Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.616
Filtrar
1.
ACS Appl Bio Mater ; 7(5): 3452-3459, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38723150

RESUMEN

A two-photon nanoparticle probe was designed and developed based on the principle of intermolecular interaction of the aggregation-induced locally excited emission luminescence mechanism. The probe has the advantages of simple synthesis, convenient use, strong atomic economy, good biocompatibility, and photobleaching resistance. It can produce a specific and sensitive response to formaldehyde, help detect FA in normal cells and cancer cells, and is expected to become a specific detection probe for FA in vitro and in vivo.


Asunto(s)
Materiales Biocompatibles , Formaldehído , Ensayo de Materiales , Nanopartículas , Tamaño de la Partícula , Fotones , Formaldehído/química , Formaldehído/análisis , Humanos , Nanopartículas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Luminiscencia , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Estructura Molecular
2.
ACS Sens ; 9(5): 2520-2528, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38723023

RESUMEN

Alternative energy sources are required due to the decline in fossil fuel resources. Therefore, devices that utilize hydrovoltaic technology and light energy have drawn widespread attention because they are emission-free and solar energy is inexhaustible. However, previous investigations mainly focused on accelerating the water evaporation rate at the electrode interface. Here, a cooperative photoelectrochemical effect on a hydrovoltaic chip is achieved using NH2-MIL-125-modified TiO2 nanotube arrays (NTs). This device demonstrated significantly improved evaporation-triggered electricity generation. Under LED illumination, the open-circuit voltage (VOC) of the NH2-MIL-125/TiO2NTs active layer of the hydrovoltaic chip was enhanced by 90.3% (up to 400.2 mV). Furthermore, the prepared hydrovoltaic chip showed good high-salinity tolerance, maintaining 74.6% of its performance even in 5 M NaCl. By introducing a Schiff-based reaction between the active layer and formaldehyde, a fully integrated flexible sensor was successfully fabricated for formaldehyde monitoring, and a low limit of detection of 5.2 × 10-9 M was achieved. This novel strategy for improving the performance of hydrovoltaic devices offers a completely new general approach to construct self-powered devices for point-of-care sensing.


Asunto(s)
Técnicas Electroquímicas , Formaldehído , Titanio , Formaldehído/análisis , Formaldehído/química , Titanio/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Nanotubos/química , Salinidad , Procesos Fotoquímicos , Electrodos , Límite de Detección
3.
Sci Rep ; 14(1): 12006, 2024 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796506

RESUMEN

Formaldehyde, a known carcinogenic compound, is commonly used in various medical settings. The objective of this study was to assess the carcinogenic and non-carcinogenic risks associated with occupational exposure to formaldehyde. This study was conducted in the pathology labs of four hospitals in Tehran. Cancer and non-cancer risks were evaluated using the quantitative risk assessment method proposed by the United States environmental protection agency (USEPA), along with its provided database known as the integrated risk information system (IRIS). Respiratory symptoms were assessed using the American thoracic society (ATS) questionnaire. The results indicated that 91.23% of exposure levels in occupational groups exceed the NIOSH standard of 0.016 ppm. Regarding carcinogenic risk, 41.03% of all the studied subjects were in the definite carcinogenic risk range (LCR > 10-4), 23.08% were in the possible carcinogenic risk range (10-5 < LCR < 10-4), and 35.90% were in the negligible risk range (LCR < 10-6). The highest index of occupational carcinogenesis was observed in the group of lab technicians with a risk number of 3.7 × 10-4, followed by pathologists with a risk number of 1.7 × 10-4. Furthermore, 23.08% of the studied subjects were within the permitted health risk range (HQ < 1.0), while 76.92% were within the unhealthy risk range (HQ > 1.0). Overall, the findings revealed significantly higher carcinogenic and non-carcinogenic risks among lab technicians and pathologists. Therefore, it is imperative to implement control measures across various hospital departments to mitigate occupational formaldehyde exposure levels proactively. These findings can be valuable for policymakers in the health sector, aiding in the elimination or reduction of airborne formaldehyde exposure in work environments.


Asunto(s)
Carcinógenos , Formaldehído , Exposición Profesional , Formaldehído/efectos adversos , Formaldehído/toxicidad , Formaldehído/análisis , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Irán/epidemiología , Medición de Riesgo , Carcinógenos/toxicidad , Carcinógenos/análisis , Masculino , Femenino , Adulto , Hospitales , Persona de Mediana Edad , Encuestas y Cuestionarios , Laboratorios de Hospital
4.
Environ Sci Pollut Res Int ; 31(23): 34159-34169, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38696012

RESUMEN

To ensure the safety of food contact materials, a liquid chromatography method was established to determine the migration of formaldehyde in paper packaging with various food simulants (10%, 25%, 50%, 75%, and 95% ethanol by volume) and to investigate the migration behavior of formaldehyde after various durations and with various materials. The results showed that the method has good linearity with a correlation coefficient of R2 > 0.9990, a detection limit of 0.0011 ~ 0.0027 mg L-1, and a spiked recovery of 89.7 ~ 103.2% in the range of formaldehyde determination; the migration of formaldehyde in all six paper contact materials showed a trend of gradual increase with time until equilibrium was reached. At the same time and temperature, the migration of formaldehyde in paper packaging was the highest in low-concentration ethanol. With the same food simulants and materials, the maximum migration of formaldehyde in printed materials was greater than that in nonprinted materials; with different materials and the same food simulant, the thickness value was higher, with the use of water-based ink as a printing material, and the maximum migration value of formaldehyde by offset printing technology was low.


Asunto(s)
Etanol , Formaldehído , Papel , Formaldehído/análisis , Etanol/química , Etanol/análisis , Embalaje de Alimentos , Contaminación de Alimentos/análisis
5.
Analyst ; 149(10): 2988-2995, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38602359

RESUMEN

The use of formalin to preserve raw food items such as fish, meat, vegetables etc. is very commonly practiced in the present day. Also, formaldehyde (FA), which is the main constituent of formalin solution, is known to cause serious health issues on exposure. Considering the ill effects of formaldehyde, herein we report synthesis of highly sensitive triphenylmethane based formaldehyde (FA) sensors from a single step reaction of inexpensive reagents namely 4-hydroxy benzaldehyde and 2,6-dimethyl phenol. The synthetic method also provides highly pure product in bulk quantity. The analytical activity of the triphenylmethane sensor 1 with a limit of detection (LOD) value of 2.31 × 10-6 M for FA was significantly enhanced through induced deprotonation and thereafter a LOD value of 1.82 × 10-8 M could be achieved. To the best of our knowledge, the LOD value of the deprotonated form (sensor 2) for FA was superior to those of all the FA optical sensors reported so far. The mechanism of sensing was demonstrated by 1H-NMR titration and recording mass spectra before and after addition of FA to a solution of sensor 2. Both sensor 1 and sensor 2 exhibit quenching in emission upon addition of FA. A fluorescence study also demonstrates enhancement in analytical activity of the sensor upon induced deprotonation. Then the sensor was effectively immobilized into a hydrophilic and biocompatible starch-PVA polymer matrix which enabled detection of FA in a 100% aqueous system reversibly. Again, quick and effective sensing of FA in real food samples (stored fish) with the help of a computational application was demonstrated. The sensors have significant practical applicability as they effectively detect FA in real food samples qualitatively and quantitatively.


Asunto(s)
Peces , Formaldehído , Límite de Detección , Compuestos de Tritilo , Formaldehído/análisis , Formaldehído/química , Animales , Compuestos de Tritilo/química , Compuestos de Tritilo/análisis , Gases/química , Gases/análisis , Alimentos Marinos/análisis , Contaminación de Alimentos/análisis , Soluciones , Análisis de los Alimentos/métodos , Análisis de los Alimentos/instrumentación , Espectrometría de Fluorescencia/métodos
6.
J Hazard Mater ; 471: 134307, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678702

RESUMEN

This systematic review and meta-analysis investigated studies on formaldehyde (FA) inhalation exposure in indoor environments and related carcinogenic (CR) and non-carcinogenic (HQ) risk. Studies were obtained from Scopus, PubMed, Web of Science, Medline, and Embase databases without time limitation until November 21, 2023. Studies not meeting the criteria of Population, Exposure, Comparator, and Outcomes (PECO) were excluded. The 45 articles included belonged to the 5 types of sites: dwelling environments, educational centers, kindergartens, vehicle cabins, and other indoor environments. A meta-analysis determined the average effect size (ES) between indoor FA concentrations, CR, and HQ values in each type of indoor environment. FA concentrations ranged from 0.01 to 1620 µg/m3. The highest FA concentrations were stated in water pipe cafés and the lowest in residential environments. In more than 90% of the studies uncertain (1.00 ×10-6 1.00 ×10-4) due to FA inhalation exposure was reported and non-carcinogenic risk was stated acceptable. The meta-analysis revealed the highest CR values due to inhalation of indoor FA in high-income countries. As 90% of the time is spent indoors, it is crucial to adopt effective strategies to reduce FA concentrations, especially in kindergartens and schools, with regular monitoring of indoor air quality.


Asunto(s)
Contaminación del Aire Interior , Formaldehído , Exposición por Inhalación , Formaldehído/análisis , Formaldehído/toxicidad , Contaminación del Aire Interior/análisis , Exposición por Inhalación/análisis , Medición de Riesgo , Humanos
8.
J Agromedicine ; 29(3): 426-431, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38578000

RESUMEN

OBJECTIVES: Korea's aquaculture sector primarily cultivates aquatic life, with fish seed production as a focus. Formalin, a parasiticide, consists of 37% formaldehyde mixed with yellow No. 4 dye. Formaldehyde vaporization poses cancer risks, classified as a carcinogen. Korea regulates formaldehyde as a hazardous substance, requiring workplace environment measurements. Few aquaculture farms have conducted these checks in recent years. In this study, we investigated actual formaldehyde exposure levels among Korean aquaculture workers, highlighting a critical safety concern. METHODS: A field survey was conducted to measure formaldehyde exposure at 10 aquaculture farms in areas where Korean aquaculture is concentrated. Short-term and long-term personal samples, local samples, and direct-reading measurements were conducted. Formaldehyde exposure levels were detected in short-term personal samples from six farms and in long-term personal samples from two farms, and formaldehyde was detected in all local samples. In direct-reading measurements, a high concentration of formaldehyde was sustained for short periods. RESULTS: Long-term (8-hour) personal samples were mostly non-detectable, except for farms A and D, which had levels of 0.0009 ppm and 0.0017 ppm, respectively. Short-term (15-minute) samples were non-detectable in four farms, with an average of 0.0158 (±0.0130) ppm in the remaining six farms. Local samples from all farms had an average of 0.0384 (±0.0957) ppm of formaldehyde. For farms A and D, where long-term sampling detected formaldehyde, real-time measurements showed a sustained high concentration in farm A for about 48 minutes before decreasing. Farm D had no detectable formaldehyde throughout the monitoring period. CONCLUSION: According to the formaldehyde exposure level assessment, short term exposure to formaldehyde during and immediately after application of formalin nearly exceeded the ACGIH TLV STEL in one farm. However, concentration of long term samples appeared at 10% of ACGIH TLV TWA. Additional study is recommended to determine whether exposure to formaldehyde poses a health risk for aquaculture workers during application of formalin.


Asunto(s)
Acuicultura , Formaldehído , Exposición Profesional , Formaldehído/análisis , Formaldehído/toxicidad , Formaldehído/efectos adversos , Humanos , República de Corea , Exposición Profesional/análisis , Monitoreo del Ambiente , Agricultores/estadística & datos numéricos , Contaminantes Ocupacionales del Aire/análisis , Adulto
9.
Int J Biol Macromol ; 268(Pt 2): 131883, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677702

RESUMEN

The present study highlights the integration of lignin with graphene oxide (GO) and its reduced form (rGO) as a significant advancement within the bio-based products industry. Lignin-phenol-formaldehyde (LPF) resin is used as a carbon source in polyurethane foams, with the addition of 1 %, 2 %, and 4 % of GO and rGO to produce carbon structures thus producing carbon foams (CFs). Two conversion routes are assessed: (i) direct addition with rGO solution, and (ii) GO reduction by heat treatment. Carbon foams are characterized by thermal, structural, and morphological analysis, alongside an assessment of their electrochemical behavior. The thermal decomposition of samples with GO is like those having rGO, indicating the effective removal of oxygen groups in GO by carbonization. The addition of GO and rGO significantly improved the electrochemical properties of CF, with the GO2% sensors displaying 39 % and 62 % larger electroactive area than control and rGO2% sensors, respectively. Furthermore, there is a significant electron transfer improvement in GO sensors, demonstrating a promising potential for ammonia detection. Detailed structural and performance analysis highlights the significant enhancement in electrochemical properties, paving the way for the development of advanced sensors for gas detection, particularly ammonia, with the prospective market demands for durable, simple, cost-effective, and efficient devices.


Asunto(s)
Amoníaco , Grafito , Lignina , Grafito/química , Lignina/química , Amoníaco/análisis , Amoníaco/química , Carbono/química , Formaldehído/análisis , Formaldehído/química , Técnicas Electroquímicas/métodos , Poliuretanos/química , Gases/análisis , Gases/química , Fenoles , Polímeros
10.
Food Chem ; 450: 139315, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38615534

RESUMEN

The monitoring of formaldehyde (FA) in biosystems and real foods is critical for ensuring human health and food safety. However, the development of effective and highly selective assays for sensing FA in organisms and real food samples remains challenging. Herein, a hydrophilic group-modified the probe (Nap-FA) was reported, which utilizes the specific chemical reaction between FA and hydrazino to trigger a "turn-on" fluorescence response. The probe Nap-FA displayed superior selectivity, high sensitivity, good photostability and a low detection limit in the reaction with FA. Notably, Nap-FA has been successfully used for imaging FA in cells, zebrafish, and plant root tissues. In addition, the rationally constructed probe Nap-FA could rapidly and visually detect FA in real food samples. This work provides a prospective approach for monitoring FA in complex biological systems and food fields.


Asunto(s)
Colorantes Fluorescentes , Contaminación de Alimentos , Formaldehído , Pez Cebra , Formaldehído/química , Formaldehído/análisis , Colorantes Fluorescentes/química , Animales , Humanos , Contaminación de Alimentos/análisis , Límite de Detección , Células HeLa , Análisis de los Alimentos
11.
Food Chem ; 451: 139402, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678650

RESUMEN

A colorimetric sensing method based on a paper-based vapor-test kit was successfully developed for the selective and sensitive real-time monitoring of formalin in food samples. The device was specifically designed to efficiently extract and detect formalin simultaneously. A microcentrifuge tube was used as the sample solution container, with the inner cap serving as the reaction and detection zone. Formalin was converted into gaseous formaldehyde through controlled heating, which was then extracted and collected on a filter paper coated with Nash's reagent. The color change on paper was used for formalin quantification using a smartphone for detection and image analysis. Under optimal conditions, our method provided a linear range of 0.5-75 mg L-1 with a detection limit of 0.11 mg L-1. This method effectively determined formalin in fresh food and vegetable samples, with recoveries ranging from 92 to 111%, demonstrating comparable accuracy to the standard method for practical food quality control and safety.


Asunto(s)
Colorimetría , Contaminación de Alimentos , Formaldehído , Papel , Formaldehído/química , Formaldehído/análisis , Contaminación de Alimentos/análisis , Colorimetría/instrumentación , Colorimetría/métodos , Verduras/química , Límite de Detección , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/métodos
12.
Environ Sci Technol ; 58(18): 7916-7923, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683040

RESUMEN

In response to the COVID-19 pandemic, air cleaning technologies were promoted as useful tools for disinfecting public spaces and combating airborne pathogen transmission. However, no standard method exists to assess the potentially harmful byproduct formation from air cleaners. Through a consensus standard development process, a draft standard test method to assess portable air cleaner performance was developed, and a suite of air cleaners employing seven different technologies was tested. The test method quantifies not only the removal efficiency of a challenge chemical suite and ultrafine particulate matter but also byproduct formation. Clean air delivery rates (CADRs) are used to quantify the chemical and particle removal efficiencies, and an emission rate framework is used to quantify the formation of formaldehyde, ozone, and other volatile organic compounds. We find that the tested photocatalytic oxidation and germicidal ultraviolet light (GUV) technologies produced the highest levels of aldehyde byproducts having emission rates of 202 and 243 µg h-1, respectively. Additionally, GUV using two different wavelengths, 222 and 254 nm, both produced ultrafine particulate matter.


Asunto(s)
COVID-19 , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Material Particulado/análisis , Ozono/análisis , Formaldehído/análisis , SARS-CoV-2 , Desinfección , Contaminantes Atmosféricos/análisis , Rayos Ultravioleta , Humanos
13.
Environ Res ; 252(Pt 3): 118959, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663669

RESUMEN

Exposure to volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene, xylene, and formaldehyde from long-distance buses has been reported to adversely affect human health. This study investigates the concentrations of these five VOCs and evaluates their health risks to drivers and passengers on board. Ten trips from Taipei to Taichung were performed during the warm and cold seasons of 2021-2022. Two locations inside the bus were established to collect air samples by a 6-liter canister for drivers and passengers. Exposure concentrations of benzene, toluene, ethylbenzene, and xylene were analyzed via gas chromatography with a flame ionization detector and the formaldehyde concentration was monitored using a formaldehyde meter. Subsequently, a Monte Carlo simulation was conducted to evaluate the carcinogenic and non-carcinogenic risks of the five VOCs. Formaldehyde emerged as the highest detected compound (9.06 ± 3.77 µg/m3), followed by toluene (median: 6.11 µg/m3; range: 3.86-14.69 µg/m3). In particular, formaldehyde was identified to have the significantly higher concentration during non-rush hours (10.67 ± 3.21 µg/m3) than that during rush hours (7.45 ± 3.41 µg/m3) and during the warm season (10.71 ± 2.97 µg/m3) compared with that during the cold season (7.41 ± 4.26 µg/m3). Regarding non-carcinogenic risks to drivers and passengers, the chronic hazard indices for these five VOCs were under 1 to indicate an acceptable risk. In terms of carcinogenic risk, the median risks of benzene and formaldehyde for drivers were 2.88 × 10-6 (95% confidence interval [CI]: 2.11 × 10-6 - 5.13 × 10-6) and 1.91 × 10-6 (95% CI: 4.54 × 10-7 - 3.44 × 10-6), respectively. In contrast, the median carcinogenic risks of benzene and formaldehyde for passengers were less than 1 × 10-6 to present an acceptable risk. This study suggests that benzene and formaldehyde may present carcinogenic risks for drivers. Moreover, the non-carcinogenic risk for drivers and passengers is deemed acceptable. We recommended that the ventilation frequency be increased to mitigate exposure to VOCs in long-distance buses.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Humanos , Medición de Riesgo , Contaminantes Atmosféricos/análisis , Vehículos a Motor , Taiwán , Exposición a Riesgos Ambientales/análisis , Formaldehído/análisis , Emisiones de Vehículos/análisis , Exposición Profesional/análisis , Monitoreo del Ambiente
14.
Bioresour Technol ; 399: 130645, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554759

RESUMEN

Hardwood kraft lignin from the pulping industry is burned or discarded. Its valorization was conducted by subjecting fractionation, amination with ethylenediamine, diethylenetriamine, and monoethanolamine, and crosslinking with formaldehyde or glyoxal to obtain bio-based wood adhesives. Acetone-soluble and insoluble hardwood kraft lignin were prepared and subjected to amination and then crosslinking. Fourier transform infrared, 13C NMR, 15N NMR, and X-ray photoelectron spectroscopy results revealed successful amination with amide, imine, and ether bonds and crosslinking of all samples. Hardwood kraft lignin aminated with diethylenetriamine/ethylenediamine and crosslinked using glyoxal exhibited excellent results in comparison with samples crosslinked using formaldehyde. Acetone-insoluble hardwood kraft lignin aminated and crosslinked using diethylenetriamine and formaldehyde, respectively, exhibited excellent adhesion strength with plywood, satisfying the requirements of the Korean standards. The amination and crosslinking of industrial waste hardwood kraft lignin constitute a beneficial valorization method.


Asunto(s)
Acetona , Aldehídos , Aminación , Madera/química , Adhesivos/análisis , Adhesivos/química , Poliaminas/análisis , Glioxal/análisis , Glioxal/química , Lignina/química , Formaldehído/análisis , Etilenodiaminas
15.
J Environ Sci (China) ; 142: 142-154, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38527880

RESUMEN

Formaldehyde (HCHO) is considered one of the most abundant gas-phase carbonyl compounds in the atmosphere, which can be directly emitted through transportation sources. Long-Path Differential Optical Absorption Spectroscopy (LP-DOAS) was used to observe HCHO in the river channel of Wusong Wharf in Shanghai, China for the whole year of 2019. Due to the impact of ship activity, the annual average HCHO level in the channel is about 2.5 times higher than that in the nearby campus environment. To explain the sources of HCHO under different meteorological conditions, the tracer-pair of CO and Ox (NO2+O3) was used on the clustered air masses. The results of the source appointment show that primary, secondary and background account for 24.14% (3.34 ± 1.19 ppbv), 44.78% (6.20 ± 2.04 ppbv) and 31.09% (4.31 ± 2.33 ppbv) of the HCHO in the channel when the air masses were from the mixed direction of the city and channel, respectively. By performing background station subtraction at times of high primary HCHO values and resolving the plume peaks, directly emitted HCHO/NO2 in the channel environment and plume were determined to be mainly distributed between 0.2 and 0.3. General cargo ships with higher sailing speeds or main engine powers tend to have higher HCHO/NO2 levels. With the knowledge of NO2 (or NOx) emission levels from ships, this study may provide data support for the establishment of HCHO emission factors.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Navíos , Dióxido de Nitrógeno/análisis , China , Monitoreo del Ambiente/métodos , Formaldehído/análisis
16.
Sci Total Environ ; 919: 170836, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38346658

RESUMEN

Same as other bay areas, the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is also suffering atmospheric composite pollution. Even a series of atmospheric environment management policies have been conducted to win the "blue sky defense battle", the atmospheric secondary pollutants (e.g., O3) originated from oxygenated volatile organic compounds (OVOCs) still threaten the air quality in GBA. However, there lacks a systematic summary on the emission, formation, pollution and environmental effects of OVOCs in this region for further air quality management. This review focused on the researches related to OVOCs in GBA, including their pollution characteristics, detection methods, source distributions, secondary formations, and impacts on the atmosphere. Pollution profile of OVOCs in GBA revealed that the concentration percentage among total VOCs from Guangzhou and Dongguan cities exceeded 50 %, while methanol, formaldehyde, acetone, and acetaldehyde were the top four highest concentrated OVOCs. The detection technique on regional atmospheric OVOCs (e.g., oxygenated organic molecules (OOMs)) underwent an evolution of off-line derivatization method, on-line spectroscopic method and on-line mass spectrometry method. The OVOCs in GBA were mainly from primary emissions (up to 80 %), including vehicle emissions and biomass combustion. The anthropogenic alkenes and aromatics in urban area, and natural isoprene in rural area also made a significant contribution to the secondary emission (e.g., photochemical formation) of OVOCs. About 20 % in average of ROx radicals was produced from photolysis of formaldehyde in comparison with O3, nitrous acid and rest OVOCs, while the reaction between OVOCs and free radical accelerated the NOx-O3 cycle, contributing to 15 %-60 % cumulative formation of O3 in GBA. Besides, the heterogeneous reactions of dicarbonyls generated 21 %-53 % of SOA. This review also provided suggestions for future research on OVOCs in terms of regional observation, analytical method and mechanistic study to support the development of a control and management strategy on OVOCs in GBA and China.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Hong Kong , Macao , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Procesos Fotoquímicos , Monitoreo del Ambiente , Contaminación del Aire/análisis , China , Formaldehído/análisis , Ozono/análisis
17.
Environ Sci Technol ; 58(10): 4680-4690, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38412365

RESUMEN

Formaldehyde (HCHO) exposures during a full year were calculated for different race/ethnicity groups living in Southeast Texas using a chemical transport model tagged to track nine emission categories. Petroleum and industrial emissions were the largest anthropogenic sources of HCHO exposure in Southeast Texas, accounting for 44% of the total HCHO population exposure. Approximately 50% of the HCHO exposures associated with petroleum and industrial sources were directly emitted (primary), while the other 50% formed in the atmosphere (secondary) from precursor emissions of reactive compounds such as ethylene and propylene. Biogenic emissions also formed secondary HCHO that accounted for 11% of the total population-weighted exposure across the study domain. Off-road equipment contributed 3.7% to total population-weighted exposure in Houston, while natural gas combustion contributed 5% in Beaumont. Mobile sources accounted for 3.7% of the total HCHO population exposure, with less than 10% secondary contribution. Exposure disparity patterns changed with the location. Hispanic and Latino residents were exposed to HCHO concentrations +1.75% above average in Houston due to petroleum and industrial sources and natural gas sources. Black and African American residents in Beaumont were exposed to HCHO concentrations +7% above average due to petroleum and industrial sources, off-road equipment, and food cooking. Asian residents in Beaumont were exposed to HCHO concentrations that were +2.5% above average due to HCHO associated with petroleum and industrial sources, off-road vehicles, and food cooking. White residents were exposed to below average HCHO concentrations in all domains because their homes were located further from primary HCHO emission sources. Given the unique features of the exposure disparities in each region, tailored solutions should be developed by local stakeholders. Potential options to consider in the development of those solutions include modifying processes to reduce emissions, installing control equipment to capture emissions, or increasing the distance between industrial sources and residential neighborhoods.


Asunto(s)
Contaminantes Atmosféricos , Formaldehído/efectos adversos , Petróleo , Hipersensibilidad Respiratoria , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Texas , Gas Natural , Monitoreo del Ambiente , Formaldehído/análisis
18.
J Natl Cancer Inst ; 116(5): 737-744, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38180898

RESUMEN

BACKGROUND: Industrial facilities are not located uniformly across communities in the United States, but how the burden of exposure to carcinogenic air emissions may vary across population characteristics is unclear. We evaluated differences in carcinogenic industrial pollution among major sociodemographic groups in the United States and Puerto Rico. METHODS: We evaluated cross-sectional associations of population characteristics including race and ethnicity, educational attainment, and poverty at the census tract level with point-source industrial emissions of 21 known human carcinogens using regulatory data from the US Environmental Protection Agency. Odds ratios and 95% confidence intervals comparing the highest emissions (tertile or quintile) to the referent group (zero emissions [ie, nonexposed]) for all sociodemographic characteristics were estimated using multinomial, population density-adjusted logistic regression models. RESULTS: In 2018, approximately 7.4 million people lived in census tracts with nearly 12 million pounds of carcinogenic air releases. The odds of tracts having the greatest burden of benzene, 1,3-butadiene, ethylene oxide, formaldehyde, trichloroethylene, and nickel emissions compared with nonexposed were 10%-20% higher for African American populations, whereas White populations were up to 18% less likely to live in tracts with the highest emissions. Among Hispanic and Latino populations, odds were 16%-21% higher for benzene, 1,3-butadiene, and ethylene oxide. Populations experiencing poverty or with less than high school education were associated with up to 51% higher burden, irrespective of race and ethnicity. CONCLUSIONS: Carcinogenic industrial emissions disproportionately impact African American and Hispanic and Latino populations and people with limited education or experiencing poverty thus representing a source of pollution that may contribute to observed cancer disparities.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Estados Unidos/epidemiología , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Estudios Transversales , Exposición a Riesgos Ambientales/efectos adversos , Carcinógenos/análisis , Butadienos/análisis , Butadienos/efectos adversos , Benceno/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Factores Socioeconómicos , Factores Sociodemográficos , Formaldehído/análisis , Formaldehído/efectos adversos , Níquel/análisis , Níquel/efectos adversos , Industrias/estadística & datos numéricos , Puerto Rico/epidemiología
19.
Environ Sci Process Impacts ; 26(2): 436-450, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38258874

RESUMEN

Cleaning products emit a range of volatile organic compounds (VOCs), including some which are hazardous or can undergo chemical transformations to generate harmful secondary pollutants. In recent years, "green" cleaners have become increasingly popular, with an implicit assumption that these are better for our health and/or the environment. However, there is no strong evidence to suggest that they are better for indoor air quality compared to regular products. In this study, the VOC composition of 10 regular and 13 green cleaners was examined by headspace analysis. Monoterpenes were the most prevalent VOCs, with average total monoterpene concentrations of 8.6 and 25.0 mg L-1 for regular and green cleaners, respectively. Speciated monoterpene emissions were applied to a detailed chemical model to investigate the indoor air chemistry following a typical cleaning event. Green cleaners generally emitted more monoterpenes than regular cleaners, resulting in larger increases in harmful secondary pollutant concentrations following use, such as formaldehyde (up to 7%) and PAN species (up to 6%). However, emissions of the most reactive monoterpenes (α-terpinene, terpinolene and α-phellandrene), were observed more frequently from regular cleaners, resulting in a disproportionately large impact on the concentrations of radical species and secondary pollutants that were formed after cleaning occurred.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Formaldehído/análisis , Compuestos Orgánicos Volátiles/análisis , Monoterpenos
20.
Food Chem ; 443: 138520, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38290296

RESUMEN

Present study reports fabrication of a low cost and eco-friendly formaldehyde nanosensor based on green magnetite nanoparticles synthesized using Mango (Mangifera indica L.) tree leaves extract. The formaldehyde is found in air, water and food. When inhaled or consumed formaldehyde has carcinogenic effects on human health. In this study the cyclic voltammetry technique was used to characterize the performance of the nanosensor. The green nanosensor fabricated in this study, to detect formaldehyde, demonstrated good sensitivity (193.4 µA mg-1 Lcm-2) in linearity range 0.03-0.5 mg/L with low threshold detection limit (0.05 mg/L). The green nanosensor also showed shelf life of four weeks without considerable change in the initial peak oxidation current. The real sample analysis was performed in various fruits and vegetables (Litchi chinensis, Syzygium cumini, Solanum lycopersicum and Cucumis sativus). The recovery rates were more than 93 % in sample extracts for formaldehyde detection. The comparison of the nanosensor for detection of formaldehyde with the colorimetric sensor revealed that the green nanosensor reproducibility (RSD = 1.8 %) is better than colorimetric sensor (RSD = 3.23 %). The results from the comparative studies of green nanosensor with colorimetric sensor established the potential of the green nanosensor as a forefront technology for futuristic smart detection of formaldehyde.


Asunto(s)
Frutas , Verduras , Humanos , Frutas/química , Reproducibilidad de los Resultados , Colorimetría/métodos , Formaldehído/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA