Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000030

RESUMEN

This study aimed to investigate, for the first time, the potential role of the gigantocellular nucleus, a component of the reticular formation, in the pathogenetic mechanism of Sudden Infant Death Syndrome (SIDS), an event frequently ascribed to failure to arouse from sleep. This research was motivated by previous experimental studies demonstrating the gigantocellular nucleus involvement in regulating the sleep-wake cycle. We analyzed the brains of 48 infants who died suddenly within the first 7 months of life, including 28 SIDS cases and 20 controls. All brains underwent a thorough histological and immunohistochemical examination, focusing specifically on the gigantocellular nucleus. This examination aimed to characterize its developmental cytoarchitecture and tyrosine hydroxylase expression, with particular attention to potential associations with SIDS risk factors. In 68% of SIDS cases, but never in controls, we observed hypoplasia of the pontine portion of the gigantocellular nucleus. Alterations in the catecholaminergic system were present in 61% of SIDS cases but only in 10% of controls. A strong correlation was observed between these findings and maternal smoking in SIDS cases when compared with controls. In conclusion we believe that this study sheds new light on the pathogenetic processes underlying SIDS, particularly in cases associated with maternal smoking during pregnancy.


Asunto(s)
Muerte Súbita del Lactante , Humanos , Muerte Súbita del Lactante/patología , Muerte Súbita del Lactante/etiología , Femenino , Masculino , Lactante , Factores de Riesgo , Estudios de Casos y Controles , Recién Nacido , Embarazo , Tirosina 3-Monooxigenasa/metabolismo , Puente/patología , Puente/metabolismo , Formación Reticular/patología , Formación Reticular/metabolismo
2.
Anesthesiology ; 140(6): 1176-1191, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38381969

RESUMEN

BACKGROUND: The dorsal reticular nucleus is a pain facilitatory area involved in diffuse noxious inhibitory control (DNIC) through opioidergic mechanisms that are poorly understood. The hypothesis was that signaling of µ-opioid receptors is altered in this area with prolonged chronic inflammatory pain and that this accounts for the loss of DNICs occurring in this condition. METHODS: Monoarthritis was induced in male Wistar rats (n = 5 to 9/group) by tibiotarsal injection of complete Freund's adjuvant. The immunolabeling of µ-opioid receptors and the phosphorylated forms of µ-opioid receptors and cAMP response element binding protein was quantified. Pharmacologic manipulation of µ-opioid receptors at the dorsal reticular nucleus was assessed in DNIC using the Randall-Selitto test. RESULTS: At 42 days of monoarthritis, µ-opioid receptor labeling decreased at the dorsal reticular nucleus, while its phosphorylated form and the phosphorylated cAMP response element binding protein increased. [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin acetate (DAMGO) enhanced DNIC analgesia in normal animals (means ± SD: pre-DNIC: 126.9 ± 7.0 g; DNIC - DAMGO: 147.5 ± 8.0 g vs. DNIC + DAMGO: 198.1 ± 19.3 g; P < 0.001), whereas it produced hyperalgesia in monoarthritis (pre-DNIC: 67.8 ± 7.5 g; DNIC - DAMGO: 70.6 ± 7.7 g vs. DNIC + DAMGO: 32.2 ± 2.6 g; P < 0.001). An ultra-low dose of naloxone, which prevents the excitatory signaling of the µ-opioid receptor, restored DNIC analgesia in monoarthritis (DNIC - naloxone: 60.0 ± 6.1 g vs. DNIC + naloxone: 98.0 ± 13.5 g; P < 0.001), compared to saline (DNIC - saline: 62.5 ± 5.2 g vs. DNIC + saline: 64.2 ± 3.8 g). When injected before DAMGO, it restored DNIC analgesia and decreased the phosphorylated cAMP response element binding protein in monoarthritis. CONCLUSIONS: The dorsal reticular nucleus is likely involved in a facilitatory pathway responsible for DNIC hyperalgesia. The shift of µ-opioid receptor signaling to excitatory in this pathway likely accounts for the loss of DNIC analgesia in monoarthritis.


Asunto(s)
Artralgia , Dolor Crónico , Hiperalgesia , Receptores Opioides mu , Animales , Masculino , Ratas , Analgésicos Opioides/farmacología , Artralgia/metabolismo , Dolor Crónico/metabolismo , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Hiperalgesia/metabolismo , Ratas Wistar , Receptores Opioides mu/metabolismo , Formación Reticular/efectos de los fármacos , Formación Reticular/metabolismo
3.
Neurosci Res ; 178: 41-51, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34973291

RESUMEN

The paired-like homeobox 2b gene (Phox2b) is critical for the development of the autonomic nervous system. We have previously demonstrated the distinct characteristics of Phox2b-expressing (Phox2b+) neurons in the reticular formation dorsal to the trigeminal motor nucleus (RdV), which are likely related to jaw movement regulation. In this study, we focused on Phox2b+ neurons in the rostral parvocellular reticular formation (rPCRt), a critical region for controlling orofacial functions, using 2-11-day-old Phox2b-EYFP rats. Most Phox2b+ rPCRt neurons were glutamatergic, but not GABAergic or glycinergic. Approximately 65 % of Phox2b+ rPCRt neurons fired at a low frequency, and approximately 24 % of Phox2b+ rPCRt neurons fired spontaneously, as opposed to Phox2b+ RdV neurons. Stimulation of the RdV evoked inward postsynaptic currents in more than 50 % of Phox2b+ rPCRt neurons, while only one Phox2b+ rPCRt neuron responded to stimulation of the nucleus of the solitary tract. Five of the 10 Phox2b+ neurons sent their axons that ramified within the trigeminal motor nucleus (MoV). Of these, the axons of the two neurons terminated within both the MoV and rPCRt. Our findings suggest that Phox2b+ rPCRt neurons have distinct electrophysiological and synaptic properties that may be involved in the motor control of feeding behavior.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Neuronas , Formación Reticular , Factores de Transcripción/metabolismo , Animales , Axones/metabolismo , Fenómenos Electrofisiológicos , Neuronas/fisiología , Ratas , Formación Reticular/metabolismo , Factores de Transcripción/genética
4.
Nat Commun ; 12(1): 6307, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728601

RESUMEN

It has long been known that orofacial movements for feeding can be triggered, coordinated, and often rhythmically organized at the level of the brainstem, without input from higher centers. We uncover two nuclei that can organize the movements for ingesting fluids in mice. These neuronal groups, IRtPhox2b and Peri5Atoh1, are marked by expression of the pan-autonomic homeobox gene Phox2b and are located, respectively, in the intermediate reticular formation of the medulla and around the motor nucleus of the trigeminal nerve. They are premotor to all jaw-opening and tongue muscles. Stimulation of either, in awake animals, opens the jaw, while IRtPhox2b alone also protracts the tongue. Moreover, stationary stimulation of IRtPhox2b entrains a rhythmic alternation of tongue protraction and retraction, synchronized with jaw opening and closing, that mimics lapping. Finally, fiber photometric recordings show that IRtPhox2b is active during volitional lapping. Our study identifies one of the subcortical nuclei underpinning a stereotyped feeding behavior.


Asunto(s)
Tronco Encefálico/metabolismo , Conducta Alimentaria/fisiología , Proteínas de Homeodominio/metabolismo , Maxilares/fisiología , Bulbo Raquídeo/metabolismo , Neuronas Motoras/metabolismo , Lengua/fisiología , Factores de Transcripción/metabolismo , Potenciales de Acción , Animales , Femenino , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Noqueados , Formación Reticular/metabolismo , Factores de Transcripción/genética
5.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34445628

RESUMEN

We investigated the alterations of hippocampal and reticulo-thalamic (RT) GABAergic parvalbumin (PV) interneurons and their synaptic re-organizations underlying the prodromal local sleep disorders in the distinct rat models of Parkinson's disease (PD). We demonstrated for the first time that REM sleep is a predisposing state for the high-voltage sleep spindles (HVS) induction in all experimental models of PD, particularly during hippocampal REM sleep in the hemiparkinsonian models. There were the opposite underlying alterations of the hippocampal and RT GABAergic PV+ interneurons along with the distinct MAP2 and PSD-95 expressions. Whereas the PD cholinopathy enhanced the number of PV+ interneurons and suppressed the MAP2/PSD-95 expression, the hemiparkinsonism with PD cholinopathy reduced the number of PV+ interneurons and enhanced the MAP2/PSD-95 expression in the hippocampus. Whereas the PD cholinopathy did not alter PV+ interneurons but partially enhanced MAP2 and suppressed PSD-95 expression remotely in the RT, the hemiparkinsonism with PD cholinopathy reduced the PV+ interneurons, enhanced MAP2, and did not change PSD-95 expression remotely in the RT. Our study demonstrates for the first time an important regulatory role of the hippocampal and RT GABAergic PV+ interneurons and the synaptic protein dynamic alterations in the distinct rat models of PD neuropathology.


Asunto(s)
Modelos Animales de Enfermedad , Hipocampo/patología , Interneuronas/patología , Enfermedad de Parkinson/complicaciones , Parvalbúminas/metabolismo , Trastornos del Sueño-Vigilia/patología , Sinapsis/patología , Animales , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/metabolismo , Interneuronas/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropatología , Ratas , Ratas Wistar , Formación Reticular/metabolismo , Trastornos del Sueño-Vigilia/etiología , Trastornos del Sueño-Vigilia/metabolismo , Sinapsis/metabolismo , Tálamo/metabolismo , Ácido gamma-Aminobutírico/metabolismo
6.
J Neurosci ; 40(37): 7091-7104, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32801149

RESUMEN

Skilled forelimb movements are initiated by feedforward motor commands conveyed by supraspinal motor pathways. The accuracy of reaching and grasping relies on internal feedback pathways that update ongoing motor commands. In mice lacking the axon guidance molecule EphA4, axonal misrouting of the corticospinal tract and spinal interneurons is manifested, leading to a hopping gait in hindlimbs. Moreover, mice with a conditional forebrain deletion of EphA4, display forelimb hopping in adaptive locomotion and exploratory reaching movements. However, it remains unclear how loss of EphA4 signaling disrupts function of forelimb motor circuit and skilled reaching and grasping movements. Here we investigated how neural circuits controlling skilled reaching were affected by the loss of EphA4. Both male and female C57BL/6 wild-type, heterozygous EphA4+/-, and homozygous EphA4-/- mice were used in behavioral and in vivo electrophysiological investigations. We found that EphA4 knock-out (-/-) mice displayed impaired goal-directed reaching movements. In vivo intracellular recordings from forelimb motor neurons demonstrated increased corticoreticulospinal excitation, decreased direct reticulospinal excitation, and reduced direct propriospinal excitation in EphA4 knock-out mice. Cerebellar surface recordings showed a functional perturbation of the lateral reticular nucleus-cerebellum internal feedback pathway in EphA4 knock-out mice. Together, our findings provide in vivo evidence at the circuit level that loss of EphA4 disrupts the function of both feedforward and feedback motor pathways, resulting in deficits in skilled reaching.SIGNIFICANCE STATEMENT The central advances of this study are the demonstration that null mutation in the axon guidance molecule EphA4 gene impairs the ability of mice to perform skilled reaching, and identification of how these behavioral deficits correlates with discrete neurophysiological changes in central motor pathways involved in the control of reaching. Our findings provide in vivo evidence at the circuit level that loss of EphA4 disrupts both feedforward and feedback motor pathways, resulting in deficits in skilled reaching. This analysis of motor circuit function may help to understand the pathophysiological mechanisms underlying movement disorders in humans.


Asunto(s)
Fuerza de la Mano , Destreza Motora , Tractos Piramidales/metabolismo , Receptor EphA4/metabolismo , Formación Reticular/metabolismo , Animales , Cerebelo/metabolismo , Cerebelo/fisiología , Retroalimentación Fisiológica , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Tractos Piramidales/fisiología , Receptor EphA4/genética , Formación Reticular/fisiología
7.
Brain Res Bull ; 162: 94-106, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32562720

RESUMEN

Vesicular glutamate transporter (VGLUT) 1 and VGLUT2 have been reported to distribute complementally in most brain regions and have been assumed to define distinct functional elements. Previous studies have shown the expression of VGLUT1 mRNA and VGLUT2 mRNA in the lateral reticular nucleus (LRN), a key precerebellar nucleus sending mossy fibers to the cerebellum. In the present study, we firstly examined the coexpression of VGLUT1 and VGLUT2 mRNA in the LRN of the rat by dual-fluorescence in situ hybridization. About 81.89 % of glutamatergic LRN neurons coexpressed VGLUT1 and VGLUT2 mRNA, and the others expressed either VGLUT1 or VGLUT2 mRNA. We then injected the retrograde tracer Fluogold (FG) into the vermal cortex of cerebellum, and observed that 95.01 % and 86.80 % of FG-labeled LRN neurons expressed VGLUT1 or VGLUT2 mRNA respectively. We further injected the anterograde tracer biotinylated dextran amine (BDA) into the LRN, and found about 82.6 % of BDA labeled axon terminals in the granular layer of cerebellar cortex showed both VGLUT1- and VGLUT2-immunoreactivities. Afterwards, we observed under electron microscopy that anterogradely labeled axon terminals showing immunoreactivity for VGLUT1 or VGLUT2 made asymmetric synapses with dendritic profiles of cerebellar neurons. Finally, we selectively down-regulated the expression of VGLUT1 mRNA or VGLUT2 mRNA by using viral vector mediated siRNA transfection and detected that the fine movements of the forelimb of rats were disturbed. These results indicated that LRN neurons coexpressing VGLUT1 and VGLUT2 project to the cerebellar cortex and these neurons might be critical in mediating the forelimb movements.


Asunto(s)
Cerebelo/metabolismo , Neuronas/metabolismo , Formación Reticular/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/biosíntesis , Proteína 2 de Transporte Vesicular de Glutamato/biosíntesis , Animales , Cerebelo/citología , Expresión Génica , Masculino , Ratas , Ratas Sprague-Dawley , Formación Reticular/citología , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/genética
8.
Neurosci Lett ; 733: 135088, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32464262

RESUMEN

Orexin/hypocretin has been implicated in central motor control. The gigantocellular reticular nucleus (Gi), a key element of the brainstem motor inhibitory system, also receives orexinergic innervations. However, the modulations of orexin on the neuronal activities and the underlying cellular mechanisms in Gi neurons remain unknown. Here, through whole-cell patch-clamp recordings, we first observed that orexin increased the firing frequency in Gi neurons. Interestingly, a postsynaptic depolarization elicited by orexin was observed in the presence of tetrodotoxin, without altering the input resistance of Gi neurons at around -60 mV. Moreover, through comparing the current-frequency curves constructed by identical current injections from equal membrane potentials, we found that orexin also increased the repetitive firing ability of Gi neurons. This action appeared to be caused by the shortening of inter-spike intervals, without altering the waveform of individual action potentials. We finally revealed that activation of the non-selective cationic conductance contributed to the orexin-elicited excitation in Gi neurons. Together, these results suggest that orexin may facilitate Gi-mediated motor functions through enhancing the neuronal activities of Gi neurons.


Asunto(s)
Neuronas/metabolismo , Orexinas/metabolismo , Formación Reticular/metabolismo , Potenciales de Acción/fisiología , Animales , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
9.
Neuroimage Clin ; 23: 101875, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31174102

RESUMEN

The aim of this study was to investigate structural changes in the brain stem of adolescents with narcolepsy, a disorder characterized by excessive daytime sleepiness, fragmented night-time sleep, and cataplexy. For this purpose, we used quantitative magnetic resonance imaging to obtain R1 and R2 relaxation rates, proton density, and myelin maps in adolescents with narcolepsy (n = 14) and healthy controls (n = 14). We also acquired resting state functional magnetic resonance imaging (fMRI) for brainstem connectivity analysis. We found a significantly lower R2 in the rostral reticular formation near the superior cerebellar peduncle in narcolepsy patients, family wise error corrected p = .010. Narcolepsy patients had a mean R2 value of 1.17 s-1 whereas healthy controls had a mean R2 of 1.31 s-1, which was a large effect size with Cohen d = 4.14. We did not observe any significant differences in R1 relaxation, proton density, or myelin content. The sensitivity of R2 to metal ions in tissue and the transition metal ion chelating property of neuromelanin indicate that the R2 deviant area is one of the neuromelanin containing nuclei of the brain stem. The close proximity and its demonstrated involvement in sleep-maintenance, specifically through orexin projections from the hypothalamus regulating sleep stability, as well as the results from the connectivity analysis, suggest that the observed deviant area could be the locus coeruleus or other neuromelanin containing nuclei in the proximity of the superior cerebellar peduncle. Hypothetically, the R2 differences described in this paper could be due to lower levels of neuromelanin in this area of narcolepsy patients.


Asunto(s)
Melaninas , Narcolepsia/patología , Formación Reticular/patología , Adolescente , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Melaninas/metabolismo , Narcolepsia/metabolismo , Neuroimagen/métodos , Formación Reticular/metabolismo , Adulto Joven
10.
Neurochem Res ; 44(4): 968-977, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30758814

RESUMEN

The aim of the study was to examine the Braak's hypothesis to explain the spreading and distribution of the neuropathological changes observed in the course of Parkinson's disease among ascending neuroanatomical regions. We investigated the neurotransmitter levels (monoamines and amino acid concentration) as well as tyrosine hydroxylase (TH) and transglutaminase-2 (TG2) mRNA expression in the mouse striata (ST) after intracerebral α-synuclein (ASN) administration into gigantocellular reticular nucleus (Gi). Male C57BL/10 Tar mice were used in this study. ASN was administrated by stereotactic injection into Gi area (4 µl; 1 µg/µl) and mice were decapitated after 1, 4 or 12 weeks post injection. The neurotransmitters concentration in ST were evaluated using HPLC detection. TH and TG2 mRNA expression were examined by Real-Time PCR method. At 4 and 12 weeks after ASN administration we observed decrease of DA concentration in ST relative to control groups and we found a significantly higher concentration one of the DA metabolites-DOPAC. At these time points, we also noticed the increase in DA turnover determined as DOPAC/DA ratio. Additionally, at 4 and 12 weeks after ASN injection we noted decreasing of TH mRNA expression. Our findings corresponds with the Braak's theory about the presence of the first neuropathological changes within brainstem and then with time affecting higher neuroanatomical regions. These results obtained after administration of ASN monomers to the Gi area may be useful to explain the pathogenesis of Parkinson's disease.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Formación Reticular/efectos de los fármacos , Formación Reticular/metabolismo , Transmisión Sináptica/efectos de los fármacos , alfa-Sinucleína/administración & dosificación , Animales , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos C57BL , Transmisión Sináptica/fisiología
11.
eNeuro ; 4(6)2017.
Artículo en Inglés | MEDLINE | ID: mdl-29302615

RESUMEN

We have examined whether GABAergic neurons in the mesencephalic reticular formation (RFMes), which are believed to inhibit the neurons in the pons that generate paradoxical sleep (PS or REMS), are submitted to homeostatic regulation under conditions of sleep deprivation (SD) by enforced waking during the day in mice. Using immunofluorescence, we investigated first, by staining for c-Fos, whether GABAergic RFMes neurons are active during SD and then, by staining for receptors, whether their activity is associated with homeostatic changes in GABAA or acetylcholine muscarinic type 2 (AChM2) receptors (Rs), which evoke inhibition. We found that a significantly greater proportion of the GABAergic neurons were positively stained for c-Fos after SD (∼27%) as compared to sleep control (SC; ∼1%) and sleep recovery (SR; ∼6%), suggesting that they were more active during waking with SD and less active or inactive during sleep with SC and SR. The density of GABAARs and AChM2Rs on the plasma membrane of the GABAergic neurons was significantly increased after SD and restored to control levels after SR. We conclude that the density of these receptors is increased on RFMes GABAergic neurons during presumed enhanced activity with SD and is restored to control levels during presumed lesser or inactivity with SR. Such increases in GABAAR and AChM2R with sleep deficits would be associated with increased susceptibility of the wake-active GABAergic neurons to inhibition from GABAergic and cholinergic sleep-active neurons and to thus permitting the onset of sleep and PS with muscle atonia.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Homeostasis/fisiología , Receptores de GABA/metabolismo , Receptores Muscarínicos/metabolismo , Formación Reticular/metabolismo , Privación de Sueño/metabolismo , Animales , Neuronas GABAérgicas/patología , Masculino , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/metabolismo , Formación Reticular/patología , Privación de Sueño/patología
13.
Brain Struct Funct ; 221(1): 217-38, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25304399

RESUMEN

The recognition of head orientation in the adult involves multi-level integration of inputs within the central vestibular circuitry. How the different inputs are recruited during postnatal development remains unclear. We hypothesize that glutamatergic transmission at the vestibular nucleus contributes to developmental registration of head orientations along the vestibulo-olivary pathway. To investigate the maturation profile by which head rotational signals are registered in the brainstem, we used sinusoidal rotations on the orthogonal planes of the three pairs of semicircular canals. Fos expression was used as readout of neurons responsive to the rotational stimulus. Neurons in the vestibular nucleus and prepositus hypoglossal nucleus responded to all rotations as early as P4 and reached adult numbers by P21. In the reticular formation and inferior olive, neurons also responded to horizontal rotations as early as P4 but to vertical rotations not until P21 and P25, respectively. Neuronal subpopulations that distinguish between rotations activating the orthogonally oriented vertical canals were identifiable in the medial and spinal vestibular nuclei by P14 and in the inferior olivary subnuclei IOß and IOK by P25. Neonatal perturbation of glutamate transmission in the vestibular nucleus was sufficient to derange formation of this distribution in the inferior olive. This is the first demonstration that developmental refinement of glutamatergic synapses in the central vestibular circuitry is essential for developmental registration of head rotational signals in the brainstem.


Asunto(s)
Potenciales Postsinápticos Excitadores , Ácido Glutámico/fisiología , Neuronas/fisiología , Núcleo Olivar/fisiología , Rotación , Canales Semicirculares/fisiología , Núcleos Vestibulares/fisiología , Animales , Maleato de Dizocilpina/administración & dosificación , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Femenino , Masculino , Vías Nerviosas/fisiología , Neuronas/metabolismo , Núcleo Olivar/crecimiento & desarrollo , Núcleo Olivar/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Formación Reticular/metabolismo , Formación Reticular/fisiología , Canales Semicirculares/crecimiento & desarrollo , Núcleos Vestibulares/crecimiento & desarrollo , Núcleos Vestibulares/metabolismo , Vestíbulo del Laberinto/lesiones
15.
PLoS One ; 10(7): e0130939, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26154308

RESUMEN

Although musculoskeletal pain disorders are common clinically, the central processing of muscle pain is little understood. The present study reports on central neurons activated by injections of algesic solutions into the gastrocnemius muscle of the rat, and their subsequent localization by c-Fos immunohistochemistry in the spinal cord and brainstem. An injection (300 µl) of an algesic solution (6% hypertonic saline, pH 4.0 acetate buffer, or 0.05% capsaicin) was made into the gastrocnemius muscle and the distribution of immunolabeled neurons compared to that obtained after control injections of phosphate buffered saline [pH 7.0]. Most labeled neurons in the spinal cord were found in laminae IV-V, VI, VII and X, comparing favorably with other studies, with fewer labeled neurons in laminae I and II. This finding is consistent with the diffuse pain perception due to noxious stimuli to muscles mediated by sensory fibers to deep spinal neurons as compared to more restricted pain localization during noxious stimuli to skin mediated by sensory fibers to superficial laminae. Numerous neurons were immunolabeled in the brainstem, predominantly in the lateral reticular formation (LRF). Labeled neurons were found bilaterally in the caudalmost ventrolateral medulla, where neurons responsive to noxious stimulation of cutaneous and visceral structures lie. Immunolabeled neurons in the LRF continued rostrally and dorsally along the intermediate reticular nucleus in the medulla, including the subnucleus reticularis dorsalis caudally and the parvicellular reticular nucleus more rostrally, and through the pons medial and lateral to the motor trigeminal nucleus, including the subcoerulear network. Immunolabeled neurons, many of them catecholaminergic, were found bilaterally in the nucleus tractus solitarii, the gracile nucleus, the A1 area, the CVLM and RVLM, the superior salivatory nucleus, the nucleus locus coeruleus, the A5 area, and the nucleus raphe magnus in the pons. The external lateral and superior lateral subnuclei of the parabrachial nuclear complex were consistently labeled in experimental data, but they also were labeled in many control cases. The internal lateral subnucleus of the parabrachial complex was labeled moderately. Few immunolabeled neurons were found in the medial reticular formation, however, but the rostroventromedial medulla was labeled consistently. These data are discussed in terms of an interoceptive, multisynaptic spinoreticulothalamic path, with its large receptive fields and role in the motivational-affective components of pain perceptions.


Asunto(s)
Músculo Esquelético/efectos de los fármacos , Nocicepción/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Formación Reticular/metabolismo , Animales , Tronco Encefálico/metabolismo , Catecolaminas/metabolismo , Núcleo Celular/metabolismo , Concentración de Iones de Hidrógeno , Bulbo Raquídeo/metabolismo , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Dolor , Percepción del Dolor , Puente/metabolismo , Ratas , Ratas Sprague-Dawley , Médula Espinal/patología
17.
Pain ; 156(8): 1555-1565, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25932688

RESUMEN

The dorsal reticular nucleus (DRt) plays a key role in facilitation of nociceptive transmission at the spinal cord. In this study, we evaluated the mechanisms involved in GABA-mediated control of the DRt focusing on the role of local GABAB receptors. First, we used in vivo microdialysis to study the release of GABA in the DRt during the course of the formalin test. An increase of GABA levels in comparison with baseline values was detected in the second phase of the test. Because we previously showed that GABAB receptors are expressed by opioidergic DRt neurons, which respond to nociceptive stimuli and inhibit spinally projecting DRt neurons involved in descending pronociception, we then interfered with local GABAB receptors using gene transfer and pharmacological approaches. Lentiviral-mediated knockdown of GABAB1a expression decreased nociceptive responses during the second phase of the test. Local administration of the GABAB receptor antagonist CGP 35348 also decreased nociceptive responses in the second phase of the test, whereas the opposite was detected after injection of the GABAB agonist baclofen. Finally, we determined the GABAergic afferents of the DRt, namely those arising from its main brain afferents, which are located at the telencephalon and diencephalon. For that purpose, we combined retrograde tract-tracing from the DRt with immunodetection of glutamate decarboxylase, the GABA-synthesizing enzyme. The higher numbers of retrogradely labelled glutamate decarboxylase-immunoreactive neurons were located at insular, somatosensory, and motor cortices. Collectively, the results suggest that GABA acting on GABAB receptors may enhance pain facilitation from the DRt during inflammatory pain.


Asunto(s)
Bulbo Raquídeo/metabolismo , Neuronas/metabolismo , Nocicepción , Dolor/metabolismo , Receptores de GABA-B/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Baclofeno/farmacología , Modelos Animales de Enfermedad , Formaldehído/toxicidad , Agonistas de Receptores GABA-B/farmacología , Antagonistas de Receptores de GABA-B/farmacología , Masculino , Bulbo Raquídeo/citología , Neuronas/efectos de los fármacos , Nocicepción/efectos de los fármacos , Nociceptores/metabolismo , Compuestos Organofosforados/farmacología , Dolor/inducido químicamente , Dolor/fisiopatología , Dimensión del Dolor/métodos , Ratas , Ratas Wistar , Formación Reticular/citología , Formación Reticular/metabolismo
18.
Brain ; 138(Pt 6): 1642-57, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25732184

RESUMEN

Oligomeric forms of alpha-synuclein are emerging as key mediators of pathogenesis in Parkinson's disease. Our understanding of the exact contribution of alpha-synuclein oligomers to disease is limited by the lack of a technique for their specific detection. We describe a novel method, the alpha-synuclein proximity ligation assay, which specifically recognizes alpha-synuclein oligomers. In a blinded study with post-mortem brain tissue from patients with Parkinson's disease (n = 8, age range 73-92 years, four males and four females) and age- and sex-matched controls (n = 8), we show that the alpha-synuclein proximity ligation assay reveals previously unrecognized pathology in the form of extensive diffuse deposition of alpha-synuclein oligomers. These oligomers are often localized, in the absence of Lewy bodies, to neuroanatomical regions mildly affected in Parkinson's disease. Diffuse alpha-synuclein proximity ligation assay signal is significantly more abundant in patients compared to controls in regions including the cingulate cortex (1.6-fold increase) and the reticular formation of the medulla (6.5-fold increase). In addition, the alpha-synuclein proximity ligation assay labels very early perikaryal aggregates in morphologically intact neurons that may precede the development of classical Parkinson's disease lesions, such as pale bodies or Lewy bodies. Furthermore, the alpha-synuclein proximity ligation assay preferentially detects early-stage, loosely compacted lesions such as pale bodies in patient tissue, whereas Lewy bodies, considered heavily compacted late lesions are only very exceptionally stained. The alpha-synuclein proximity ligation assay preferentially labels alpha-synuclein oligomers produced in vitro compared to monomers and fibrils, while stained oligomers in human brain display a distinct intermediate proteinase K resistance, suggesting the detection of a conformer that is different from both physiological, presynaptic alpha-synuclein (proteinase K-sensitive) and highly aggregated alpha-synuclein within Lewy bodies (proteinase K-resistant). These disease-associated conformers represent previously undetected Parkinson's disease pathology uncovered by the alpha-synuclein proximity ligation assay.


Asunto(s)
Giro del Cíngulo/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Formación Reticular/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Diagnóstico Precoz , Femenino , Técnica del Anticuerpo Fluorescente , Giro del Cíngulo/patología , Células HEK293 , Humanos , Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/patología , Masculino , Neuronas/metabolismo , Enfermedad de Parkinson/diagnóstico , Polimerizacion , Formación Reticular/patología , alfa-Sinucleína/química
19.
Neurosci Lett ; 591: 197-201, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25711799

RESUMEN

It is now well established that the cerebellum receives input from nociceptors which may serve to adjust motor programmes in response to pain and injury. In this study, we investigated the possibility that spinoreticular neurons (SRT) which project to a pre-cerebellar nucleus, the lateral reticular nucleus (LRt), respond to noxious mechanical stimulation. Seven adult male rats received stereotaxic injections of the b subunit of cholera toxin in the LRt. Following a 5 day interval, animals were anesthetised with urethane and a noxious mechanical stimulus was applied to the right hind paw. Animals were fixed by perfusion 5min following application of the stimulus. Retrogradely labelled SRT neurons of the lumbar spinal cord were examined for immunoreactivity for phosphorylated ERK (pERK) and the neurokinin-1 (NK-1) receptor. Approximately 15% of SRT cells in deep laminae (IV-VII and X) expressed pERK ipsilateral to the site of the stimulus. Around 60% of SRT cells with the NK-1 receptor expressed pERK but 5% of pERK expressing cells were negatively labelled for NK-1. It is concluded that a significant proportion of SRT cells projecting to the LRt respond to noxious mechanical stimuli and that one of the functions of this pathway may be to provide the cerebellum with nociceptive information.


Asunto(s)
Neuronas/metabolismo , Dolor/metabolismo , Formación Reticular/metabolismo , Tractos Espinocerebelares/metabolismo , Animales , Toxina del Cólera/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Región Lumbosacra , Masculino , Dolor/fisiopatología , Fosforilación , Estimulación Física , Ratas Sprague-Dawley , Formación Reticular/fisiopatología , Médula Espinal/metabolismo , Tractos Espinocerebelares/fisiopatología
20.
Artículo en Ruso | MEDLINE | ID: mdl-26978046

RESUMEN

OBJECTIVE: To study the internuclear interneurons (IN) involved in the metabolism of nitric oxide, hydrogen sulfide and carbon monoxide in the caudal brainstem in healthy people and those with lifetime hypertension. MATERIAL AND METHODS: The study was performed on postmortem material of 8 healthy men and 19 men, aged 18-44 years, with lifetime arterial hypertension. Immunohistochemistry methods for nNOS, HO-2, CBS and histochemical method for NADPH-diaphorase were used to study IN groups located between the giant and small cell reticular nuclei (IN1), small cell reticular nucleus and the nucleus of the solitary tract (IN2) surrounded by the lateral reticular nucleus (IN3). RESULTS: IN differ in size, shape, length and structure of sprouts as well as the nature of relationships formed and intensity of immunohistochemical reaction. The intensity of MN response to the high blood pressure depends on the cell size: qualitative and quantitative changes among the most small MN are mild. In contrast, in many major MN, structural changes, a significant reduction in the proportion of these cells, concentration and reaction rate are noted. More significant changes in quantitative indicators are found among nNOS-positive neurons. The reduction in the quantitative indicators depends on the localization of cells. In IN1, where there are many large IN, changes are more pronounced than in IN3 and IN2, which do not contain so many such cells. CONCLUSION: Central mechanisms of hemodynamic control include, at least, two groups of interneurons: intranuclear and internuclear. However, among the latter, only large IN are responsive to increases in blood pressure that confirms their participation in the regulation of hemodynamics, Small IN maintain a relatively small organization and perform a stable, obviously, integrating function.


Asunto(s)
Tronco Encefálico/metabolismo , Hipertensión/metabolismo , Interneuronas/metabolismo , Bulbo Raquídeo/metabolismo , Adolescente , Adulto , Presión Sanguínea , Tronco Encefálico/patología , Tamaño de la Célula , Femenino , Humanos , Hipertensión/patología , Inmunohistoquímica , Interneuronas/patología , Masculino , NADPH Deshidrogenasa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Formación Reticular/metabolismo , Núcleo Solitario/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...