Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 927
Filtrar
1.
J Biol Chem ; 299(9): 105134, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562570

RESUMEN

Membrane biophysical properties are critical to cell fitness and depend on unsaturated phospholipid acyl tails. These can only be produced in aerobic environments since eukaryotic desaturases require molecular oxygen. This raises the question of how cells maintain bilayer properties in anoxic environments. Using advanced microscopy, molecular dynamics simulations, and lipidomics by mass spectrometry we demonstrated the existence of an alternative pathway to regulate membrane fluidity that exploits phospholipid acyl tail length asymmetry, replacing unsaturated species in the membrane lipidome. We show that the fission yeast, Schizosaccharomyces japonicus, which can grow in aerobic and anaerobic conditions, is capable of utilizing this strategy, whereas its sister species, the well-known model organism Schizosaccharomyces pombe, cannot. The incorporation of asymmetric-tailed phospholipids might be a general adaptation to hypoxic environmental niches.


Asunto(s)
Adaptación Fisiológica , Anaerobiosis , Fosfolípidos , Schizosaccharomyces , Membrana Celular/metabolismo , Fluidez de la Membrana/fisiología , Simulación de Dinámica Molecular , Fosfolípidos/química , Fosfolípidos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Anaerobiosis/fisiología , Lipidómica , Regulación hacia Arriba , Regulación Fúngica de la Expresión Génica , Temperatura , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Adaptación Fisiológica/genética
2.
J Biol Chem ; 299(6): 104799, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37164154

RESUMEN

The human AdipoR2 and its Caenorhabditis elegans homolog PAQR-2 are multipass plasma membrane proteins that protect cells against membrane rigidification. However, how AdipoR2 promotes membrane fluidity mechanistically is not clear. Using 13C-labeled fatty acids, we show that AdipoR2 can promote the elongation and incorporation of membrane-fluidizing polyunsaturated fatty acids into phospholipids. To elucidate the molecular basis of these activities, we performed immunoprecipitations of tagged AdipoR2 and PAQR-2 expressed in HEK293 cells or whole C. elegans, respectively, and identified coimmunoprecipitated proteins using mass spectrometry. We found that several of the evolutionarily conserved AdipoR2/PAQR-2 interactors are important for fatty acid elongation and incorporation into phospholipids. We experimentally verified some of these interactions, namely, with the dehydratase HACD3 that is essential for the third of four steps in long-chain fatty acid elongation and ACSL4 that is important for activation of unsaturated fatty acids and their channeling into phospholipids. We conclude that AdipoR2 and PAQR-2 can recruit protein interactors to promote the production and incorporation of unsaturated fatty acids into phospholipids.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Membrana Celular , Ácidos Grasos , Fluidez de la Membrana , Receptores de Adiponectina , Animales , Humanos , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Células HEK293 , Fluidez de la Membrana/fisiología , Fosfolípidos/metabolismo , Receptores de Adiponectina/metabolismo , Unión Proteica
3.
J Exp Clin Cancer Res ; 41(1): 28, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35045880

RESUMEN

BACKGROUND: Estrogen-related receptor α (ERRα) has been reported to play a critical role in endometrial cancer (EC) progression. However, the underlying mechanism of ERRα-mediated lipid reprogramming in EC remains elusive. The transcription factor EB (TFEB)-ERRα axis induces lipid reprogramming to promote progression of EC was explored in this study. METHODS: TFEB and ERRα were analyzed and validated by RNA-sequencing data from the Cancer Genome Atlas (TCGA). The TFEB-ERRα axis was assessed by dual-luciferase reporter and chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR). The mechanism was investigated using loss-of-function and gain-of-function assays in vitro. Lipidomics and proteomics were performed to identify the TFEB-ERRα-related lipid metabolism pathway. Pseudopods were observed by scanning electron microscope. Furthermore, immunohistochemistry and lipidomics were performed in clinical tissue samples to validate the ERRα-related lipids. RESULTS: TFEB and ERRα were highly expressed in EC patients and correlated to EC progression. ERRα is the direct target of TFEB to mediate EC lipid metabolism. TFEB-ERRα axis mainly affected glycerophospholipids (GPs) and significantly elevated the ratio of phosphatidylcholine (PC)/sphingomyelin (SM), which indicated the enhanced membrane fluidity. TFEB-ERRα axis induced the mitochondria specific phosphatidylglycerol (PG) (18:1/22:6) + H increasing. The lipid reprogramming was mainly related to mitochondrial function though combining lipidomics and proteomics. The maximum oxygen consumption rate (OCR), ATP and lipid-related genes acc, fasn, and acadm were found to be positively correlated with TFEB/ERRα. TFEB-ERRα axis enhanced generation of pseudopodia to increase the invasiveness. Mechanistically, our functional assays indicated that TFEB promoted EC cell migration in an ERRα-dependent manner via EMT signaling. Consistent with the in vitro, higher PC (18:1/18:2) + HCOO was found in EC patients, and those with higher TFEB/ERRα had deeper myometrial invasion and lower serum HDL levels. Importantly, PC (18:1/18:2) + HCOO was an independent risk factor positively related to ERRα for lymph node metastasis. CONCLUSION: Lipid reprogramming induced by the TFEB-ERRα axis increases unsaturated fatty acid (UFA)-containing PCs, PG, PC/SM and pseudopodia, which enhance membrane fluidity via EMT signaling to promote EC progression. PG (18:1/22:6) + H induced by TFEB-ERRα axis was involved in tumorigenesis and PC (18:1/18:2) + HCOO was the ERRα-dependent lipid to mediate EC metastasis.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Neoplasias Endometriales/genética , Fluidez de la Membrana/fisiología , Biología Computacional , Progresión de la Enfermedad , Femenino , Humanos
4.
EMBO J ; 41(5): e109800, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35037270

RESUMEN

All living organisms adapt their membrane lipid composition in response to changes in their environment or diet. These conserved membrane-adaptive processes have been studied extensively. However, key concepts of membrane biology linked to regulation of lipid composition including homeoviscous adaptation maintaining stable levels of membrane fluidity, and gel-fluid phase separation resulting in domain formation, heavily rely upon in vitro studies with model membranes or lipid extracts. Using the bacterial model organisms Escherichia coli and Bacillus subtilis, we now show that inadequate in vivo membrane fluidity interferes with essential complex cellular processes including cytokinesis, envelope expansion, chromosome replication/segregation and maintenance of membrane potential. Furthermore, we demonstrate that very low membrane fluidity is indeed capable of triggering large-scale lipid phase separation and protein segregation in intact, protein-crowded membranes of living cells; a process that coincides with the minimal level of fluidity capable of supporting growth. Importantly, the in vivo lipid phase separation is not associated with a breakdown of the membrane diffusion barrier function, thus explaining why the phase separation process induced by low fluidity is biologically reversible.


Asunto(s)
Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Fluidez de la Membrana/fisiología , Lípidos de la Membrana/metabolismo , Proteínas/metabolismo , Bacillus subtilis/fisiología , Membrana Celular/metabolismo , Membrana Celular/fisiología , Escherichia coli/fisiología
5.
J Biol Chem ; 298(2): 101444, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34826420

RESUMEN

The maintenance of optimal membrane composition under basal and stress conditions is critical for the survival of an organism. High-glucose stress has been shown to perturb membrane properties by decreasing membrane fluidity, and the membrane sensor PAQR-2 is required to restore membrane integrity. However, the mechanisms required to respond to elevated dietary glucose are not fully established. In this study, we used a 13C stable isotope-enriched diet and mass spectrometry to better understand the impact of glucose on fatty acid dynamics in the membrane of Caenorhabditis elegans. We found a novel role for monomethyl branched-chain fatty acids (mmBCFAs) in mediating the ability of the nematodes to survive conditions of elevated dietary glucose. This requirement of mmBCFAs is unique to glucose stress and was not observed when the nematode was fed elevated dietary saturated fatty acid. In addition, when worms deficient in elo-5, the major biosynthesis enzyme of mmBCFAs, were fed Bacillus subtilis (a bacteria strain rich in mmBCFAs) in combination with high glucose, their survival rates were rescued to wild-type levels. Finally, the results suggest that mmBCFAs are part of the PAQR-2 signaling response during glucose stress. Taken together, we have identified a novel role for mmBCFAs in stress response in nematodes and have established these fatty acids as critical for adapting to elevated glucose.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Ácidos Grasos , Glucosa , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Fluidez de la Membrana/fisiología , Proteínas de la Membrana
6.
Cells ; 10(10)2021 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-34685758

RESUMEN

The lipid matrix in cell membranes is a dynamic, bidimensional array of amphipathic molecules exhibiting mesomorphism, which contributes to the membrane fluidity changes in response to temperature fluctuation. As sessile organisms, plants must rapidly and accurately respond to environmental thermal variations. However, mechanisms underlying temperature perception in plants are poorly understood. We studied the thermal plasticity of membrane fluidity using three fluorescent probes across a temperature range of -5 to 41 °C in isolated microsomal fraction (MF), vacuolar membrane (VM), and plasma membrane (PM) vesicles from Arabidopsis plants. Results showed that PM were highly fluid and exhibited more phase transitions and hysteresis, while VM and MF lacked such attributes. These findings suggest that PM is an important cell hub with the capacity to rapidly undergo fluidity modifications in response to small changes of temperatures in ranges spanning those experienced in natural habitats. PM fluidity behaves as an ideal temperature detector: it is always present, covers the whole cell, responds quickly and with sensitivity to temperature variations, functions with a cell free-energy cost, and it is physically connected with potential thermal signal transducers to elicit a cell response. It is an optimal alternative for temperature detection selected for the plant kingdom.


Asunto(s)
Arabidopsis/fisiología , Membrana Celular/fisiología , Fluidez de la Membrana/fisiología , Arabidopsis/ultraestructura , Membrana Celular/ultraestructura , Colorantes Fluorescentes/metabolismo , Temperatura , Vacuolas/metabolismo , Vacuolas/ultraestructura
7.
PLoS Pathog ; 17(9): e1009930, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34496007

RESUMEN

Fatty acid-derived acyl chains of phospholipids and lipoproteins are central to bacterial membrane fluidity and lipoprotein function. Though it can incorporate exogenous unsaturated fatty acids (UFA), Staphylococcus aureus synthesizes branched chain fatty acids (BCFA), not UFA, to modulate or increase membrane fluidity. However, both endogenous BCFA and exogenous UFA can be attached to bacterial lipoproteins. Furthermore, S. aureus membrane lipid content varies based upon the amount of exogenous lipid in the environment. Thus far, the relevance of acyl chain diversity within the S. aureus cell envelope is limited to the observation that attachment of UFA to lipoproteins enhances cytokine secretion by cell lines in a TLR2-dependent manner. Here, we leveraged a BCFA auxotroph of S. aureus and determined that driving UFA incorporation disrupted infection dynamics and increased cytokine production in the liver during systemic infection of mice. In contrast, infection of TLR2-deficient mice restored inflammatory cytokines and bacterial burden to wildtype levels, linking the shift in acyl chain composition toward UFA to detrimental immune activation in vivo. In in vitro studies, bacterial lipoproteins isolated from UFA-supplemented cultures were resistant to lipase-mediated ester hydrolysis and exhibited heightened TLR2-dependent innate cell activation, whereas lipoproteins with BCFA esters were completely inactivated after lipase treatment. These results suggest that de novo synthesis of BCFA reduces lipoprotein-mediated TLR2 activation and improves lipase-mediated hydrolysis making it an important determinant of innate immunity. Overall, this study highlights the potential relevance of cell envelope acyl chain repertoire in infection dynamics of bacterial pathogens.


Asunto(s)
Ácidos Grasos/inmunología , Ácidos Grasos/metabolismo , Inmunidad Innata/inmunología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/metabolismo , Animales , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Fluidez de la Membrana/fisiología , Ratones , Staphylococcus aureus/inmunología , Staphylococcus aureus/metabolismo
8.
Biomed Pharmacother ; 141: 111933, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34328107

RESUMEN

Staphylococcus aureus is a leading pathogen responsible for mild to severe invasive infections in humans. Especially, methicillin resistant Staphylococcus aureus (MRSA) is prevalent in hospital and community associated infections. Staphyloxanthin is a golden yellow color eponymous pigment produced by S. aureus and provides resistance to reactive oxygen species (ROS) and host neutrophil-based killing. In addition, this membrane pigment contributes to membrane rigidity and helps MRSA to survive under stress conditions. Targeting virulence of pathogen without exerting selection pressure is the recent approach to fight bacterial infections without developing drug resistance. The present study for the first time evaluated the staphyloxanthin inhibitory potential of thymol against MRSA. Qualitative and quantitative analyses demonstrated 90% of staphyloxanthin inhibition at 100 µg/mL concentration of thymol without alteration in growth. Molecular docking analysis and in vitro measurement of metabolic intermediates of staphyloxanthin revealed that thymol could possibly interact with CrtM to inhibit staphyloxanthin. Absorbance and infra red spectra further validated the inhibition of staphyloxanthin by thymol. In addition, thymol treatment significantly reduced the resistance of MRSA to ROS and neutrophil-based killing as exhibited by oxidant susceptibility assays and ex vivo innate immune clearance assay using human whole blood and neutrophils. Further, reduction in staphyloxanthin by thymol treatment increased the membrane fluidity and made MRSA cells more susceptible to membrane targeting antibiotic polymyxin B. Especially, thymol was found to be non-cytotoxic to human peripheral blood mononuclear cells. Our study validated the antivirulence potential of thymol against MRSA by inhibiting staphyloxanthin and suggests the prospective therapeutic role of thymol to combat MRSA infections.


Asunto(s)
Antioxidantes/farmacología , Fluidez de la Membrana/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Neutrófilos/metabolismo , Timol/farmacología , Xantófilas/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Fluidez de la Membrana/fisiología , Staphylococcus aureus Resistente a Meticilina/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Simulación del Acoplamiento Molecular/métodos , Neutrófilos/efectos de los fármacos , Estructura Secundaria de Proteína
9.
ACS Appl Mater Interfaces ; 13(25): 29936-29948, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34143617

RESUMEN

Alzheimer's disease (AD) is a major cause of dementia characterized by the overexpression of transmembrane amyloid precursor protein and its neurotoxic byproduct amyloid beta (Aß). A small peptide of considerable hydrophobicity, Aß is aggregation prone catalyzed by the presence of cell membranes, among other environmental factors. Accordingly, current AD mitigation strategies often aim at breaking down the Aß-membrane communication, yet no data is available concerning the cohesive interplay of the three key entities of the cell membrane, Aß, and its inhibitor. Using a lipophilic Laurdan dye and confocal fluorescence microscopy, we observed cell membrane perturbation and actin reorganization induced by Aß oligomers but not by Aß monomers or amyloid fibrils. We further revealed recovery of membrane fluidity by ultrasmall MoS2 quantum dots, also shown in this study as a potent inhibitor of Aß amyloid aggregation. Using discrete molecular dynamics simulations, we uncovered the binding of MoS2 and Aß monomers as mediated by hydrophilic interactions between the quantum dots and the peptide N-terminus. In contrast, Aß oligomers and fibrils were surface-coated by the ultrasmall quantum dots in distinct testudo-like, reverse protein-corona formations to prevent their further association with the cell membrane and adverse effects downstream. This study offers a crucial new insight and a viable strategy for regulating the amyloid aggregation and membrane-axis of AD pathology with multifunctional nanomedicine.


Asunto(s)
Péptidos beta-Amiloides , Disulfuros/química , Fluidez de la Membrana/fisiología , Molibdeno/química , Puntos Cuánticos/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Actinas/química , Actinas/metabolismo , Enfermedad de Alzheimer , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lauratos/química , Microscopía Confocal , Simulación de Dinámica Molecular , Nanomedicina
10.
Opt Express ; 29(8): 11976-11986, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33984967

RESUMEN

The fluidity of the cell membrane is closely related to cancer metastasis/invasion. To test the relationship of membrane fluidity and invasiveness, we first demonstrated that transfection of small RNA miR-92b-3p can significantly increase invasiveness of the small cell lung cancer cell line SHP77. Then optical tweezers were used to measure membrane fluidity. This study employed continuous and step-like stretching methods to examine fluidity changes in SHP77 cell membranes before and after miR-92b-3p transfection. A newly developed physical model was used to derive the effective viscosity and static tension of the cell membrane from relaxation curves obtained via step-like stretching. Experiments showed that invasiveness and fluidity increased significantly after miR-92b-3p transfection. This study paved the way toward a better understanding of cancer cell invasion and membrane mechanical characteristics.


Asunto(s)
Neoplasias Pulmonares/patología , Fluidez de la Membrana/fisiología , Pinzas Ópticas , Carcinoma Pulmonar de Células Pequeñas/patología , Línea Celular Tumoral , Membrana Celular/fisiología , Vectores Genéticos , Humanos , Lentivirus/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Invasividad Neoplásica , Reacción en Cadena en Tiempo Real de la Polimerasa , Carcinoma Pulmonar de Células Pequeñas/genética , Transfección
11.
Plant Physiol ; 185(1): 210-227, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631810

RESUMEN

In chloroplasts of land plants, the thylakoid network is organized into appressed regions called grana stacks and loosely arranged parallel stroma thylakoids. Many factors determining such intricate structural arrangements have been identified so far, including various thylakoid-embedded proteins, and polar lipids that build the thylakoid matrix. Although carotenoids are important components of proteins and the lipid phase of chloroplast membranes, their role in determining the thylakoid network structure remains elusive. We studied 2D and 3D thylakoid network organization in carotenoid-deficient mutants (ccr1-1, lut5-1, szl1-1, and szl1-1npq1-2) of Arabidopsis (Arabidopsis thaliana) to reveal the structural role of carotenoids in the formation and dynamics of the internal chloroplast membrane system. The most significant structural aberrations took place in chloroplasts of the szl1-1 and szl1-1npq1-2 plants. Increased lutein/carotene ratio in these mutants impaired the formation of grana, resulting in a significant decrease in the number of thylakoids used to build a particular stack. Further, combined biochemical and biophysical analyses revealed that hampered grana folding was related to decreased thylakoid membrane fluidity and significant changes in the amount, organization, and phosphorylation status of photosystem (PS) II (PSII) supercomplexes in the szl1-1 and szl1-1npq1-2 plants. Such changes resulted from a synergistic effect of lutein overaccumulation in the lipid matrix and a decreased level of carotenes bound with PS core complexes. Moreover, more rigid membrane in the lutein overaccumulating plants led to binding of Rubisco to the thylakoid surface, additionally providing steric hindrance for the dynamic changes in the level of membrane folding.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Carotenoides/metabolismo , Cloroplastos/metabolismo , Fluidez de la Membrana/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo , Arabidopsis/crecimiento & desarrollo , Embryophyta/crecimiento & desarrollo , Embryophyta/metabolismo , Variación Genética , Genotipo , Mutación , Fenotipo
12.
Methods Mol Biol ; 2251: 215-223, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33481243

RESUMEN

Phosphoinositides play important roles in the regulation of protein recruitment at specialized membrane domains, protein activity, and membrane dynamics. Phosphoinositide-protein interplay occurs via multiple mechanisms and proteins associate with membranes through different binding patterns. Determinations of membrane-binding mode and membrane penetration depth of proteins in lipid bilayer are thus important steps in characterizing the molecular mechanisms of membrane-protein interactions. Here, we show two standard in vitro assays using liposomes, diphenylhexatriene (DPH) anisotropy, and fluorescence quenching by brominated lipids to determine membrane penetration of proteins into lipid bilayer. These methods will provide useful tools to study membrane-protein association and uncover molecular details of protein-lipid interplay, which are important for understanding biological functions of membrane-associated proteins and membrane dynamics.


Asunto(s)
Polarización de Fluorescencia/métodos , Fluidez de la Membrana/fisiología , Espectrometría de Fluorescencia/métodos , Animales , Difenilhexatrieno/química , Fluorescencia , Colorantes Fluorescentes/química , Humanos , Membrana Dobles de Lípidos/química , Liposomas/química , Proteínas de la Membrana/análisis , Proteínas de la Membrana/química , Membranas/química , Fosfatidilcolinas/química , Fosfatidilinositoles/análisis , Fosfatidilinositoles/química
13.
Eur J Clin Invest ; 51(5): e13455, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33210748

RESUMEN

BACKGROUND: A high level of glycosylated haemoglobin (HbA1c), which is a nonenzymatic glycosylation product, is correlated with an increased risk of developing microangiopathic complications in Diabetes Mellitus (DM). Erythrocyte membrane fluidity could provide a complementary index to monitor the development of complications since it is influenced by several hyperglycaemia-induced pathways and other independent risk factors. MATERIALS AND METHODS: 15 healthy controls and 33 patients with long-duration (≥20 years) type 1 Diabetes Mellitus (T1DM) were recruited. Diabetic subjects were classified into two groups: T1DM, constituted by 14 nonretinopathic patients, and T1DM + RD, constituted by 19 patients in any stage of diabetic retinopathy. Red blood cells (RBC) were incubated with the fluorescent Laurdan probe and median values of Generalized Polarization (GP), representative of membrane fluidity, were compared between the two groups. Baseline characteristics among groups have been compared with Student's t test or ANOVA. Values of P < .05 were considered statistically significant. RESULTS: All the participants were comparable for age, Body Mass Index (BMI), creatinine and lipid profile. The duration of diabetes was similar for T1DM (34.4 ± 7.8 years) and T1DM + RD (32.8 ± 7.5 years) subjects as well as values of HbA1c: (55.6 ± 8.1) mmol/mol for T1DM and (61.2 ± 11.0) mmol/mol for T1DM + RD, respectively. Erythrocyte plasmatic membranes of RD patients were found to be more fluid (GP: 0.40 ± 0.04) than non-RD patients (GP: 0.43 ± 0.03) with a statistically significant difference (P = .035). CONCLUSIONS: Altered erythrocyte membrane fluidity may therefore represent a marker of retinopathy in T1DM patients as a result of post-translational modifications of multifactorial aetiology (nonenzymatic glycosylation of proteins, generation of reactive oxygen species, lipid peroxidation).


Asunto(s)
Diabetes Mellitus Tipo 1/sangre , Retinopatía Diabética/sangre , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Fluidez de la Membrana/fisiología , Adulto , Biomarcadores , Estudios de Casos y Controles , Diabetes Mellitus Tipo 1/complicaciones , Retinopatía Diabética/etiología , Membrana Eritrocítica/fisiología , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Masculino , Persona de Mediana Edad
14.
Biomolecules ; 10(10)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33050072

RESUMEN

Depressive disorder (DD) is a psychiatric disorder whose molecular basis is not fully understood. It is assumed that reduced consumption of fish and omega-3 fatty acids (FA) is associated with DD. Other lipids such as total cholesterol (TCH), LDL-, and HDL-cholesterols (LDL-CH, HDL-CH) also play a role in depression. The primary endpoint of the study was the effect of omega-3 FA on the severity of depression in children and adolescents. This study aimed to investigate the secondary endpoint, relationship between depressive disorder symptoms and lipid profile, LDL- and HDL-cholesterol subfractions, Paraoxonase 1 (PON1) activities, and erythrocyte membrane fluidity in 58 depressed children and adolescents (calculated by the statistical program on the effect size), as well as the effect of omega-3 FA on the monitored parameters. Depressive symptoms were assessed by the Children's Depression Inventory (CDI), lipid profile by standard biochemical procedures, and LDL- and HDL-subfractions by the Lipoprint system. Basic biochemical parameters including lipid profile were compared with levels in 20 healthy children and were in the physiological range. Improvement of symptoms in the group supplemented with a fish oil emulsion rich in omega-3 FA in contrast to omega-6 FA (emulsion of sunflower oil) has been observed. We are the first to report that omega-3 FAs, but not omega-6 FA, increase large HDL subfractions (anti-atherogenic) after 12 weeks of supplementation and decrease small HDL subfractions (proatherogenic) in depressed children. We found a negative correlation between CDI score and HDL-CH and the large HDL subfraction, but not LDL-CH subfractions. CDI score was not associated with erythrocyte membrane fluidity. Our results suggest that HDL-CH and its subfractions, but not LDL-CH may play a role in the pathophysiology of depressive disorder. The study was registered under ISRCTN81655012.


Asunto(s)
Trastorno Depresivo/dietoterapia , Ácidos Grasos Omega-3/uso terapéutico , Lípidos/sangre , Fluidez de la Membrana/fisiología , Adolescente , Antidepresivos/uso terapéutico , Análisis Químico de la Sangre , Fraccionamiento Químico , Niño , Trastorno Depresivo/sangre , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/patología , Suplementos Dietéticos , Método Doble Ciego , Membrana Eritrocítica/química , Membrana Eritrocítica/fisiología , Ácidos Grasos Omega-3/farmacología , Femenino , Humanos , Lípidos/análisis , Lipoproteínas/análisis , Lipoproteínas/sangre , Masculino , Índice de Severidad de la Enfermedad , Eslovaquia
15.
Biochemistry ; 59(33): 3010-3018, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32786397

RESUMEN

Cell membranes contain incredible diversity in the chemical structures of their individual lipid species and the ratios in which these lipids are combined to make membranes. Nevertheless, our current understanding of how each of these components affects the properties of the cell membrane remains elusive, in part due to the difficulties in studying the dynamics of membranes at high spatiotemporal resolution. In this work, we use coarse-grained molecular dynamics simulations to investigate how individual lipid species contribute to the biophysical properties of the neuronal plasma membrane. We progress through eight membranes of increasing chemical complexity, ranging from a simple POPC/CHOL membrane to a previously published neuronal plasma membrane [Ingólfsson, H. I., et al. (2017) Biophys. J. 113 (10), 2271-2280] containing 49 distinct lipid species. Our results show how subtle chemical changes can affect the properties of the membrane and highlight the lipid species that give the neuronal plasma membrane its unique biophysical properties. This work has potential far-reaching implications for furthering our understanding of cell membranes.


Asunto(s)
Membrana Celular/química , Fluidez de la Membrana/fisiología , Lípidos de la Membrana/química , Neuronas/ultraestructura , Animales , Fenómenos Biofísicos , Membrana Celular/fisiología , Colesterol/química , Colesterol/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/fisiología , Modelos Moleculares , Simulación de Dinámica Molecular , Neuronas/química , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Esfingolípidos/química , Esfingolípidos/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo
16.
Elife ; 92020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32662773

RESUMEN

The bacterial plasma membrane is an important cellular compartment. In recent years it has become obvious that protein complexes and lipids are not uniformly distributed within membranes. Current hypotheses suggest that flotillin proteins are required for the formation of complexes of membrane proteins including cell-wall synthetic proteins. We show here that bacterial flotillins are important factors for membrane fluidity homeostasis. Loss of flotillins leads to a decrease in membrane fluidity that in turn leads to alterations in MreB dynamics and, as a consequence, in peptidoglycan synthesis. These alterations are reverted when membrane fluidity is restored by a chemical fluidizer. In vitro, the addition of a flotillin increases membrane fluidity of liposomes. Our data support a model in which flotillins are required for direct control of membrane fluidity rather than for the formation of protein complexes via direct protein-protein interactions.


Every living cell is enclosed by a flexible membrane made of molecules known as phospholipids, which protects the cell from harmful chemicals and other threats. In bacteria and some other organisms, a rigid structure known as the cell wall sits just outside of the membrane and determines the cell's shape. There are several proteins in the membrane of bacteria that allow the cell to grow by assembling new pieces of the cell wall. To ensure these proteins expand the cell wall at the right locations, another protein known as MreB moves and organizes them to the appropriate place in the membrane and controls their activity. Previous studies have found that another class of proteins called flotillins are involved in arranging proteins and phospholipid molecules within membranes. Bacteria lacking these proteins do not grow properly and are unable to maintain their normal shape. However, the precise role of the flotillins remained unclear. Here, Zielinska, Savietto et al. used microscopy approaches to study flotillins in a bacterium known as Bacillus subtilis. The experiments found that, in the presence of flotillins, MreB moved around the membrane more quickly (suggesting it was more active) than when no flotillins were present. Similar results were observed when bacterial cells lacking flotillins were treated with a chemical that made membranes more 'fluid' ­ that is, made it easier for the molecules within the membrane to travel around. Further experiments found that flotillins allowed the phospholipid molecules within an artificial membrane to move around more freely, which increases the fluidity of the membrane. These findings suggest that flotillins make the membranes of bacterial cells more fluid to help cells expand their walls and perform several other processes. Understanding how bacteria control the components of their membranes will further our understanding of how many currently available antibiotics work and may potentially lead to the design of new antibiotics in the future.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/fisiología , Fluidez de la Membrana/fisiología , Proteínas de la Membrana/metabolismo , Peptidoglicano/biosíntesis
17.
Mech Ageing Dev ; 190: 111307, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32628941

RESUMEN

Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are associated with the surface of eucaryotic cells only through a covalently coupled carboxy-terminal GPI glycolipid structure which is anchored at the outer leaflet of plasma membranes. This mode of membrane association may be responsible for the recent observations that full-length GPI-APs harbouring the complete GPI anchor are (i) released from isolated rat adipocytes in vitro and (ii) expressed in rat and human serum. The upregulation of the adipocyte release in response to increased cell size and blood glucose/insulin levels of the donor rats and downregulation of the expression in serum of insulin resistant and diabetic rats have been reconciled with enhanced degradation of the full-length GPI-APs released into micelle-like complexes together with (lyso) phospholipids and cholesterol by serum GPI-specific phospholipase D (GPI-PLD). Here by using a sensitive and reliable sensing method for full-length GPI-APs, which relies on surface acoustic waves propagating over microfluidic chips, the upregulation of (i) the release of the full-length GPI-APs CD73, alkaline phosphatase and CD55 from isolated adipocyte plasma membranes monitored in a "lab-on-the-chip" configuration, (ii) their release from isolated rat adipocytes into the incubation medium and (iii) the lipolytic cleavage of their GPI anchors in serum was demonstrated to increase with age (3-16 weeks) and body weight (87-477 g) of (healthy) donor rats. In contrast, the amount of full-length GPI-APs in rat serum, as determined by chip-based sensing, turned out to decline with age/body weight. These correlations suggest that age-/weight-induced alterations (in certain biophysical/biochemical characteristics) of plasma membranes are responsible for the release of full-length GPI-APs which becomes counteracted by elevated GPI-PLD activity in serum. Thus, sensitive and specific measurement of these GPI-AP-relevant parameters may be useful for monitoring of age-related cell surface changes, in general, and diseases, in particular.


Asunto(s)
Adipocitos/fisiología , Envejecimiento/fisiología , Membrana Celular/fisiología , Glicosilfosfatidilinositoles/metabolismo , Fluidez de la Membrana/fisiología , Fosfolipasa D/metabolismo , Animales , Colesterol/metabolismo , Diabetes Mellitus Experimental/metabolismo , Proteínas Ligadas a GPI/metabolismo , Humanos , Microdominios de Membrana/metabolismo , Análisis por Matrices de Proteínas , Ratas , Regulación hacia Arriba
18.
Sci Rep ; 10(1): 5147, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32198481

RESUMEN

Human nuclear membrane (hNM) invaginations are thought to be crucial in fusion, fission and remodeling of cells and present in many human diseases. There is however little knowledge, if any, about their lipid composition and dynamics. We therefore isolated nuclear envelope lipids from human kidney cells, analyzed their composition and determined the membrane dynamics after resuspension in buffer. The hNM lipid extract was composed of a complex mixture of phospholipids, with high amounts of phosphatidylcholines, phosphatidylinositols (PI) and cholesterol. hNM dynamics was determined by solid-state NMR and revealed that the lamellar gel-to-fluid phase transition occurs below 0 °C, reflecting the presence of elevated amounts of unsaturated fatty acid chains. Fluidity was higher than the plasma membrane, illustrating the dual action of Cholesterol (ordering) and PI lipids (disordering). The most striking result was the large magnetic field-induced membrane deformation allowing to determine the membrane bending elasticity, a property related to hydrodynamics of cells and organelles. Human Nuclear Lipid Membranes were at least two orders of magnitude more elastic than the classical plasma membrane suggesting a physical explanation for the formation of nuclear membrane invaginations.


Asunto(s)
Fluidez de la Membrana/fisiología , Membrana Nuclear/metabolismo , Membrana Nuclear/fisiología , Membrana Celular/metabolismo , Colesterol/metabolismo , Ácidos Grasos Insaturados/metabolismo , Humanos , Riñón/patología , Campos Magnéticos , Espectroscopía de Resonancia Magnética , Lípidos de la Membrana/metabolismo , Transición de Fase , Fosfatidilinositoles/metabolismo , Fosfolípidos/metabolismo
19.
Sci Rep ; 10(1): 330, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941915

RESUMEN

Carotenoids are associated with several important biological functions as antenna pigments in photosynthesis or protectives against oxidative stress. Occasionally they were also discussed as part of the cold adaptation mechanism of bacteria. For two Staphylococcus xylosus strains we demonstrated an increased content of staphyloxanthin and other carotenoids after growth at 10 °C but no detectable carotenoids after grow at 30 °C. By in vivo measurements of generalized polarization and anisotropy with two different probes Laurdan and TMA-DPH we detected a strong increase in membrane order with a simultaneous increase in membrane fluidity at low temperatures accompanied by a broadening of the phase transition. Increased carotenoid concentration was also correlated with an increased resistance of the cells against freeze-thaw stress. In addition, the fatty acid profile showed a moderate adaptation to low temperature by increasing the portion of anteiso-branched fatty acids. The suppression of carotenoid synthesis abolished the effects observed and thus confirmed the causative function of the carotenoids in the modulation of membrane parameters. A differential transcriptome analysis demonstrated the upregulation of genes involved in carotenoid syntheses under low temperature growth conditions. The presented data suggests that upregulated synthesis of carotenoids is a constitutive component in the cold adaptation strategy of Staphylococcus xylosus and combined with modifications of the fatty acid profile constitute the adaptation to grow under low temperature conditions.


Asunto(s)
Carotenoides/metabolismo , Fluidez de la Membrana/fisiología , Staphylococcus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carotenoides/análisis , Cromatografía Líquida de Alta Presión , Frío , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Staphylococcus/genética , Staphylococcus/crecimiento & desarrollo , Estrés Fisiológico , Regulación hacia Arriba , Xantófilas/análisis , Xantófilas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA