-e both Km and Vmax decreased from 40.49 to 69.15% and 38.86 to 69.61% respectively. The Ki, (inhibition constant); KI, (dissociation constant), Km, (Michaelis-Menten constant), and IC50 were found to be 62, 364, 68.1, and 38.08 ± 0.22 for HH and 12, 101.05, 195, 34.01 ± 0.21 for Glucophage. Similarly, HH causes an anon-competitive type of inhibition of AChE i-e Km remains constant while Vmax decreases from 60.5% to 74.1%. The calculated Ki, KI, Km, and IC50 were found to be 32, 36.2, 0.05, and 18.117 ± 0.018. CONCLUSION: From the current results, it is concluded that HH extract contains bioactive compounds, and could be a good alternative to controlling oxidants, Alzheimer's and Type-II diabetic diseases.


Asunto(s)
Acetilcolinesterasa , Antioxidantes , Inhibidores de la Colinesterasa , Extractos Vegetales , alfa-Amilasas , Antioxidantes/química , Antioxidantes/farmacología , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Humanos , Fitoquímicos/química , Fitoquímicos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología
2.
J Tradit Chin Med ; 44(3): 620-628, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38767647

RESUMEN

Genus Prunus comprising around 430 species is a vast important genus of family Rosaceae, subfamily amygdalaoidae. Among all 430 species, around 19 important species are commonly found in Indian sub-continent due to their broad nutritional and economic importance. Some most common species of genus Prunus are Prunus amygdalus, Prunus persica, Prunus armeniaca, Prunus avium, Prunus cerasus, Prunus cerasoides, Prunus domestica, Prunus mahaleb, etc. A newly introduced species of Prunus i.e Prunus sunhangii is recently discovered which is morphologically very similar to Prunus cerasoides. Plants of Prunus species are short to medium-sized deciduous trees mainly found in the northern hemisphere. In India and its subcontinent, it extends from the Himalayas to Sikkim, Meghalaya, Bhutan, Myanmar etc. Different Prunus species have been extensively studied for their morphological, microscopic, pharmacological and phytoconstituents characteristics. Total phenolic content of Prunus species explains the presence of phenols in high quantity and pharmacological activity due to phenols. Phytochemical screening of species of genus Prunus shows the presence of wide phytoconstituents which contributes in their pharmacological significance and reveals the therapeutic potential and traditional medicinal significance of this genus. Genus Prunus showed a potent antioxidant activity analyzed by 1,1-diphenyl-2-picryl-hydrazyl radical assay. Plant species belonging to the genus Prunus is widely used traditionally for the treatment of various disorders. Some specific Prunus species possess potent anticancer, anti-inflammatory, hypoglycemic etc. activity which makes the genus more interesting for further research and findings. This review is an attempt to summarize the comprehensive study of Prunus.


Asunto(s)
Fitoquímicos , Prunus , Humanos , Fitoquímicos/química , Fitoquímicos/farmacología , Prunus/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Farmacognosia , Asia Sudoriental , Animales
3.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731401

RESUMEN

The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of -10.19 and -45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug.


Asunto(s)
Azadirachta , Dihidroorotato Deshidrogenasa , Simulación del Acoplamiento Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Esquistosomiasis , Azadirachta/química , Animales , Esquistosomiasis/tratamiento farmacológico , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Humanos , Fitoquímicos/farmacología , Fitoquímicos/química , Simulación de Dinámica Molecular , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/enzimología , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Simulación por Computador , Esquistosomicidas/farmacología , Esquistosomicidas/química , Esquistosomicidas/uso terapéutico , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Praziquantel/farmacología , Praziquantel/química , Praziquantel/uso terapéutico
4.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731491

RESUMEN

Catnip (Nepeta cataria L.) plants produce a wide array of specialized metabolites with multiple applications for human health. The productivity of such metabolites, including nepetalactones, and natural insect repellents is influenced by the conditions under which the plants are cultivated. In this study, we assessed how field-grown catnip plants, transplanted after being propagated via either single-node stem cuttings or seeds, varied regarding their phytochemical composition throughout a growing season in two distinct environmental conditions (Pittstown and Upper Deerfield) in the state of New Jersey, United States. Iridoid terpenes were quantified in plant tissues via ultra-high-performance liquid chromatography with triple quadrupole mass spectrometry (UHPLC-QqQ-MS), and phenolic compounds (phenolic acids and flavonoids) were analyzed via UHPLC with diode-array detection (UHPLC-DAD). The highest contents of total nepetalactones in Pittstown were found at 6 weeks after transplanting (WAT) for both seedlings and cuttings (1305.4 and 1223.3 mg/100 g, respectively), while in Upper Deerfield, the highest contents for both propagules were at 11 WAT (1247.7 and 997.1 mg/100 g, respectively) for seed-propagated and stem cuttings). The highest concentration of nepetalactones was associated with floral-bud to partial-flowering stages. Because plants in Pittstown accumulated considerably more biomass than plants grown in Upper Deerfield, the difference in nepetalactone production per plant was striking, with peak productivity reaching only 598.9 mg per plant in Upper Deerfield and 1833.1 mg per plant in Pittstown. Phenolic acids accumulated in higher contents towards the end of the season in both locations, after a period of low precipitation, and flavone glycosides had similar accumulation patterns to nepetalactones. In both locations, rooted stem cuttings reached their maximum nepetalactone productivity, on average, four weeks later than seed-propagated plants, suggesting that seedlings have, overall, better agronomic performance.


Asunto(s)
Nepeta , Estaciones del Año , Nepeta/química , Cromatografía Líquida de Alta Presión , Fitoquímicos/química , Fitoquímicos/análisis , Flavonoides/análisis , Flavonoides/química , Monoterpenos Ciclopentánicos , Semillas/química , Semillas/crecimiento & desarrollo , Extractos Vegetales/química , Iridoides/química , Pironas
5.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731500

RESUMEN

A robust, well-functioning immune system is the cornerstone of good health. Various factors may influence the immune system's effectiveness, potentially leading to immune system failure. This review aims to provide an overview of the structure and action of immunomodulators isolated from African medicinal plants. The research was conducted according to PRISMA guidelines. Full-text access research articles published in English up to December 2023, including plant characteristics, isolated phytochemicals, and immuno-modulatory activities, were screened. The chemical structures of the isolated compounds were generated using ChemDraw® (version 12.0.1076), and convergent and distinctive signaling pathways were highlighted. These phytochemicals with demonstrated immunostimulatory activity include alkaloids (berberine, piperine, magnoflorine), polysaccharides (pectin, glucan, acemannan, CALB-4, GMP90-1), glycosides (syringin, cordifolioside, tinocordiside, aucubin), phenolic compounds (ferulic acid, vanillic acid, eupalitin), flavonoids (curcumin, centaurein, kaempferin, luteolin, guajaverin, etc.), terpenoids (oleanolic acid, ursolic acid, betulinic acid, boswellic acids, corosolic acid, nimbidin, andrographolides). These discussed compounds exert their effects through various mechanisms, targeting the modulation of MAPKs, PI3K-Akt, and NF-kB. These mechanisms can support the traditional use of medicinal plants to treat immune-related diseases. The outcomes of this overview are to provoke structural action optimization, to orient research on particular natural chemicals for managing inflammatory, infectious diseases and cancers, or to boost vaccine immunogenicity.


Asunto(s)
Fitoquímicos , Plantas Medicinales , Plantas Medicinales/química , Fitoquímicos/farmacología , Fitoquímicos/química , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química , Agentes Inmunomoduladores/aislamiento & purificación , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Factores Inmunológicos/aislamiento & purificación , África , Animales
6.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731504

RESUMEN

Polyphenols are ubiquitous plant metabolites that demonstrate biological activities essential to plant-environment interactions. They are of interest to plant food consumers, as well as to the food, pharmaceutical and cosmetic industry. The class of the plant metabolites comprises both widespread (chlorogenic acids, luteolin, quercetin) and unique compounds of diverse chemical structures but of the common biosynthetic origin. Polyphenols next to sesquiterpenoids are regarded as the major class of the Inuleae-Inulinae metabolites responsible for the pharmacological activity of medicinal plants from the subtribe (Blumea spp., Dittrichia spp., Inula spp., Pulicaria spp. and others). Recent decades have brought a rapid development of molecular and analytical techniques which resulted in better understanding of the taxonomic relationships within the Inuleae tribe and in a plethora of data concerning the chemical constituents of the Inuleae-Inulinae. The current taxonomical classification has introduced changes in the well-established botanical names and rearranged the genera based on molecular plant genetic studies. The newly created chemical data together with the earlier phytochemical studies may provide some complementary information on biochemical relationships within the subtribe. Moreover, they may at least partly explain pharmacological activities of the plant preparations traditionally used in therapy. The current review aimed to systematize the knowledge on the polyphenols of the Inulae-Inulinae.


Asunto(s)
Polifenoles , Polifenoles/química , Polifenoles/farmacología , Humanos , Plantas Medicinales/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Fitoquímicos/química , Fitoquímicos/farmacología , Asteraceae/química
7.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731546

RESUMEN

Worldwide, a massive amount of agriculture and food waste is a major threat to the environment, the economy and public health. However, these wastes are important sources of phytochemicals (bioactive), such as polyphenols, carotenoids, carnitine, coenzymes, essential oils and tocopherols, which have antioxidant, antimicrobial and anticarcinogenic properties. Hence, it represents a promising opportunity for the food, agriculture, cosmetics, textiles, energy and pharmaceutical industries to develop cost effective strategies. The value of agri-food wastes has been extracted from various valuable bioactive compounds such as polyphenols, dietary fibre, proteins, lipids, vitamins, carotenoids, organic acids, essential oils and minerals, some of which are found in greater quantities in the discarded parts than in the parts accepted by the market used for different industrial sectors. The value of agri-food wastes and by-products could assure food security, maintain sustainability, efficiently reduce environmental pollution and provide an opportunity to earn additional income for industries. Furthermore, sustainable extraction methodologies like ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, microwave-assisted extraction, pulse electric field-assisted extraction, ultrasound microwave-assisted extraction and high hydrostatic pressure extraction are extensively used for the isolation, purification and recovery of various bioactive compounds from agri-food waste, according to a circular economy and sustainable approach. This review also includes some of the critical and sustainable challenges in the valorisation of agri-food wastes and explores innovative eco-friendly methods for extracting bioactive compounds from agri-food wastes, particularly for food applications. The highlights of this review are providing information on the valorisation techniques used for the extraction and recovery of different bioactive compounds from agricultural food wastes, innovative and promising approaches. Additionally, the potential use of these products presents an affordable alternative towards a circular economy and, consequently, sustainability. In this context, the encapsulation process considers the integral and sustainable use of agricultural food waste for bioactive compounds that enhance the properties and quality of functional food.


Asunto(s)
Fitoquímicos , Fitoquímicos/química , Agricultura/métodos , Residuos/análisis , Alimentos , Alimento Perdido y Desperdiciado
8.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731596

RESUMEN

This work aimed to develop gluten-free snacks such as crispbread based on beetroot pomace (Beta vulgaris L.) and golden linseed (Lini semen). Beetroot is attracting more and more consumer attention because of its nutritional and health properties. The use of beet pomace contributes to waste management. Linseed, known as a superfood with many health-promoting properties, was used to produce crispbreads as an alternative to cereals, which are allergens. Beetroot pomace and whole or ground linseed were used in different proportions to produce crispbread snacks. Chemical and physical analyses were performed including water activity, dry matter, betalains, and polyphenols content, as well as Fourier transform infrared spectroscopy (FTIR). A sensory evaluation and microstructure observations were also performed. The obtained snacks were characterized by low water activity (0.290-0.395) and a high dry matter content (93.43-97.53%), which ensures their microbiological stability and enables longer storage. Beetroot pomace provided betalains-red (14.59-51.44 mg betanin/100 g d.m.) and yellow dyes (50.02-171.12 mg betanin/100 g d.m.)-while using linseed enriched the product with polyphenols (730-948 mg chlorogenic acid/100 g d.m.). FTIR analysis showed the presence of functional groups such as the following: -OH, -C-O, -COOH, and -NH. The most desired overall consumer acceptability was achieved for snacks containing 50% beetroot pomace and 50% linseed seeds. The obtained results confirmed that beetroot pomace combined with linseed can be used in the production of vegetable crispbread snacks.


Asunto(s)
Beta vulgaris , Lino , Bocadillos , Beta vulgaris/química , Lino/química , Verduras/química , Betalaínas/química , Betalaínas/análisis , Polifenoles/análisis , Polifenoles/química , Espectroscopía Infrarroja por Transformada de Fourier , Dieta Sin Gluten , Fitoquímicos/química , Glútenes/análisis , Glútenes/química
9.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731619

RESUMEN

This study aims to investigate the vegetative buds from Picea abies (spruce), naturally found in a central region of Romania, through a comprehensive analysis of the chemical composition to identify bioactive compounds responsible for pharmacological properties. Using HPLC/derivatization technique of GC-MS and quantitative spectrophotometric assays, the phenolic profile, and main components of an ethanolic extract from the buds were investigated. The essential oil was characterized by GC-MS. Moreover, the antioxidant activity with the DPPH method, and the antimicrobial activity were tested. Heavy metal detection was performed by graphite furnace atomic absorption spectrometry. The main components of the alcoholic extract were astragalin, quercetin, kaempferol, shikimic acid, and quinic acid. A total content of 25.32 ± 2.65 mg gallic acid equivalent per gram of dry plant (mg GAE/g DW) and of 10.54 ± 0.083 mg rutin equivalents/g of dry plant (mg RE/g DW) were found. The essential oil had D-limonene, α-cadinol, δ-cadinene, 13-epimanool, and δ-3-carene as predominant components. The spruce vegetative buds exhibited significant antioxidant activity (IC50 of 53 µg/mL) and antimicrobial effects against Staphylococcus aureus. Furthermore, concentrations of heavy metals Pb and Cd were below detection limits, suggesting that the material was free from potentially harmful contaminants. The results confirmed the potential of this indigenous species to be used as a source of compounds with pharmacological utilities.


Asunto(s)
Antiinfecciosos , Antioxidantes , Aceites Volátiles , Fitoquímicos , Picea , Extractos Vegetales , Picea/química , Antioxidantes/farmacología , Antioxidantes/química , Fitoquímicos/farmacología , Fitoquímicos/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Pruebas de Sensibilidad Microbiana , Cromatografía de Gases y Espectrometría de Masas , Rumanía , Fenoles/análisis , Fenoles/farmacología , Fenoles/química
10.
Malar J ; 23(1): 141, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734650

RESUMEN

BACKGROUND: The development of resistance by Plasmodium falciparum is a burdening hazard that continues to undermine the strides made to alleviate malaria. As such, there is an increasing need to find new alternative strategies. This study evaluated and validated 2 medicinal plants used in traditional medicine to treat malaria. METHODS: Inspired by their ethnobotanical reputation of being effective against malaria, Ziziphus mucronata and Xysmalobium undulutum were collected and sequentially extracted using hexane (HEX), ethyl acetate (ETA), Dichloromethane (DCM) and methanol (MTL). The resulting crude extracts were screened for their anti-malarial and cytotoxic potential using the parasite lactate dehydrogenase (pLDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, respectively. This was followed by isolating the active compounds from the DCM extract of Z. mucronata using silica gel chromatography and structural elucidation using spectroscopic techniques (NMR: 1H, 12C, and DEPT). The active compounds were then targeted against P. falciparum heat shock protein 70-1 (PfHsp70-1) using Autodock Vina, followed by in vitro validation assays using ultraviolet-visible (UV-VIS) spectroscopy and the malate dehydrogenase (MDH) chaperone activity assay. RESULTS: The extracts except those of methanol displayed anti-malarial potential with varying IC50 values, Z. mucronata HEX (11.69 ± 3.84 µg/mL), ETA (7.25 ± 1.41 µg/mL), DCM (5.49 ± 0.03 µg/mL), and X. undulutum HEX (4.9 ± 0.037 µg/mL), ETA (17.46 ± 0.024 µg/mL) and DCM (19.27 ± 0.492 µg/mL). The extracts exhibited minimal cytotoxicity except for the ETA and DCM of Z. mucronata with CC50 values of 10.96 and 10.01 µg/mL, respectively. Isolation and structural characterization of the active compounds from the DCM extracts revealed that betulinic acid (19.95 ± 1.53 µg/mL) and lupeol (7.56 ± 2.03 µg/mL) were responsible for the anti-malarial activity and had no considerable cytotoxicity (CC50 > µg/mL). Molecular docking suggested strong binding between PfHsp70-1, betulinic acid (- 6.8 kcal/mol), and lupeol (- 6.9 kcal/mol). Meanwhile, the in vitro validation assays revealed the disruption of the protein structural elements and chaperone function. CONCLUSION: This study proves that X undulutum and Z. mucronata have anti-malarial potential and that betulinic acid and lupeol are responsible for the activity seen on Z. mucronata. They also make a case for guided purification of new phytochemicals in the other extracts and support the notion of considering medicinal plants to discover new anti-malarials.


Asunto(s)
Antimaláricos , Fitoquímicos , Extractos Vegetales , Plasmodium falciparum , Ziziphus , Antimaláricos/farmacología , Antimaláricos/química , Ziziphus/química , Plasmodium falciparum/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Descubrimiento de Drogas
11.
Nat Prod Res ; 38(11): 1956-1960, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38739565

RESUMEN

Magonia pubescens is a natural species from the Brazilian cerrado biome. Its fruits and seeds are used in the treatment of seborrheic dermatitis, a common inflammatory skin disease. In this work, the known compounds lapachol, stigmasterol, maniladiol and scopoletin were isolated from hexane and dichloromethane extracts of M. pubescens branches. The aqueous extract of this material was fractioned through a liquid-liquid partition and the obtained fractions were analyzed by UHPLC-MS/MS. The results obtained were compared with data from three databases, leading to the putative identification of 51 compounds from different classes, including flavonoids, saponins and triterpenes. The cytotoxicity of aqueous fractions was assayed against breast cancer (MDA-MB-231) and leukemia (THP-1 and K562) cells. The best activity was observed for fraction AE3 against MDA-MB-231 cells (IC50 30.72 µg.mL-1).


Asunto(s)
Antineoplásicos Fitogénicos , Neoplasias de la Mama , Fitoquímicos , Extractos Vegetales , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Femenino , Fitoquímicos/farmacología , Fitoquímicos/química , Triterpenos/farmacología , Triterpenos/química , Brasil , Leucemia/tratamiento farmacológico , Flavonoides/farmacología , Flavonoides/química , Células K562 , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Saponinas/farmacología , Saponinas/química , Células THP-1 , Estructura Molecular
12.
Med Oncol ; 41(6): 156, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750377

RESUMEN

This study explores the therapeutic potential of phytochemicals derived from Morus alba for colorectal cancer (CRC) treatment. Colorectal cancer is a global health concern with increasing mortality rates, necessitating innovative strategies for prevention and therapy. Employing in silico analysis, molecular docking techniques (MDT), and molecular dynamics simulations (MDS), the study investigates the interactions between Morus alba-derived phytochemicals and key proteins (AKT1, Src, STAT3, EGFR) implicated in CRC progression. ADME/T analysis screens 78 phytochemicals for drug-like and pharmacokinetic properties. The study integrates Lipinski's Rule of Five and comprehensive bioactivity assessments, providing a nuanced understanding of Morus alba phytoconstituent's potential as CRC therapeutic agents. Notably, 14 phytochemicals out of 78 emerge as potential candidates, demonstrating oral bioavailability and favorable bioactivity scores. Autodock 1.5.7 is employed for energy minimization followed by molecular docking with the highest binding energy observed to be - 11.7 kcal/mol exhibited by Kuwanon A against AKT1. Molecular dynamics simulations and trajectory path analysis were conducted between Kuwanon A and AKT1 at the Pleckstrin homology (PH) domain region (TRP80), revealing minimal deviations. In comparison to the standard drug Capivasertib, the phytochemical Kuwanon A emerges as a standout candidate based on computational analysis. This suggests its potential as an alternative to mitigate the limitations associated with the standard drug. The research aims to provide insights for future experimental validations and to stimulate the development of Kuwanon A as a novel, effective therapeutic agent for managing colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Morus , Fitoquímicos , Morus/química , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/farmacocinética , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Factor de Transcripción STAT3/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/farmacocinética , Antineoplásicos Fitogénicos/química , Familia-src Quinasas/metabolismo
14.
Nutrients ; 16(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732642

RESUMEN

Vernonia cinerea (L.) Less. is a perennial herbaceous plant found mainly in tropical areas, particularly in Southeast Asia, South America, and India. Various parts of V. cinerea have traditionally been used in folk medicine to treat several diseases, such as malaria, fever, and liver diseases. V. cinerea has so far yielded about 92 secondary metabolites. The majority of these are sesquiterpene lactones, but triterpenes, flavonoids, steroids, phenolics, and other compounds are present as well. V. cinerea crude extracts reportedly exhibit anti-inflammatory, antiprotozoal, antidiabetic, anticancer, antimicrobial, antioxidant, and renoprotective activities. This study aims to provide the latest up-to-date information on the botanical characterization, distribution, traditional uses, phytochemistry, and pharmacological activity of V. cinerea. Information on V. cinerea was thoroughly reviewed. The literature published between 1950 and 2024 was compiled through online bibliographic databases, including SciFinder, Web of Science, Google Scholar, PubMed, ScienceDirect, Springer Link, Wiley, and the MDPI online library. The keywords used for the literature search included Vernonia cinerea (L.) Less. and the synonyms Cyanthillium cinereum (L.) H.Rob., Conyza cinerea L., and various others.


Asunto(s)
Medicina Tradicional , Fitoquímicos , Extractos Vegetales , Vernonia , Vernonia/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Fitoquímicos/farmacología , Fitoterapia , Animales , América del Sur , Asia Sudoriental
15.
BMC Plant Biol ; 24(1): 368, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38711001

RESUMEN

Chilli peppers are widely consumed for their pungency, as used in flavoring the food and has many pharmaceutical and medicinal properties. Based on these properties an experiment was held using 83 varieties of chilli (Hot pepper and sweet pepper) were grown in suitable environment using Augment Block design and evaluated for fruit pungency and phytochemical contents using high proficiency liquid chromatography. Analysis of variance (ANOVA) of traits showed highly significant for all traits except for fruit length and capsaicin contents. The value of Least significant increase (LSI)was ranged 0.27-1289.9 for all traits showed high variation among varieties. Highly significant correlation was found among fruit diameter to fruit weight 0.98, while moderate to high correlation was present among all traits. The most pungent genotype 24,634 was 4.8 g in weight, while the least pungent genotypes i.e. PPE-311 (32.8 g), green wonder (40.67) had higher in weight. The genotypes 24,627, 32,344, 32,368 and 1108 marked as higher number of seeds in their placental region. It was observed that chilli genotype 24,621 had maximum length with considerable high amount of pungency act as novel cultivar. Principal component analysis (PCA) showed the high variability of 46.97 for two PCs with the eigen value 2.6 and 1.63 was recorded. Biplot analysis showed a considerable variability for fruit pungency, while huge variability was found for all traits among given varieties. PPE-311, T5 and T3 are found as highly divergent for all traits. The findings of this study are instrumental for selecting parents to improve desirable traits in future chilli pepper breeding programs. It will help plant/vegetable breeders for development of highly nutrient and pungent varieties and attractive for the consumer of food sector.


Asunto(s)
Capsicum , Frutas , Variación Genética , Fitoquímicos , Frutas/genética , Frutas/química , Cromatografía Líquida de Alta Presión , Capsicum/genética , Capsicum/química , Genotipo , Semillas/genética , Semillas/química
16.
BMC Complement Med Ther ; 24(1): 183, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704537

RESUMEN

BACKGROUND: Highlighting affordable alternative crops that are rich in bioactive phytoconstituents is essential for advancing nutrition and ensuring food security. Amaranthus blitum L. (AB) stands out as one such crop with a traditional history of being used to treat intestinal disorders, roundworm infections, and hemorrhage. This study aimed to evaluate the anthelmintic and hematologic activities across various extracts of AB and investigate the phytoconstituents responsible for these activities. METHODS: In vitro anthelmintic activity against Trichinella spiralis was evaluated in terms of larval viability reduction. The anti-platelet activities were assessed based on the inhibitory effect against induced platelet aggregation. Further, effects on the extrinsic pathway, the intrinsic pathway, and the ultimate common stage of blood coagulation, were monitored through measuring blood coagulation parameters: prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT), respectively. The structures of isolated compounds were elucidated by spectroscopic analysis. RESULTS: Interestingly, a previously undescribed compound (19), N-(cis-p-coumaroyl)-ʟ-tryptophan, was isolated and identified along with 21 known compounds. Significant in vitro larvicidal activities were demonstrated by the investigated AB extracts at 1 mg/mL. Among tested compounds, compound 18 (rutin) displayed the highest larvicidal activity. Moreover, compounds 19 and 20 (N-(trans-p-coumaroyl)-ʟ-tryptophan) induced complete larval death within 48 h. The crude extract exhibited the minimal platelet aggregation of 43.42 ± 11.69%, compared with 76.22 ± 14.34% in the control plasma. Additionally, the crude extract and two compounds 19 and 20 significantly inhibited the extrinsic coagulation pathway. CONCLUSIONS: These findings extend awareness about the nutritional value of AB as a food, with thrombosis-preventing capabilities and introducing a promising source for new anthelmintic and anticoagulant agents.


Asunto(s)
Amaranthus , Antihelmínticos , Anticoagulantes , Fitoquímicos , Extractos Vegetales , Inhibidores de Agregación Plaquetaria , Animales , Antihelmínticos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Anticoagulantes/farmacología , Larva/efectos de los fármacos
17.
Sci Rep ; 14(1): 10675, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724667

RESUMEN

Trillium govanianum is traditionally used to treat innumerable alignments like sexual disorders, cancer, inflammation etc. Mainly rhizomes of T. govanianum have been explored for phytochemical profiling but comprehensive metabolomics of other parts has not been yet deeply investigated. Thus, current study was aimed for organs-specific (roots, rhizomes, rhizomatous buds, stems, leaves, and fruits) phytochemical profiling of T. govanianum via metabolomics approach. Targeted (steroidal saponins and free sugars) and non-targeted metabolomics were performed by UPLC-PDA/ELSD & UHPLC-Q-TOF-IMS. Among steroidal compounds, 20-hydroxyecdysone, pennogenin-3-O-ß-chacotrioside, dioscin were found predominantly in all samples while diosgenin was identified only in rhizomes. Further, four free sugars viz. 2-deoxyribose (116.24 ± 1.26 mg/g: leaves), fructose (454.76 ± 12.14 mg/g: rhizomes), glucose (243.21 ± 7.53 mg/g: fruits), and galactose (69.06 ± 2.14 mg/g: fruits) were found significant in respective parts of T. govanianum. Elemental analysis of targeted samples was determined by atomic absorption spectrophotometer. Heavy metals (Cd, Hg, Pd, As) were absent while micro- (Mn, Na, Zn, Cu) and macro- (Ca, Fe, Mg, K) elements were found in all samples. Furthermore, UHPLC-Q-TOF-IMS had identified 103 metabolites based on their mass fragmentation patterns and 839 were tentatively predicted using METLIN database. The multivariate statistical analysis showed organs specific clustering and variance of metabolites. Apart from this, extracts were evaluated for in vitro anticholinesterase activity, and found potentials inhibitors with IC50 values 2.02 ± 0.15 to 27.65 ± 0.89 mg/mL and 3.58 ± 0.12 to 16.81 ± 2.48 mg/mL of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzyme, respectively. Thus, comprehensive metabolomics and anti-cholinesterase activity of different parts of T. govanianum would lay the foundation for improving medicinal importance and health benefits of T. govanianum.


Asunto(s)
Inhibidores de la Colinesterasa , Metabolómica , Trillium , Metabolómica/métodos , Inhibidores de la Colinesterasa/farmacología , Trillium/química , Trillium/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/metabolismo , Fitoquímicos/análisis , Cromatografía Líquida de Alta Presión , Rizoma/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo
18.
Med Oncol ; 41(6): 134, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703282

RESUMEN

Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.


Asunto(s)
Neoplasias Hepáticas , Transducción de Señal , Humanos , Neoplasias Hepáticas/prevención & control , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Transducción de Señal/efectos de los fármacos , Carcinoma Hepatocelular/prevención & control , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Animales , Suplementos Dietéticos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico
19.
Sci Rep ; 14(1): 9993, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693201

RESUMEN

Termites are widely distributed globally and serve as a valuable food source in many countries. However, information on the myriad nutritional benefits of processed termite products in African markets remain largely unexploited. This study evaluated the phytochemicals, fatty acids, amino acids, minerals, vitamins and proximate composition of the edible winged termites (Macrotermes spp.) from three major Counties of Kenya. A total of 9 flavonoids, 5 alkaloids, and 1 cytokinin were identified. The oil content varied from 33 to 46%, exhibiting significant levels of beneficial omega 3 fatty acids, such as methyl (9Z,12Z,15Z)-octadecatrienoate and methyl (5Z,8Z,11Z,14Z,17Z)-eicosapentaenoate, ranging from 82.7-95.1 to 6.3-8.1 µg/g, respectively, across the different regions. Four essential and cereal-limiting amino acids lysine (1.0-1.3 mg/g), methionine (0.08-0.1 mg/g), leucine (0.6-0.9 mg/g) and threonine (0.1-0.2 mg/g), were predominant. Moreover, termites had a rich profile of essential minerals, including iron (70.7-111.8 mg/100 g), zinc (4.4-16.2 mg/100 g) and calcium (33.1-53.0 mg/100 g), as well as vitamins A (2.4-6.4 mg/kg), C (0.6-1.9 mg/kg) and B12 (10.7-17.1 mg/kg). The crude protein (32.2-44.8%) and fat (41.2-49.1%) contents of termites from the various Counties was notably high. These findings demonstrated the promising nutrients potential of winged termites and advocate for their sustainable utilization in contemporary efficacious functional food applications to combat malnutrition.


Asunto(s)
Aminoácidos , Isópteros , Valor Nutritivo , Animales , Aminoácidos/análisis , Minerales/análisis , Vitaminas/análisis , Ácidos Grasos/análisis , Fitoquímicos/análisis , Kenia , África , Humanos
20.
Sci Rep ; 14(1): 10592, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719900

RESUMEN

Umbelliferous (Apiaceae) vegetables are widely consumed worldwide for their nutritive and health benefits. The main goal of the current study is to explore the compositional heterogeneity in four dried umbelliferous vegetables viz, celery, coriander, dill, and parsley targeting their volatile profile using gas chromatography-mass spectrometry (GC-MS). A total of 133 volatile metabolites were detected belonging to 12 classes. Aromatic hydrocarbons were detected as the major components of the analyzed vegetables accounting ca. 64.0, 62.4, 59.5, and 47.8% in parsley, dill, celery, and coriander, respectively. Aliphatic hydrocarbons were detected at ca. 6.39, 8.21, 6.16, and 6.79% in parsley, dill, celery, and coriander, respectively. Polyunsaturated fatty acids (PUFA) of various health benefits were detected in parsley and represented by roughanic acid and α-linolenic acid at 4.99 and 0.47%, respectively. Myristicin and frambinone were detected only in parsley at 0.45 and 0.56%. Investigation of antibacterial activity of umbelliferous vegetables n-hexane extract revealed a moderate antibacterial activity against Gram-positive and Gram-negative bacteria with higher activity for celery and dill against Staphylococcus aureus with inhibition zone 20.3 mm compared to 24.3 mm of the standard antibacterial drug.


Asunto(s)
Antibacterianos , Cromatografía de Gases y Espectrometría de Masas , Hexanos , Fitoquímicos , Verduras , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/análisis , Verduras/química , Fitoquímicos/química , Fitoquímicos/análisis , Fitoquímicos/farmacología , Hexanos/química , Apiaceae/química , Pruebas de Sensibilidad Microbiana , Derivados de Alilbenceno , Ácido alfa-Linolénico/análisis , Ácido alfa-Linolénico/farmacología , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites de Plantas/farmacología , Aceites de Plantas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ácidos Grasos Insaturados/análisis , Staphylococcus aureus/efectos de los fármacos , Dioxolanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA