Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros












Intervalo de año de publicación
1.
An Acad Bras Cienc ; 96(suppl 1): e20231342, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166612

RESUMEN

The present study provides a detailed record of foraminiferal fauna and their ecological implications from surface sediments from Atlantic shelf of Tierra del Fuego, Argentina. The foraminiferal assemblage is mostly composed by four main hyaline genera, such as Cibicidoides, Cibicides, Globocassidulina and Buccella, which allowed the identification of three environmental zones. Zone 1 (Z1, 37 to 90 m) encompasses the eastern Beagle Channel and San Sebastian Bay. The assemblage reflected well-oxygenated marine inner shelf habitat, adapted to cold temperate waters. Zone 2 (Z2, up to 98.4 m), is located around the southern tip of Tierra del Fuego. The assemblage suggested a deeper marine environment, well oxygenated and with higher energy, probably due to the effect of tides and mainly by the influence of Malvinas Current. Finally, Zone 3 (Z3, up to 195 m) is located furthest from the Atlantic coast and the assemblage suggested an environment characteristic of outer shelf, with well-oxygenated cold waters and high-energy environment, reflected by species adhered to the substrate and coarse sediments. The distribution and abundance of certain species showed the influence of the Malvinas Current, while others evidenced a contribution of the Cape Horn waters.


Asunto(s)
Biodiversidad , Foraminíferos , Sedimentos Geológicos , Océano Atlántico , Foraminíferos/clasificación , Argentina , Densidad de Población , Ecosistema
2.
Sci Data ; 11(1): 642, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886446

RESUMEN

This paper introduces ForametCeTera, a pioneering dataset designed to address the challenges associated with automating the analysis of benthic foraminifera in sediment cores. Foraminifera are sensitive sentinels of environmental change and are a crucial component of carbonate-denominated ecosystems, such as coral reefs. Studying their prevalence and characteristics is imperative in understanding climate change. However, analysis of foraminifera contained in core samples currently requires washing, sieving and manual quantification. These methods are thus time-consuming and require trained experts. To overcome these limitations, we propose an alternative workflow utilizing 3D X-ray computational tomography (CT) for fully automated analysis, saving time and resources. Despite recent advancements in automation, a crucial lack of methods persists for segmenting and classifying individual foraminifera from 3D scans. In response, we present ForametCeTera, a diverse dataset featuring 436 3D CT scans of individual foraminifera and non-foraminiferan material following a high-throughput scanning workflow. ForametCeTera serves as a foundational resource for generating synthetic digital core samples, facilitating the development of segmentation and classification methods of entire core sample CT scans.


Asunto(s)
Foraminíferos , Tomografía Computarizada por Rayos X , Foraminíferos/clasificación , Sedimentos Geológicos , Arrecifes de Coral
3.
Mar Environ Res ; 198: 106552, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788477

RESUMEN

Arctic fjords ecosystems are highly dynamic, with organisms exposed to various natural stressors along with productivity clines driven by advection of water masses from shelves. The benthic response to these environmental clines has been extensively studied using traditional, morphology-based approaches mostly focusing on macroinvertebrates. In this study we analyse the effects of glacially mediated disturbance on the biodiversity of benthic macrofauna and meiobenthos (meiofauna and Foraminifera) in a Svalbard fjord by comparing morphology and eDNA metabarcoding. Three genetic markers targeting metazoans (COI), meiofauna (18S V1V2) and Foraminifera (18S 37f) were analyzed. Univariate measures of alpha diversity and multivariate compositional dissimilarities were calculated and tested for similarities in response to environmental gradients using correlation analysis. Our study showed different taxonomic composition of morphological and molecular datasets for both macrofauna and meiobenthos. Some taxonomic groups while abundant in metabarcoding data were almost absent in morphology-based inventory and vice versa. In general, species richness and diversity measures in macrofauna morphological data were higher than in metabarcoding, and similar for the meiofauna. Both methodological approaches showed different patterns of response to the glacially mediated disturbance for the macrofauna and the meiobenthos. Macrofauna showed an evident distinction in taxonomic composition and a dramatic cline in alpha diversity indices between the outer and inner parts of fjord, while the meiobenthos showed a gradual change and more subtle responses to environmental changes along the fjord axis. The two methods can be seen as complementing rather than replacing each other. Morphological approach provides more accurate inventory of larger size species and more reliable quantitative data, while metabarcoding allows identification of inconspicuous taxa that are overlooked in morphology-based studies. As different taxa may show different sensitivities to environmental changes, both methods shall be used to monitor marine biodiversity in Arctic ecosystems and its response to dramatically changing environmental conditions.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , Estuarios , Sedimentos Geológicos , Invertebrados , Regiones Árticas , Animales , Invertebrados/genética , Invertebrados/clasificación , Invertebrados/fisiología , Organismos Acuáticos/genética , Foraminíferos/genética , Foraminíferos/clasificación , Foraminíferos/fisiología , Ecosistema , Monitoreo del Ambiente/métodos , Svalbard
4.
Nature ; 629(8012): 616-623, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632405

RESUMEN

In palaeontological studies, groups with consistent ecological and morphological traits across a clade's history (functional groups)1 afford different perspectives on biodiversity dynamics than do species and genera2,3, which are evolutionarily ephemeral. Here we analyse Triton, a global dataset of Cenozoic macroperforate planktonic foraminiferal occurrences4, to contextualize changes in latitudinal equitability gradients1, functional diversity, palaeolatitudinal specialization and community equitability. We identify: global morphological communities becoming less specialized preceding the richness increase after the Cretaceous-Palaeogene extinction; ecological specialization during the Early Eocene Climatic Optimum, suggesting inhibitive equatorial temperatures during the peak of the Cenozoic hothouse; increased specialization due to circulation changes across the Eocene-Oligocene transition, preceding the loss of morphological diversity; changes in morphological specialization and richness about 19 million years ago, coeval with pelagic shark extinctions5; delayed onset of changing functional group richness and specialization between hemispheres during the mid-Miocene plankton diversification. The detailed nature of the Triton dataset permits a unique spatiotemporal view of Cenozoic pelagic macroevolution, in which global biogeographic responses of functional communities and richness are decoupled during Cenozoic climate events. The global response of functional groups to similar abiotic selection pressures may depend on the background climatic state (greenhouse or icehouse) to which a group is adapted.


Asunto(s)
Organismos Acuáticos , Cambio Climático , Foraminíferos , Filogeografía , Plancton , Animales , Organismos Acuáticos/fisiología , Organismos Acuáticos/clasificación , Biodiversidad , Evolución Biológica , Cambio Climático/historia , Conjuntos de Datos como Asunto , Extinción Biológica , Foraminíferos/clasificación , Foraminíferos/fisiología , Historia Antigua , Plancton/clasificación , Plancton/fisiología , Análisis Espacio-Temporal
5.
Biol Rev Camb Philos Soc ; 99(4): 1218-1241, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38351434

RESUMEN

The nature and extent of diversity in the plankton has fascinated scientists for over a century. Initially, the discovery of many new species in the remarkably uniform and unstructured pelagic environment appeared to challenge the concept of ecological niches. Later, it became obvious that only a fraction of plankton diversity had been formally described, because plankton assemblages are dominated by understudied eukaryotic lineages with small size that lack clearly distinguishable morphological features. The high diversity of the plankton has been confirmed by comprehensive metabarcoding surveys, but interpretation of the underlying molecular taxonomies is hindered by insufficient integration of genetic diversity with morphological taxonomy and ecological observations. Here we use planktonic foraminifera as a study model and reveal the full extent of their genetic diversity and investigate geographical and ecological patterns in their distribution. To this end, we assembled a global data set of ~7600 ribosomal DNA sequences obtained from morphologically characterised individual foraminifera, established a robust molecular taxonomic framework for the observed diversity, and used it to query a global metabarcoding data set covering ~1700 samples with ~2.48 billion reads. This allowed us to extract and assign 1 million reads, enabling characterisation of the structure of the genetic diversity of the group across ~1100 oceanic stations worldwide. Our sampling revealed the existence of, at most, 94 distinct molecular operational taxonomic units (MOTUs) at a level of divergence indicative of biological species. The genetic diversity only doubles the number of formally described species identified by morphological features. Furthermore, we observed that the allocation of genetic diversity to morphospecies is uneven. Only 16 morphospecies disguise evolutionarily significant genetic diversity, and the proportion of morphospecies that show genetic diversity increases poleward. Finally, we observe that MOTUs have a narrower geographic distribution than morphospecies and that in some cases the MOTUs belonging to the same morphospecies (cryptic species) have different environmental preferences. Overall, our analysis reveals that even in the light of global genetic sampling, planktonic foraminifera diversity is modest and finite. However, the extent and structure of the cryptic diversity reveals that genetic diversification is decoupled from morphological diversification, hinting at different mechanisms acting at different levels of divergence.


Asunto(s)
Foraminíferos , Variación Genética , Plancton , Foraminíferos/genética , Foraminíferos/clasificación , Plancton/genética , Plancton/clasificación , Especiación Genética , Código de Barras del ADN Taxonómico
6.
Nature ; 614(7949): 713-718, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36792824

RESUMEN

The geographic ranges of marine organisms, including planktonic foraminifera1, diatoms, dinoflagellates2, copepods3 and fish4, are shifting polewards owing to anthropogenic climate change5. However, the extent to which species will move and whether these poleward range shifts represent precursor signals that lead to extinction is unclear6. Understanding the development of marine biodiversity patterns over geological time and the factors that influence them are key to contextualizing these current trends. The fossil record of the macroperforate planktonic foraminifera provides a rich and phylogenetically resolved dataset that provides unique opportunities for understanding marine biogeography dynamics and how species distributions have responded to ancient climate changes. Here we apply a bipartite network approach to quantify group diversity, latitudinal specialization and latitudinal equitability for planktonic foraminifera over the past eight million years using Triton, a recently developed high-resolution global dataset of planktonic foraminiferal occurrences7. The results depict a global, clade-wide shift towards the Equator in ecological and morphological community equitability over the past eight million years in response to temperature changes during the late Cenozoic bipolar ice sheet formation. Collectively, the Triton data indicate the presence of a latitudinal equitability gradient among planktonic foraminiferal functional groups which is coupled to the latitudinal biodiversity gradient only through the geologically recent past (the past two million years). Before this time, latitudinal equitability gradients indicate that higher latitudes promoted community equitability across ecological and morphological groups. Observed range shifts among marine planktonic microorganisms1,2,8 in the recent and geological past suggest substantial poleward expansion of marine communities even under the most conservative future global warming scenarios.


Asunto(s)
Organismos Acuáticos , Biodiversidad , Frío , Foraminíferos , Mapeo Geográfico , Filogeografía , Plancton , Análisis Espacio-Temporal , Animales , Organismos Acuáticos/clasificación , Organismos Acuáticos/aislamiento & purificación , Conjuntos de Datos como Asunto , Foraminíferos/clasificación , Foraminíferos/aislamiento & purificación , Fósiles , Historia Antigua , Filogenia , Plancton/clasificación , Plancton/aislamiento & purificación , Factores de Tiempo , Hidrobiología
7.
Nature ; 614(7949): 708-712, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36792825

RESUMEN

The latitudinal diversity gradient (LDG) is a prevalent feature of modern ecosystems across diverse clades1-4. Recognized for well over a century, the causal mechanisms for LDGs remain disputed, in part because numerous putative drivers simultaneously covary with latitude1,3,5. The past provides the opportunity to disentangle LDG mechanisms because the relationships among biodiversity, latitude and possible causal factors have varied over time6-9. Here we quantify the emergence of the LDG in planktonic foraminifera at high spatiotemporal resolution over the past 40 million years, finding that a modern-style gradient arose only 15 million years ago. Spatial and temporal models suggest that LDGs for planktonic foraminifera may be controlled by the physical structure of the water column. Steepening of the latitudinal temperature gradient over 15 million years ago, associated with an increased vertical temperature gradient at low latitudes, may have enhanced niche partitioning and provided more opportunities for speciation at low latitudes. Supporting this hypothesis, we find that higher rates of low-latitude speciation steepened the diversity gradient, consistent with spatiotemporal patterns of depth partitioning by planktonic foraminifera. Extirpation of species from high latitudes also strengthened the LDG, but this effect tended to be weaker than speciation. Our results provide a step change in understanding the evolution of marine LDGs over long timescales.


Asunto(s)
Organismos Acuáticos , Biodiversidad , Foraminíferos , Mapeo Geográfico , Plancton , Análisis Espacio-Temporal , Organismos Acuáticos/clasificación , Organismos Acuáticos/aislamiento & purificación , Evolución Biológica , Foraminíferos/clasificación , Foraminíferos/aislamiento & purificación , Especiación Genética , Historia Antigua , Filogeografía , Plancton/clasificación , Plancton/aislamiento & purificación , Temperatura , Factores de Tiempo , Agua/análisis , Hidrobiología
8.
Sci Rep ; 11(1): 22165, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772985

RESUMEN

Foraminifera are a species-rich phylum of rhizarian protists that are highly abundant in many marine environments and play a major role in global carbon cycling. Species recognition in Foraminifera is mainly based on morphological characters and nuclear 18S ribosomal RNA barcoding. The 18S rRNA contains variable sequence regions that allow for the identification of most foraminiferal species. Still, some species show limited variability, while others contain high levels of intragenomic polymorphisms, thereby complicating species identification. The use of additional, easily obtainable molecular markers other than 18S rRNA will enable more detailed investigation of evolutionary history, population genetics and speciation in Foraminifera. Here we present the first mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences ("barcodes") of Foraminifera. We applied shotgun sequencing to single foraminiferal specimens, assembled COI, and developed primers that allow amplification of COI in a wide range of foraminiferal species. We obtained COI sequences of 49 specimens from 17 species from the orders Rotaliida and Miliolida. Phylogenetic analysis showed that the COI tree is largely congruent with previously published 18S rRNA phylogenies. Furthermore, species delimitation with ASAP and ABGD algorithms showed that foraminiferal species can be identified based on COI barcodes.


Asunto(s)
Código de Barras del ADN Taxonómico , Complejo IV de Transporte de Electrones/genética , Foraminíferos/clasificación , Foraminíferos/genética , Genes Mitocondriales , Biología Computacional/métodos , Biblioteca de Genes , Genes de ARNr , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , ARN Ribosómico 18S/genética
9.
Nature ; 598(7881): 457-461, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34671138

RESUMEN

Ocean dynamics in the equatorial Pacific drive tropical climate patterns that affect marine and terrestrial ecosystems worldwide. How this region will respond to global warming has profound implications for global climate, economic stability and ecosystem health. As a result, numerous studies have investigated equatorial Pacific dynamics during the Pliocene (5.3-2.6 million years ago) and late Miocene (around 6 million years ago) as an analogue for the future behaviour of the region under global warming1-12. Palaeoceanographic records from this time present an apparent paradox with proxy evidence of a reduced east-west sea surface temperature gradient along the equatorial Pacific1,3,7,8-indicative of reduced wind-driven upwelling-conflicting with evidence of enhanced biological productivity in the east Pacific13-15 that typically results from stronger upwelling. Here we reconcile these observations by providing new evidence for a radically different-from-modern circulation regime in the early Pliocene/late Miocene16 that results in older, more acidic and more nutrient-rich water reaching the equatorial Pacific. These results provide a mechanism for enhanced productivity in the early Pliocene/late Miocene east Pacific even in the presence of weaker wind-driven upwelling. Our findings shed new light on equatorial Pacific dynamics and help to constrain the potential changes they will undergo in the near future, given that the Earth is expected to reach Pliocene-like levels of warming in the next century.


Asunto(s)
Ecosistema , Agua de Mar/química , Temperatura , Foraminíferos/clasificación , Foraminíferos/aislamiento & purificación , Historia Antigua , Concentración de Iones de Hidrógeno , Océano Pacífico , Plancton/clasificación , Plancton/aislamiento & purificación , Movimientos del Agua , Viento
10.
Sci Rep ; 11(1): 19869, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615927

RESUMEN

The Antarctic coastal fauna is characterized by high endemism related to the progressive cooling of Antarctic waters and their isolation by the Antarctic Circumpolar Current. The origin of the Antarctic coastal fauna could involve either colonization from adjoining deep-sea areas or migration through the Drake Passage from sub-Antarctic areas. Here, we tested these hypotheses by comparing the morphology and genetics of benthic foraminifera collected from Antarctica, sub-Antarctic coastal settings in South Georgia, the Falkland Islands and Patagonian fjords. We analyzed four genera (Cassidulina, Globocassidulina, Cassidulinoides, Ehrenbergina) of the family Cassidulinidae that are represented by at least nine species in our samples. Focusing on the genera Globocassidulina and Cassidulinoides, our results showed that the first split between sub-Antarctic and Antarctic lineages took place during the mid-Miocene climate reorganization, probably about 20 to 17 million years ago (Ma). It was followed by a divergence between Antarctic species ~ 10 Ma, probably related to the cooling of deep water and vertical structuring of the water-column, as well as broadening and deepening of the continental shelf. The gene flow across the Drake Passage, as well as between South America and South Georgia, seems to have occurred from the Late Miocene to the Early Pliocene. It appears that climate warming during 7-5 Ma and the migration of the Polar Front breached biogeographic barriers and facilitated inter-species hybridization. The latest radiation coincided with glacial intensification (~ 2 Ma), which accelerated geographic fragmentation of populations, demographic changes, and genetic diversification in Antarctic species. Our results show that the evolution of Antarctic and sub-Antarctic coastal benthic foraminifera was linked to the tectonic and climatic history of the area, but their evolutionary response was not uniform and reflected species-specific ecological adaptations that influenced the dispersal patterns and biogeography of each species in different ways.


Asunto(s)
Evolución Biológica , Cambio Climático , Foraminíferos , Dinámica Poblacional , Regiones Antárticas , Teorema de Bayes , Foraminíferos/clasificación , Foraminíferos/genética , Variación Genética , Genética de Población , Océanos y Mares , Filogenia
11.
BMC Microbiol ; 21(1): 243, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488648

RESUMEN

BACKGROUND: Understanding the specificity and flexibility of the algal symbiosis-host association is fundamental for predicting how species occupy a diverse range of habitats. Here we assessed the algal symbiosis diversity of three species of larger benthic foraminifera from the genus Amphistegina and investigated the role of habitat and species identity in shaping the associated algal community. RESULTS: We used next-generation sequencing to identify the associated algal community, and DNA barcoding to identify the diatom endosymbionts associated with species of A. lobifera, A. lessonii, and A. radiata, collected from shallow habitats (< 15 m) in 16 sites, ranging from the Mediterranean Sea to French Polynesia. Next-generation sequencing results showed the consistent presence of Ochrophyta as the main algal phylum associated with all species and sites analysed. A significant proportion of phylotypes were classified as Chlorophyta and Myzozoa. We uncovered unprecedented diversity of algal phylotypes found in low abundance, especially of the class Bacillariophyta (i.e., diatoms). We found a significant influence of sites rather than host identity in shaping algal communities in all species. DNA barcoding revealed the consistent presence of phylotypes classified within the order Fragilariales as the diatoms associated with A. lobifera and A. lessonii, while A. radiata specimens host predominately diatoms of the order Triceratiales. CONCLUSIONS: We show that local habitat is the main factor influencing the overall composition of the algal symbiont community. However, host identity and the phylogenetic relationship among hosts is relevant in shaping the specific endosymbiont diatom community, suggesting that the relationship between diatom endosymbiont and hosts plays a crucial role in the evolutionary history of the genus Amphistegina. The capacity of Amphistegina species to associate with a diverse array of diatoms, and possibly other algal groups, likely underpins the ecological success of these crucial calcifying organisms across their extensive geographic range.


Asunto(s)
Ecosistema , Foraminíferos/genética , Variación Genética , Simbiosis , Arrecifes de Coral , Código de Barras del ADN Taxonómico , Diatomeas/genética , Foraminíferos/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Océanos y Mares , Filogenia
12.
Sci Data ; 8(1): 160, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183675

RESUMEN

Planktonic foraminifera are a major constituent of ocean floor sediments, and thus have one of the most complete fossil records of any organism. Expeditions to sample these sediments have produced large amounts of spatiotemporal occurrence records throughout the Cenozoic, but no single source exists to house these data. We have therefore created a comprehensive dataset that integrates numerous sources for spatiotemporal records of planktonic foraminifera. This new dataset, Triton, contains >500,000 records and is four times larger than the previous largest database, Neptune. To ensure comparability among data sources, we have cleaned all records using a unified set of taxonomic concepts and have converted age data to the GTS 2020 timescale. Where ages were not absolute (e.g. based on biostratigraphic or magnetostratigraphic zones), we have used generalised additive models to produce continuous estimates. This dataset is an excellent resource for macroecological and macroevolutionary studies, particularly for investigating how species responded to past climatic changes.


Asunto(s)
Foraminíferos/clasificación , Plancton/clasificación , Cambio Climático , Fósiles , Sedimentos Geológicos
13.
PLoS One ; 16(1): e0244616, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33395419

RESUMEN

Foraminifera are a group of mostly marine protists with high taxonomic diversity. Species identification is often complex, as both morphological and molecular approaches can be challenging due to a lack of unique characters and reference sequences. An integrative approach combining state of the art morphological and molecular tools is therefore promising. In this study, we analysed large benthic Foraminifera of the genus Amphisorus from Western Australia and Indonesia. Based on previous findings on high morphological variability observed in the Soritidae and the discontinuous distribution of Amphisorus along the coast of western Australia, we expected to find multiple morphologically and genetically unique Amphisorus types. In order to gain detailed insights into the diversity of Amphisorus, we applied micro CT scanning and shotgun metagenomic sequencing. We identified four distinct morphotypes of Amphisorus, two each in Australia and Indonesia, and showed that each morphotype is a distinct genotype. Furthermore, metagenomics revealed the presence of three dinoflagellate symbiont clades. The most common symbiont was Fugacium Fr5, and we could show that its genotypes were mostly specific to Amphisorus morphotypes. Finally, we assembled the microbial taxa associated with the two Western Australian morphotypes, and analysed their microbial community composition. Even though each Amphisorus morphotype harboured distinct bacterial communities, sampling location had a stronger influence on bacterial community composition, and we infer that the prokaryotic community is primarily shaped by the microhabitat rather than host identity. The integrated approach combining analyses of host morphology and genetics, dinoflagellate symbionts, and associated microbes leads to the conclusion that we identified distinct, yet undescribed taxa of Amphisorus. We argue that the combination of morphological and molecular methods provides unprecedented insights into the diversity of foraminifera, which paves the way for a deeper understanding of their biodiversity, and facilitates future taxonomic and ecological work.


Asunto(s)
Foraminíferos/genética , Biodiversidad , Dinoflagelados/genética , Dinoflagelados/fisiología , Foraminíferos/clasificación , Foraminíferos/fisiología , Foraminíferos/ultraestructura , Indonesia , Metagenómica , Simbiosis , Australia Occidental
14.
Eur J Protistol ; 77: 125744, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33191053

RESUMEN

Non-marine foraminifera are among the least known groups of protists and only a handful of species have been described since the 19th century. We collected one naked and five morphologically almost identical organic-walled monothalamid species from freshwater and terrestrial environments from Germany and Austria. One of the species was identified as Lieberkuehnia wageneriClaparède and Lachmann, 1859. As its original description is ambiguous and its type specimen has been lost, a neotype is proposed. We describe four new organic-walled monothalamous foraminifera and a novel Reticulomyxa species both morphologically and genetically. Analyses of molecular data of the different isolates revealed that they are distributed across six different clades. Two new genera, Claparedellus gen. nov. and Velamentofex gen. nov., and five new monothalamous families, Lacogromiidae fam. nov., Limnogromiidae fam. nov., Lieberkuehniidae fam. nov., Edaphoallogromiidae fam. nov. and Velamentofexidae fam. nov., are established.


Asunto(s)
Biodiversidad , Foraminíferos/clasificación , Agua Dulce/parasitología , Austria , ADN Protozoario/genética , ADN Ribosómico/genética , Foraminíferos/citología , Foraminíferos/genética , Alemania , Filogenia , Suelo/parasitología , Especificidad de la Especie
15.
Sci Rep ; 10(1): 15102, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934321

RESUMEN

Deciphering the evolution of marine plankton is typically based on the study of microfossil groups. Cryptic speciation is common in these groups, and large intragenomic variations occur in ribosomal RNA genes of many morphospecies. In this study, we correlated the distribution of ribosomal amplicon sequence variants (ASVs) with paleoceanographic changes by analyzing the high-throughput sequence data assigned to Neogloboquadrina pachyderma in a 140,000-year-old sediment core from the Arctic Ocean. The sedimentary ancient DNA demonstrated the occurrence of various N. pachyderma ASVs whose occurrence and dominance varied through time. Most remarkable was the striking appearance of ASV18, which was nearly absent in older sediments but became dominant during the last glacial maximum and continues to persist today. Although the molecular ecology of planktonic foraminifera is still poorly known, the analysis of their intragenomic variations through time has the potential to provide new insight into the evolution of marine biodiversity and may lead to the development of new and important paleoceanographic proxies.


Asunto(s)
Biodiversidad , ADN Antiguo/análisis , Foraminíferos/crecimiento & desarrollo , Foraminíferos/genética , Variación Genética , Genómica/métodos , Sedimentos Geológicos/análisis , Regiones Árticas , Evolución Molecular , Foraminíferos/clasificación , Fósiles , Paleografía , Filogenia
16.
PLoS One ; 15(7): e0234351, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32667918

RESUMEN

Planktic foraminiferal biostratigraphic zonation schemes are critical for providing first-order relative age control in deep-sea sediments and provide the basis on which to interpret evolutionary dynamics through time. Over the previous decades, the majority of published biostratigraphic zonation schemes focused on the tropical regions of the world. The mid-latitude or temperate regions, especially of the northwest Pacific, have been understudied in terms of recording plankton occurrences. Lack of detailed biostratigraphic studies have largely left out this region from plankton evolutionary analyses, thus how this part of the world ocean, which is characterized by the Kuroshio Current Extension (KCE), may contribute to global plankton biodiversity is unknown. In this study, we present the first magnetostratigraphically-calibrated late Neogene to Quaternary (15.12-0 Ma) planktic foraminiferal zonation schemes from the northwest Pacific for three Ocean Drilling Program Leg 198 holes (1207A, 1208A, and 1209A) that span the KCE. We utilize previously published warm subtropical, cool subtropical, and temperate zonation schemes from the southwest Pacific, with modifications. We find examples of significant diachroneity among primary marker taxa used to construct biozones at the three northwest Pacific sites, which ranges from 0.075 to 2.29 million years. Comparison of our primary datum markers with those of the tropical planktic foraminiferal zonation scheme also reveal diachroneity on the scale of 0.022 to 4.8 million years. We have identified times of intense dissolution in the northwest Pacific, namely in the middle to late Miocene that likely contribute to the observed diachroneity of datums. This study highlights the need for regionally specific mid-latitude biostratigraphic zonation schemes, as diachronous datums and differing assemblages may be hallmarks of oceanic ecotones created by major boundary current systems. These data also provide a framework to characterize local plankton evolutionary dynamics and paleobiogeographic patterns in future studies.


Asunto(s)
Sedimentos Geológicos/análisis , Sedimentos Geológicos/clasificación , Plancton/clasificación , Biodiversidad , Evolución Biológica , Foraminíferos/clasificación , Noroeste de Estados Unidos , Océanos y Mares , Océano Pacífico , Temperatura
17.
Sci Rep ; 10(1): 10257, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581270

RESUMEN

Marine blue holes are precious geological heritages with high scientific research values. Their physical and chemical characteristics are unique because of the steep-walled structure and isolated water column which create isolated ecosystems in geographically restricted areas. The Sansha Yongle Blue Hole (SYBH) is the world's deepest marine blue hole. Here, we generated the first DNA metabarcoding dataset from SYBH sediment focusing on foraminifera, a group of protists that have colonized various marine environments. We collected sediment samples from SYBH along a depth gradient to characterize the foraminiferal diversity and compared them with the foraminiferal diversity of the costal Jiaozhou Bay (JZB) and the abyssal Northwest Pacific Ocean (NWP). We amplified the SSU rDNA of foraminifera and sequenced them with high-throughput sequencing. The results showed that the foraminiferal assemblages in SYBH were vertically structured in response to the abiotic gradients and diversity was higher than in JZB and NWP. This study illustrates the capacity of foraminifera to colonize hostile environments and shows that blue holes are natural laboratories to explore physiological innovation associated with anoxia.


Asunto(s)
ADN Ribosómico/genética , Foraminíferos/clasificación , Sedimentos Geológicos/análisis , Biodiversidad , China , ADN Protozoario/genética , Foraminíferos/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento , Océano Pacífico , Filogenia , Análisis de Secuencia de ADN
18.
Eur J Protistol ; 75: 125715, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32585572

RESUMEN

The Clarion-Clipperton Zone (CCZ) occupies a vast swathe of the Pacific with extensive polymetallic nodule deposits. Eastern and central parts host diverse assemblages of xenophyophores (megafaunal agglutinated foraminifera). Here we describe xenophyophores obtained using a Remotely Operated Vehicle from the western CCZ. Eleven distinct forms include two known species, Stannophyllum zonarium Haeckel, 1888 and Aschemonella monile Gooday and Holzmann in Gooday et al., 2017b. Another four are described as new species based on morphological and genetic data. In Abyssalia foliformis gen. nov., sp. nov. and Abyssalia sphaerica sp. nov. the flattened or spherical test comprises a homogeneous framework of sponge spicules. Psammina tenuis sp. nov. has a delicate, thin, plate-like test. Moanammina semicircularis gen. nov., sp. nov. has a stalked, fan-shaped test and is genetically identical to 'Galatheammina sp. 6' of Gooday and co-workers from the eastern CCZ. Sequence data revealed a spherical 'mudball', which disintegrated and cannot be formally described, to be a novel xenophyophore. Finally, four morphospecies are represented by dead tests: Psammina spp., Reticulammina sp., and an unknown genus with a unique test structure. This collection enhances our knowledge of Pacific xenophyophore diversity and provides the first genetic confirmation of wide geographic ranges for abyssal species.


Asunto(s)
Foraminíferos/clasificación , Animales , Biodiversidad , ADN Protozoario/genética , Foraminíferos/citología , Foraminíferos/genética , Océano Pacífico , Especificidad de la Especie
19.
Eur J Protistol ; 75: 125721, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32575029

RESUMEN

The dark ocean and the underlying deep seafloor together represent the largest environment on this planet, comprising about 80% of the oceanic volume and covering more than two-thirds of the Earth's surface, as well as hosting a major part of the total biosphere. Emerging evidence suggests that these vast pelagic and benthic habitats play a major role in ocean biogeochemistry and represent an "untapped reservoir" of high genetic and metabolic microbial diversity. Due to its huge volume, the water column of the dark ocean is the largest reservoir of organic carbon in the biosphere and likely plays a major role in the global carbon budget. The dark ocean and the seafloor beneath it are also home to a largely enigmatic food web comprising little-known and sometimes spectacular organisms, mainly prokaryotes and protists. This review considers the globally important role of pelagic and benthic protists across all protistan size classes in the deep-sea realm, with a focus on their taxonomy, diversity, and physiological properties, including their role in deep microbial food webs. We argue that, given the important contribution that protists must make to deep-sea biodiversity and ecosystem processes, they should not be overlooked in biological studies of the deep ocean.


Asunto(s)
Organismos Acuáticos/clasificación , Eucariontes/clasificación , Foraminíferos/clasificación , Animales , Organismos Acuáticos/fisiología , Eucariontes/fisiología , Foraminíferos/fisiología , Océanos y Mares
20.
Sci Rep ; 9(1): 18968, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31831804

RESUMEN

The unprecedented detail with which contemporary molecular phylogenetics are visualizing infraspecific relationships within living species and species complexes cannot as yet be reliably extended into deep time. Yet paleontological systematics has routinely dealt in (mainly) morphotaxa envisaged in various ways to have been components of past species lineages. Bridging these perspectives can only enrich both. We present a visualization tool that digitally depicts infraspecific diversity within species through deep time. Our integrated species-phenon tree merges ancestor-descendant trees for fossil morphotaxa (phena) into reconstructed phylogenies of lineages (species) by expanding the latter into "species boxes" and placing the phenon trees inside. A key programming strategy to overcome the lack of a simple overall parent-child hierarchy in the integrated tree has been the progressive population of a species-phenon relationship map which then provides the graphical footprint for the overarching species boxes. Our initial case has been limited to planktonic foraminfera via Aze & others' important macroevolutionary dataset. The tool could potentially be appropriated for other organisms, to detail other kinds of infraspecific granularity within lineages, or more generally to visualize two nested but loosely coupled trees.


Asunto(s)
Evolución Molecular , Foraminíferos/clasificación , Fósiles , Filogenia , Plancton/clasificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...