Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Genes (Basel) ; 12(10)2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34680894

RESUMEN

Multiple genetic variants are known to influence athletic performance. These include polymorphisms of the muscle-specific creatine kinase (CKM) gene, which have been associated with endurance and/or power phenotypes. However, independent replication is required to support those findings. The aim of the present study was to determine whether the CKM (rs8111989, c.*800A>G) polymorphism is associated with power athlete status in professional Russian and Lithuanian competitors. Genomic DNA was collected from 693 national and international standard athletes from Russia (n = 458) and Lithuania (n = 235), and 500 healthy non-athlete subjects from Russia (n = 291) and Lithuania (n = 209). Genotyping for the CKM rs8111989 (A/G) polymorphism was performed using PCR or micro-array analysis. Genotype and allele frequencies were compared between all athletes and non-athletes, and between non-athletes and athletes, segregated according to population and sporting discipline (from anaerobic-type events). No statistically significant differences in genotype or allele frequencies were observed between non-athletes and power athletes (strength-, sprint- and speed/strength-oriented) athletes. The present study reports the non-association of the CKM rs8111989 with elite status in athletes from sports in which anaerobic energy pathways determine success.


Asunto(s)
Rendimiento Atlético , Forma MM de la Creatina-Quinasa/genética , Polimorfismo de Nucleótido Simple , Deportes , Adulto , Femenino , Frecuencia de los Genes , Humanos , Masculino , Adulto Joven
2.
Mol Pharmacol ; 100(6): 588-596, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34561299

RESUMEN

Tenofovir (TFV) is a key component of human immunodeficiency virus (HIV) pre-exposure prophylaxis (PrEP). TFV is a nucleotide analog reverse-transcriptase inhibitor prodrug that requires two separate phosphorylation reactions by intracellular kinases to form the active metabolite tenofovir-diphosphate (TFV-DP). Muscle-type creatine kinase (CKM) has previously been demonstrated to be the kinase most responsible for the phosphorylation of tenofovir-monophosphate (TFV-MP) to the active metabolite in colon tissue. Because of the importance of CKM in TFV activation, genetic variation in CKM may contribute to interindividual variability in TFV-DP levels. In the present study, we report 10 naturally occurring CKM mutations that reduced TFV-MP phosphorylation in vitro: T35I, R43Q, I92M, H97Y, R130H, R132C, F169L, Y173C, W211R, V280L, and N286I. Interestingly, of these 10, only 4-R130H, R132C, W211R, and N286I-reduced both canonical CKM activities: ADP phosphorylation and ATP dephosphorylation. Although positions 130, 132, and 286 are located in the active site, the other mutations that resulted in decreased TFV-MP phosphorylation occur elsewhere in the protein structure. Four of these eight mutations-T35I, R43Q, I92M, and W211R-were found to decrease the thermal stability of the protein. Additionally, the W211R mutation was found to impact protein structure both locally and at a distance. These data suggest a substrate-specific effect such that certain mutations are tolerated for canonical activities while being deleterious toward the pharmacological activity of TFV activation, which could influence PrEP outcomes. SIGNIFICANCE STATEMENT: Muscle-type creatine kinase (CKM) is important to the activation of tenofovir, a key component of HIV prophylaxis. This study demonstrates that naturally occurring CKM mutations impact enzyme function in a substrate-dependent manner such that some mutations that do not reduce canonical activities lead to reductions in the pharmacologically relevant activity. This finding at the intersection of drug metabolism and energy metabolism is important to the perspective on pharmacology of other drugs acted on by atypical drug-metabolizing enzymes.


Asunto(s)
Forma MM de la Creatina-Quinasa/química , Mutación , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Sitios de Unión , Forma MM de la Creatina-Quinasa/genética , Forma MM de la Creatina-Quinasa/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Fosforilación , Unión Proteica , Tenofovir/química , Tenofovir/farmacología
3.
JCI Insight ; 6(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33554956

RESUMEN

A hallmark of impaired myocardial energetics in failing hearts is the downregulation of the creatine kinase (CK) system. In heart failure patients and animal models, myocardial phosphocreatine content and the flux of the CK reaction are negatively correlated with the outcome of heart failure. While decreased CK activity is highly reproducible in failing hearts, the underlying mechanisms remains elusive. Here, we report an inverse relationship between the activity and acetylation of CK muscle form (CKM) in human and mouse failing hearts. Hyperacetylation of recombinant CKM disrupted MM homodimer formation and reduced enzymatic activity, which could be reversed by sirtuin 2 treatment. Mass spectrometry analysis identified multiple lysine residues on the MM dimer interface, which were hyperacetylated in the failing hearts. Molecular modeling of CK MM homodimer suggested that hyperacetylation prevented dimer formation through interfering salt bridges within and between the 2 monomers. Deacetylation by sirtuin 2 reduced acetylation of the critical lysine residues, improved dimer formation, and restored CKM activity from failing heart tissue. These findings reveal a potentially novel mechanism in the regulation of CK activity and provide a potential target for improving high-energy phosphoryl transfer in heart failure.


Asunto(s)
Forma MM de la Creatina-Quinasa/metabolismo , Insuficiencia Cardíaca/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Forma MM de la Creatina-Quinasa/química , Forma MM de la Creatina-Quinasa/genética , Modelos Animales de Enfermedad , Metabolismo Energético , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones de la Cepa 129 , Modelos Moleculares , Miocardio/metabolismo , Conformación Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sirtuina 2/metabolismo , Sirtuina 2/farmacología
4.
Bioorg Med Chem Lett ; 30(17): 127364, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32738969

RESUMEN

Muscle-type creatine kinase (CK-MM) is the target protein of ginsenosides in skeletal muscle. 20(S)-protopanaxadiol [20(S)-PPD] is an activator of CK-MM and exerts an anti-fatigue effect. In this study, twelve dammarane-type compounds were used for structure-activity relationship analysis in terms of enzyme activity, intermolecular interaction, and molecular docking. Enzyme activity analysis showed that 20(S)-PPD, 20(R)-PPD, 20(S)-protopanaxatriol [20(S)-PPT], 25-OH-PPD, 24-COOH-PPD, panaxadiol (PD), and ginsenoside Rh2 significantly increased CK-MM activity. Panaxatriol (PT), ocotillol, ginsenoside Rg1, and ginsenoside Rd had no significant influence on CK-MM activity, while jujubogenin inhibited its activity. Biolayer Interferometry (BLI) assay produced the same results as those on enzyme activity. The interaction intensity between dammarane-type compounds and CK-MM was linearly related to the compounds' maximum increment rate of enzyme activity. Molecular docking showed the following sequence of docking scores: Rd > Rg1 > Rh2 > 24-COOH-PPD > 20(S)-PPD > 20(S)-PPT > 25-OH-PPD > 20(R)-PPD > ocotillol > PT > PD > jujubogenin. We demonstrated that 20(S)-PPD was the best activator of CK-MM among the 12 dammarane-type compounds. The cyclization of the dammarane side chain, the hydroxyl group at position C6, and the glycosylation of C3, C6, and C20 reduced the ability to activate CK-MM. These findings can help in the development of enhanced CK-MM activators through structural modification.


Asunto(s)
Productos Biológicos/química , Forma MM de la Creatina-Quinasa/metabolismo , Triterpenos/química , Sitios de Unión , Productos Biológicos/metabolismo , Forma MM de la Creatina-Quinasa/química , Forma MM de la Creatina-Quinasa/genética , Ginsenósidos/química , Ginsenósidos/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Triterpenos/metabolismo , Damaranos
5.
Pharmacol Res ; 155: 104680, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32032665

RESUMEN

Friedreich's ataxia (FA) is due to deficiency of the mitochondrial protein, frataxin, which results in multiple pathologies including a deadly, hypertrophic cardiomyopathy. Frataxin loss leads to deleterious accumulations of redox-active, mitochondrial iron, and suppressed mitochondrial bioenergetics. Hence, there is an urgent need to develop innovative pharmaceuticals. Herein, the activity of the novel compound, 6-methoxy-2-salicylaldehyde nicotinoyl hydrazone (SNH6), was assessed in vivo using the well-characterized muscle creatine kinase (MCK) conditional frataxin knockout (KO) mouse model of FA. The design of SNH6 incorporated a dual-mechanism mediating: (1) NAD+-supplementation to restore cardiac bioenergetics; and (2) iron chelation to remove toxic mitochondrial iron. In these studies, MCK wild-type (WT) and KO mice were treated for 4-weeks from the asymptomatic age of 4.5-weeks to 8.5-weeks of age, where the mouse displays an overt cardiomyopathy. SNH6-treatment significantly elevated NAD+ and markedly increased NAD+ consumption in WT and KO hearts. In SNH6-treated KO mice, nuclear Sirt1 activity was also significantly increased together with the NAD+-metabolic product, nicotinamide (NAM). Therefore, NAD+-supplementation by SNH6 aided mitochondrial function and cardiac bioenergetics. SNH6 also chelated iron in cultured cardiac cells and also removed iron-loading in vivo from the MCK KO heart. Despite its dual beneficial properties of supplementing NAD+ and chelating iron, SNH6 did not mitigate cardiomyopathy development in the MCK KO mouse. Collectively, SNH6 is an innovative therapeutic with marked pharmacological efficacy, which successfully enhanced cardiac NAD+ and nuclear Sirt1 activity and reduced cardiac iron-loading in MCK KO mice. No other pharmaceutical yet designed exhibits both these effective pharmacological properties.


Asunto(s)
Aldehídos/uso terapéutico , Cardiomiopatías/tratamiento farmacológico , Ataxia de Friedreich/tratamiento farmacológico , Hidrazonas/uso terapéutico , Quelantes del Hierro/uso terapéutico , NAD/metabolismo , Adenosina Trifosfato/metabolismo , Aldehídos/farmacología , Animales , Cardiomiopatías/metabolismo , Línea Celular , Forma MM de la Creatina-Quinasa/genética , Modelos Animales de Enfermedad , Ataxia de Friedreich/metabolismo , Hidrazonas/farmacología , Hierro/metabolismo , Quelantes del Hierro/farmacología , Proteínas de Unión a Hierro/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Ratas , Frataxina
6.
Sci Rep ; 9(1): 5429, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30931999

RESUMEN

The creatine/phosphocreatine system is the principal energy buffer in mammals, but is scarcely documented in fish. We measured the gene expression of major enzymes of this system, glycine amidinotransferase (GATM), guanidinoacetate N-methyltransferase (GAMT) and muscle-type creatine kinase (CKM) in kidney, liver, and muscle tissues of fish and mammals. CKM was expressed strongly in the muscles of all examined species. In contrast, GATM and GAMT were strongly expressed in the muscle tissue of fish, but not of mammals. This indicates that creatine synthesis and usage are spatially separated in mammals, but not in fish, which is supported by RNA-Seq data of 25 species. Differences in amino acid metabolism along with methionine adenosyltransferase gene expression in muscle from fishes but not mammals further support a central metabolic role of muscle in fish, and hence different organization of the creatine/phosphocreatine biosynthesis system in higher and lower vertebrates.


Asunto(s)
Creatina/biosíntesis , Evolución Molecular , Músculo Esquelético/metabolismo , Amidinotransferasas/genética , Animales , Forma MM de la Creatina-Quinasa/genética , Peces , Perfilación de la Expresión Génica , Músculo Esquelético/enzimología , Análisis de Secuencia de ARN
7.
Cardiovasc Res ; 115(6): 1052-1066, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30321287

RESUMEN

AIMS: Signalling via Gq-coupled receptors is of profound importance in many cardiac diseases such as hypertrophy and arrhythmia. Nevertheless, owing to their widespread expression and the inability to selectively stimulate such receptors in vivo, their relevance for cardiac function is not well understood. We here use DREADD technology to understand the role of Gq-coupled signalling in vivo in cardiac function. METHODS AND RESULTS: We generated a novel transgenic mouse line that expresses a Gq-coupled DREADD (Dq) in striated muscle under the control of the muscle creatine kinase promotor. In vivo injection of the DREADD agonist clozapine-N-oxide (CNO) resulted in a dose-dependent, rapid mortality of the animals. In vivo electrocardiogram data revealed severe cardiac arrhythmias including lack of P waves, atrioventricular block, and ventricular tachycardia. Following Dq activation, electrophysiological malfunction of the heart could be recapitulated in the isolated heart ex vivo. Individual ventricular and atrial myocytes displayed a positive inotropic response and arrhythmogenic events in the absence of altered action potentials. Ventricular tissue sections revealed a strong co-localization of Dq with the principal cardiac connexin CX43. Western blot analysis with phosphor-specific antibodies revealed strong phosphorylation of a PKC-dependent CX43 phosphorylation site following CNO application in vivo. CONCLUSION: Activation of Gq-coupled signalling has a major impact on impulse generation, impulse propagation, and coordinated impulse delivery in the heart. Thus, Gq-coupled signalling does not only modulate the myocytes' Ca2+ handling but also directly alters the heart's electrophysiological properties such as intercellular communication. This study greatly advances our understanding of the plethora of modulatory influences of Gq signalling on the heart in vivo.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/metabolismo , Señalización del Calcio , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Frecuencia Cardíaca , Miocardio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Clozapina/análogos & derivados , Clozapina/farmacología , Conexina 43/metabolismo , Forma MM de la Creatina-Quinasa/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Preparación de Corazón Aislado , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Regiones Promotoras Genéticas , Proteína Quinasa C/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética
8.
PLoS One ; 13(4): e0195764, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29641561

RESUMEN

Tenofovir (TFV), a nucleotide reverse transcriptase inhibitor, requires two phosphorylation steps to form a competitive inhibitor of HIV reverse transcriptase. Adenylate kinase 2 (AK2) has been previously demonstrated to phosphorylate tenofovir to tenofovir-monophosphate, while creatine kinase, muscle (CKM), pyruvate kinase, muscle (PKM) and pyruvate kinase, liver and red blood cell (PKLR) each have been found to phosphorylate tenofovir-monophosphate to the pharmacologically active tenofovir-diphosphate. In the present study, genomic DNA isolated from dried blood spots collected from 505 participants from Bangkok, Thailand; Cape Town, South Africa; and New York City, USA were examined for variants in AK2, CKM, PKM, and PKLR using next-generation sequencing. The bioinformatics tools SIFT and PolyPhen predicted that 19 of the 505 individuals (3.7% frequency) carried variants in at least one kinase that would result in a decrease or loss of enzymatic activity. To functionally test these predictions, AK2 and AK2 variants were expressed in and purified from E. coli, followed by investigation of their activities towards tenofovir. Interestingly, we found that purified AK2 had the ability to phosphorylate tenofovir-monophosphate to tenofovir-diphosphate in addition to phosphorylating tenofovir to tenofovir-monophosphate. Further, four of the six AK2 variants predicted to result in a loss or decrease of enzyme function exhibited a ≥30% decrease in activity towards tenofovir in our in vitro assays. Of note, an AK2 K28R variant resulted in a 72% and 81% decrease in the formation of tenofovir-monophosphate and tenofovir-diphosphate, respectively. These data suggest that there are naturally occurring genetic variants that could potentially impact TFV activation.


Asunto(s)
Adenilato Quinasa/genética , Forma MM de la Creatina-Quinasa/genética , Variación Genética , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Piruvato Quinasa/genética , Tenofovir/farmacología , Fármacos Anti-VIH/farmacología , Infecciones por VIH/epidemiología , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/enzimología , VIH-1/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Sudáfrica/epidemiología , Tailandia/epidemiología , Estados Unidos/epidemiología
9.
PLoS One ; 12(3): e0172965, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28257486

RESUMEN

PURPOSE: Exertional rhabdomyolysis can occur in individuals performing various types of exercise but it is unclear why some individuals develop this condition while others do not. Previous investigations have determined the role of several single nucleotide polymorphisms (SNPs) to explain inter-individual variability of serum creatine kinase (CK) concentrations after exertional muscle damage. However, there has been no research about the interrelationship among these SNPs. The purpose of this investigation was to analyze seven SNPs that are candidates for explaining individual variations of CK response after a marathon competition (ACE = 287bp Ins/Del, ACTN3 = p.R577X, CKMM = NcoI, IGF2 = C13790G, IL6 = 174G>C, MLCK = C37885A, TNFα = 308G>A). METHODS: Using Williams and Folland's model, we determined the total genotype score from the accumulated combination of these seven SNPs for marathoners with a low CK response (n = 36; serum CK <400 U·L-1) vs. marathoners with a high CK response (n = 31; serum CK ≥400 U·L-1). RESULTS: At the end of the race, low CK responders had lower serum CK (290±65 vs. 733±405 U·L-1; P<0.01) and myoglobin concentrations (443±328 vs. 1009±971 ng·mL-1, P<0.01) than high CK responders. Although the groups were similar in age, anthropometric characteristics, running experience and training habits, total genotype score was higher in low CK responders than in high CK responders (5.2±1.4 vs. 4.4±1.7 point, P = 0.02). CONCLUSION: Marathoners with a lower CK response after the race had a more favorable polygenic profile than runners with high serum CK concentrations. This might suggest a significant role of genetic polymorphisms in the levels of exertional muscle damage and rhabdomyolysis. Yet other SNPs, in addition to exercise training, might also play a role in the values of CK after damaging exercise.


Asunto(s)
Forma MM de la Creatina-Quinasa/genética , Esfuerzo Físico , Polimorfismo de Nucleótido Simple , Rabdomiólisis/diagnóstico , Rabdomiólisis/genética , Actinina/sangre , Actinina/genética , Adolescente , Adulto , Anciano , Forma MM de la Creatina-Quinasa/sangre , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Interleucina-6/sangre , Interleucina-6/genética , Masculino , Persona de Mediana Edad , Mioglobina/sangre , Quinasa de Cadena Ligera de Miosina/sangre , Quinasa de Cadena Ligera de Miosina/genética , Peptidil-Dipeptidasa A/sangre , Peptidil-Dipeptidasa A/genética , Pronóstico , Rabdomiólisis/sangre , Rabdomiólisis/patología , Carrera , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/genética
10.
J Biol Chem ; 291(49): 25306-25318, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27738103

RESUMEN

Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate, which are critical fuel metabolites of skeletal muscle particularly during exercise. However, the physiological relevance of LDH remains poorly understood. Here we show that Ldhb expression is induced by exercise in human muscle and negatively correlated with changes in intramuscular pH levels, a marker of lactate production, during isometric exercise. We found that the expression of Ldhb is regulated by exercise-induced peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). Ldhb gene promoter reporter studies demonstrated that PGC-1α activates Ldhb gene expression through multiple conserved estrogen-related receptor (ERR) and myocyte enhancer factor 2 (MEF2) binding sites. Transgenic mice overexpressing Ldhb in muscle (muscle creatine kinase (MCK)-Ldhb) exhibited increased exercise performance and enhanced oxygen consumption during exercise. MCK-Ldhb muscle was shown to have enhanced mitochondrial enzyme activity and increased mitochondrial gene expression, suggesting an adaptive oxidative muscle transformation. In addition, mitochondrial respiration capacity was increased and lactate production decreased in MCK-Ldhb skeletal myotubes in culture. Together, these results identified a previously unrecognized Ldhb-driven alteration in muscle mitochondrial function and suggested a mechanism for the adaptive metabolic response induced by exercise training.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , L-Lactato Deshidrogenasa/biosíntesis , Mitocondrias Musculares/enzimología , Músculo Esquelético/enzimología , Condicionamiento Físico Animal , Animales , Forma MM de la Creatina-Quinasa/genética , Forma MM de la Creatina-Quinasa/metabolismo , Humanos , Isoenzimas/biosíntesis , Isoenzimas/genética , L-Lactato Deshidrogenasa/genética , Ratones , Ratones Transgénicos , Mitocondrias Musculares/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
11.
Artículo en Chino | MEDLINE | ID: mdl-27255050

RESUMEN

OBJECTIVE: Discusses the distributive characters of the Creatine Kinase MM (CKMM) gene A/G Polymorphism in XinjiangUyghur, One hundred and fourtheen athletes and 441 general population of Uyghur were involved in the study. METHODS: Polymerase chain reaction-restriction fragment length polymorphism was used. RESULTS: (1) The CKMM gene A/G frequency in Uyghur general population was(AA, AG and GG) 0.497, 0.392 and 0.111, the result test by Hardy-Weinberg (H-W) equilibrium and x² = 2.72, P = 0.1, df = 2, indicated that the control group had representative. (2) AA, AG and GG genotype frequency of power-oriented athlete respectively was 0.442,0.302 and 0.256, frequency of GG genotype and G allele was higher than the control group, there were significant differences compared to thecontrol( P < 0.05, df = 2); (3) A/G genotype frequency of Endurance-oriented athletere spectively was 0.571, 0.400 and 0.029, there were nosignificant differences compared to the controls ( P > 0. 05, df = 2). (4) A/G genotype frequency of Uyghur soccer athletes respectively was0.472, 0.361 and 0.167, G allele was higher than the Endurance-oriented athlete and lower than the power-oriented athletes. and no significant differences compared to the controls( P > 0.05, df = 2). CONCLUSION: The results indicate that the CKMM gene GG genotype and G alleleare represented in power-oriented athletes, but don't find A/G polymorphism correlation with endurance and the football sport performance.


Asunto(s)
Rendimiento Atlético , Forma MM de la Creatina-Quinasa/genética , Resistencia Física/genética , Polimorfismo Genético , Alelos , Pueblo Asiatico/genética , Atletas , China , Frecuencia de los Genes , Genotipo , Humanos , Polimorfismo de Longitud del Fragmento de Restricción
12.
Nat Commun ; 7: 10572, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26838040

RESUMEN

Creatine kinase (CK) and lactate dehydrogenase (LDH) are widely used markers of tissue damage. To search for sequence variants influencing serum levels of CK and LDH, 28.3 million sequence variants identified through whole-genome sequencing of 2,636 Icelanders were imputed into 63,159 and 98,585 people with CK and LDH measurements, respectively. Here we describe 13 variants associating with serum CK and 16 with LDH levels, including four that associate with both. Among those, 15 are non-synonymous variants and 12 have a minor allele frequency below 5%. We report sequence variants in genes encoding the enzymes being measured (CKM and LDHA), as well as in genes linked to muscular (ANO5) and immune/inflammatory function (CD163/CD163L1, CSF1, CFH, HLA-DQB1, LILRB5, NINJ1 and STAB1). A number of the genes are linked to the mononuclear/phagocyte system and clearance of enzymes from the serum. This highlights the variety in the sources of normal diversity in serum levels of enzymes.


Asunto(s)
Forma MM de la Creatina-Quinasa/genética , Creatina Quinasa/sangre , L-Lactato Deshidrogenasa/sangre , Anoctaminas , Antígenos CD/genética , Antígenos de Diferenciación Mielomonocítica/genética , Biomarcadores/sangre , Moléculas de Adhesión Celular Neuronal/genética , Canales de Cloruro/genética , Factor H de Complemento/genética , Femenino , Frecuencia de los Genes , Variación Genética , Cadenas beta de HLA-DQ/genética , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Islandia , Isoenzimas/genética , L-Lactato Deshidrogenasa/genética , Lactato Deshidrogenasa 5 , Factor Estimulante de Colonias de Macrófagos/genética , Masculino , Glicoproteínas de Membrana , Factores de Crecimiento Nervioso/genética , Polimorfismo de Nucleótido Simple , Receptores de Superficie Celular/genética , Receptores Inmunológicos/genética , Receptores Mensajeros de Linfocitos/genética , Receptores Depuradores , Análisis de Regresión
13.
Sci Rep ; 6: 21191, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26879258

RESUMEN

Creatine kinase (CK) helps maintain homeostasis of intracellular ATP level by catalyzing the reversible phosphotransfer between ATP and phosphocreatine. In humans, there are two cytosolic CK isoforms, the muscle-type (M) and the brain-type (B), which frequently function as homodimers (hMMCK and hBBCK). Interestingly, these isoenzymes exhibit significantly different thermostabilities, despite high similarity in amino acid sequences and tertiary structures. In order to investigate the mechanism of this phenomenon, in this work, we first used domain swapping and site-directed mutagenesis to search for the key residues responsible for the isoenzyme-specific thermostability. Strikingly, the difference in thermostability was found to principally arise from one single residue substitution at position 36 (Pro in hBBCK vs. Leu in hMMCK). We then engaged the molecular dynamics simulations to study the molecular mechanism. The calculations imply that the P36L substitution introduces additional local interactions around residue 36 and thus further stabilizes the dimer interface through a complex interaction network, which rationalizes the observation that hMMCK is more resistant to thermal inactivation than hBBCK. We finally confirmed this molecular explanation through thermal inactivation assays on Asp36 mutants that were proposed to devastate the local interactions and thus the dimer associations in both isoenzymes.


Asunto(s)
Sustitución de Aminoácidos , Forma BB de la Creatina-Quinasa/química , Forma BB de la Creatina-Quinasa/genética , Forma MM de la Creatina-Quinasa/química , Forma MM de la Creatina-Quinasa/genética , Estabilidad Proteica , Humanos , Isoenzimas , Modelos Moleculares , Mutación , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Temperatura
14.
Chem Biol ; 22(11): 1461-1469, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26526100

RESUMEN

Protein glutathionylation is an important post-translational modification that regulates many cellular processes, including energy metabolism, signal transduction, and protein homeostasis. Global profiling of glutathionylated proteins (denoted as glutathionylome) is crucial for understanding redox-regulated signal transduction. Here, we developed a novel method based on click reaction and proteomics to enrich and identify the glutathionylated peptides in Escherichia coli and Drosophila lysates, in which 937 and 1,930 potential glutathionylated peptides were identified, respectively. Bioinformatics analysis showed that the cysteine residue next to negatively charged amino acid residues has a higher frequency of glutathionylation. Importantly, we found that most proteins associated with metabolic pathways were glutathionylated and that the glutathionylation sites of metabolic enzymes were highly conserved among different species. Our results indicate that the glutathione analog is a useful tool to characterize protein glutathionylation, and glutathionylation of metabolic enzymes, which play important roles in regulating cellular metabolism, is conserved.


Asunto(s)
Proteínas de Drosophila/química , Drosophila/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Glutatión/análogos & derivados , Sondas Moleculares/química , Secuencia de Aminoácidos , Animales , Ciclo del Ácido Cítrico , Química Clic , Forma MM de la Creatina-Quinasa/química , Forma MM de la Creatina-Quinasa/genética , Forma MM de la Creatina-Quinasa/metabolismo , Cisteína/química , Cisteína/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Escherichia coli/metabolismo , Glutatión/síntesis química , Humanos , Malato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/metabolismo , Datos de Secuencia Molecular , Péptidos/análisis , Péptidos/química , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
J Biosci ; 40(3): 497-512, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26333396

RESUMEN

Cyclin D3 is important for muscle development and regeneration, and is involved in post-mitotic arrest of muscle cells. Cyclin D3 also has cell-cycle-independent functions such as regulation of specific genes in other tissues. Ectopic expression of cyclin D3 in myoblasts, where it is normally undetectable, promotes muscle gene expression and faster differentiation kinetics upon serum depletion. In the present study, we investigated the mechanistic role of cyclin D3 in muscle gene regulation. We initially showed by mutational analysis that a stable and functional cyclin D3 was required for promoting muscle differentiation. Using chromatin immunoprecipitation assays, we demonstrated that expression of cyclin D3 in undifferentiated myoblasts altered histone epigenetic marks at promoters of muscle-specific genes like MyoD, Pax7, myogenin and muscle creatine kinase but not non-muscle genes. Cyclin D3 expression also reduced the mRNA levels of certain epigenetic modifier genes. Our data suggest that epigenetic modulation of muscle-specific genes in cyclin-D3-expressing myoblasts may be responsible for faster differentiation kinetics upon serum depletion. Our results have implications for a regulatory role for cyclin D3 in muscle-specific gene activation.


Asunto(s)
Forma MM de la Creatina-Quinasa/genética , Ciclina D3/genética , Células Musculares/metabolismo , Proteína MioD/genética , Miogenina/genética , Factor de Transcripción PAX7/genética , Regiones Promotoras Genéticas/genética , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Ciclina D3/metabolismo , Regulación de la Expresión Génica/genética , Ratones , Células Musculares/citología , ARN Mensajero/genética , Regeneración/genética
16.
Mil Med ; 180(9): 1001-5, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26327553

RESUMEN

OBJECTIVE: Muscle-specific creatine kinase is thought to play an integral role in maintaining energy homeostasis by providing a supply of creatine phosphate. The genetic variant, rs8111989, contributes to individual differences in physical performance, and thus the purpose of this study was to determine if rs8111989 variant is predictive of Physical Fitness Test (PFT) scores in male, military infantry recruits. METHODS: DNA was extracted from whole blood, and genotyping was performed in 176 Marines. Relationships between PFT measures (run, sit-ups, and pull-ups) and genotype were determined. RESULTS: Participants with 2 copies of the T allele for rs8111989 variant had higher PFT scores for run time, pull-ups, and total PFT score. Specifically, participants with 2 copies of the TT allele (variant) (n = 97) demonstrated an overall higher total PFT score as compared with those with one copy of the C allele (n = 79) (TT: 250 ± 31 vs. CC/CT: 238 ± 31; p = 0.02), run score (TT: 82 ± 10 vs. CC/CT: 78 ± 11; p = 0.04) and pull-up score (TT: 78 ± 11 vs. CC/CT: 65 ± 21; p = 0.04) or those with the CC/CT genotype. CONCLUSION: These results demonstrate an association between physical performance measures and genetic variation in the muscle-specific creatine kinase gene (rs8111989).


Asunto(s)
Forma MM de la Creatina-Quinasa/genética , Personal Militar , Aptitud Física , Adolescente , Prueba de Esfuerzo , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Estados Unidos , Adulto Joven
17.
Genetika ; 51(3): 389-92, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26027379

RESUMEN

Muscle-specific creatine kinase (CKMM) plays a vital role in the energy homeostasis of muscle cells. The A/G variation (rs8111989) located in the 3'-untranslated region of the CKM gene has been found to be the most relevant in terms of genetic testing in sport. The aim of the presented study was to test the hypothesis that the G allele might represent a genetic element that contributes to the improvement of endurance performance in Polish and Russian rowers. The distribution of the CKM genotypes was examined in a group of Polish and Russian athletes in comparison with non-athlete controls. There were no statistical differences between the rowers and the control groups across the CKM genotypes when Polish or Russian participants were analyzed. Based on the obtained results, it may be speculated that the CKM A/G polymorphism is not an important determinant of endurance performance level in Polish and Russian rowers. However, these results should be interpreted with caution as they can be limited by many factors.


Asunto(s)
Regiones no Traducidas 3' , Forma MM de la Creatina-Quinasa/genética , Resistencia Física/fisiología , Polimorfismo Genético , Adulto , Atletas , Humanos , Masculino , Polonia , Federación de Rusia
18.
Am J Physiol Cell Physiol ; 308(11): C919-31, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25810257

RESUMEN

Myoblast fusion is critical for proper muscle growth and regeneration. During myoblast fusion, the localization of some molecules is spatially restricted; however, the exact reason for such localization is unknown. Creatine kinase B (CKB), which replenishes local ATP pools, localizes near the ends of cultured primary mouse myotubes. To gain insights into the function of CKB, we performed a yeast two-hybrid screen to identify CKB-interacting proteins. We identified molecules with a broad diversity of roles, including actin polymerization, intracellular protein trafficking, and alternative splicing, as well as sarcomeric components. In-depth studies of α-skeletal actin and α-cardiac actin, two predominant muscle actin isoforms, demonstrated their biochemical interaction and partial colocalization with CKB near the ends of myotubes in vitro. In contrast to other cell types, specific knockdown of CKB did not grossly affect actin polymerization in myotubes, suggesting other muscle-specific roles for CKB. Interestingly, knockdown of CKB resulted in significantly increased myoblast fusion and myotube size in vitro, whereas knockdown of creatine kinase M had no effect on these myogenic parameters. Our results suggest that localized CKB plays a key role in myotube formation by limiting myoblast fusion during myogenesis.


Asunto(s)
Forma BB de la Creatina-Quinasa/genética , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/enzimología , Mioblastos/enzimología , Actinas/genética , Actinas/metabolismo , Empalme Alternativo , Animales , Fusión Celular , Forma BB de la Creatina-Quinasa/antagonistas & inhibidores , Forma BB de la Creatina-Quinasa/metabolismo , Forma MM de la Creatina-Quinasa/genética , Forma MM de la Creatina-Quinasa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/citología , Mioblastos/citología , Polimerizacion , Cultivo Primario de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
19.
J Clin Invest ; 125(4): 1569-78, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25774500

RESUMEN

Maintenance of skeletal muscle structure and function requires a precise stoichiometry of sarcomeric proteins for proper assembly of the contractile apparatus. Absence of components of the sarcomeric thin filaments causes nemaline myopathy, a lethal congenital muscle disorder associated with aberrant myofiber structure and contractility. Previously, we reported that deficiency of the kelch-like family member 40 (KLHL40) in mice results in nemaline myopathy and destabilization of leiomodin-3 (LMOD3). LMOD3 belongs to a family of tropomodulin-related proteins that promote actin nucleation. Here, we show that deficiency of LMOD3 in mice causes nemaline myopathy. In skeletal muscle, transcription of Lmod3 was controlled by the transcription factors SRF and MEF2. Myocardin-related transcription factors (MRTFs), which function as SRF coactivators, serve as sensors of actin polymerization and are sequestered in the cytoplasm by actin monomers. Conversely, conditions that favor actin polymerization de-repress MRTFs and activate SRF-dependent genes. We demonstrated that the actin nucleator LMOD3, together with its stabilizing partner KLHL40, enhances MRTF-SRF activity. In turn, SRF cooperated with MEF2 to sustain the expression of LMOD3 and other components of the contractile apparatus, thereby establishing a regulatory circuit to maintain skeletal muscle function. These findings provide insight into the molecular basis of the sarcomere assembly and muscle dysfunction associated with nemaline myopathy.


Asunto(s)
Factores de Transcripción MEF2/fisiología , Proteínas de Microfilamentos/deficiencia , Miopatías Nemalínicas/genética , Actinas/química , Animales , Células COS , Chlorocebus aethiops , Secuencia de Consenso , Forma MM de la Creatina-Quinasa/genética , Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/patología , Insuficiencia de Crecimiento/terapia , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Terapia Genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/fisiología , Contracción Muscular , Proteínas Musculares/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Miopatías Nemalínicas/metabolismo , Especificidad de Órganos , Polimerizacion , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/metabolismo , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Factor de Respuesta Sérica/fisiología , Transactivadores/fisiología , Transgenes
20.
Biochim Biophys Acta ; 1852(5): 732-41, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25615794

RESUMEN

HHcy has been implicated in elderly frailty, but the underlying mechanisms are poorly understood. Using C57 and CBS+/- mice and C2C12 cell line, we investigated mechanisms behind HHcy induced skeletal muscle weakness and fatigability. Possible alterations in metabolic capacity (levels of LDH, CS, MM-CK and COX-IV), in structural proteins (levels of dystrophin) and in mitochondrial function (ATP production) were examined. An exercise regimen was employed to reverse HHcy induced changes. CBS+/- mice exhibited more fatigability, and generated less contraction force. No significant changes in muscle morphology were observed. However, there is a corresponding reduction in large muscle fiber number in CBS+/- mice. Excess fatigability was not due to changes in key enzymes involved in metabolism, but was due to reduced ATP levels. A marginal reduction in dystrophin levels along with a decrease in mitochondrial transcription factor A (mtTFA) were observed. There was also an increase in the mir-31, and mir-494 quantities that were implicated in dystrophin and mtTFA regulation respectively. The molecular changes elevated during HHcy, with the exception of dystrophin levels, were reversed after exercise. In addition, the amount of NRF-1, one of the transcriptional regulators of mtTFA, was significantly decreased. Furthermore, there was enhancement in mir-494 levels and a concomitant decline in mtTFA protein quantity in homocysteine treated cells. These changes in C2C12 cells were also accompanied by an increase in DNMT3a and DNMT3b proteins and global DNA methylation levels. Together, these results suggest that HHcy plays a causal role in enhanced fatigability through mitochondrial dysfunction which involves epigenetic changes.


Asunto(s)
Epigénesis Genética , Hiperhomocisteinemia/fisiopatología , Mitocondrias/metabolismo , Debilidad Muscular/fisiopatología , Músculo Esquelético/fisiopatología , Adenosina Trifosfato/metabolismo , Animales , Western Blotting , Línea Celular , Forma MM de la Creatina-Quinasa/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/metabolismo , Femenino , Expresión Génica , Hiperhomocisteinemia/genética , Hiperhomocisteinemia/metabolismo , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Proteínas Mitocondriales/metabolismo , Contracción Muscular/genética , Contracción Muscular/fisiología , Debilidad Muscular/genética , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Factor Nuclear 1 de Respiración/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Natación , Factores de Transcripción/metabolismo , ADN Metiltransferasa 3B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...