Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 364
Filtrar
1.
J Biosci Bioeng ; 138(2): 111-117, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824112

RESUMEN

The synthesis of carbocyclic-ddA, a potent antiviral agent against hepatitis B, relies significantly on (1R,3R)-3-hydroxycyclopentanemethanol as a key intermediate. To effectively produce this intermediate, our study employed a chemoenzymatic approach. The selection of appropriate biocatalysts was based on substrate similarity, leading us to adopt the CrS enoate reductase derived from Thermus scotoductus SA-01. Additionally, we developed an enzymatic system for NADH regeneration, utilising formate dehydrogenase from Candida boidinii. This system facilitated the efficient catalysis of (S)-4-(hydroxymethyl)cyclopent-2-enone, resulting in the formation of (3R)-3-(hydroxymethyl) cyclopentanone. Furthermore, we successfully cloned, expressed, purified, and characterized the CrS enzyme in Escherichia coli. Optimal reaction conditions were determined, revealing that the highest activity occurred at 45 °C and pH 8.0. By employing 5 mM (S)-4-(hydroxymethyl)cyclopent-2-enone, 0.05 mM FMN, 0.2 mM NADH, 10 µM CrS, 40 µM formic acid dehydrogenase, and 40 mM sodium formate, complete conversion was achieved within 45 min at 35 °C and pH 7.0. Subsequently, (1R,3R)-3-hydroxycyclopentanemethanol was obtained through a simple three-step chemical conversion process. This study not only presents an effective method for synthesizing the crucial intermediate but also highlights the importance of biocatalysts and enzymatic systems in chemoenzymatic synthesis approaches.


Asunto(s)
Ciclopentanos , Escherichia coli , Ciclopentanos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Candida/enzimología , Formiato Deshidrogenasas/metabolismo , Formiato Deshidrogenasas/genética , Antivirales/metabolismo , Antivirales/síntesis química , NAD/metabolismo , Biocatálisis , Oxidorreductasas/metabolismo , Clonación Molecular
2.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1882-1894, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38914498

RESUMEN

1,4-cyclohexanedimethylamine (1,4-BAC) is an important monomer for bio-based materials, it finds wide applications in various fields including organic synthesis, medicine, chemical industry, and materials. At present, its synthesis primarily relies on chemical method, which suffer from issues such as expensive metal catalyst, harsh reaction conditions, and safety risks. Therefore, it is necessary to explore greener alternatives for its synthesis. In this study, a two-bacterium three-enzyme cascade conversion pathway was successfully developed to convert 1,4-cyclohexanedicarboxaldehyde to 1,4-cyclohexanedimethylamine. This pathway used Escherichia coli derived aminotransferase (EcTA), Saccharomyces cerevisiae derived glutamate dehydrogenase (ScGlu-DH), and Candida boidinii derived formate dehydrogenase (CbFDH). Through structure-guided protein engineering, a beneficial mutant, EcTAF91Y, was obtained, exhibiting a 2.2-fold increase in specific activity and a 1.9-fold increase in kcat/Km compared to that of the wild type. By constructing recombinant strains and optimizing reaction conditions, it was found that under the optimal conditions, a substrate concentration of 40 g/L could produce (27.4±0.9) g/L of the product, corresponding to a molar conversion rate of 67.5%±2.1%.


Asunto(s)
Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/metabolismo , Escherichia coli/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Transaminasas/metabolismo , Transaminasas/genética , Ingeniería de Proteínas , Glutamato Deshidrogenasa/metabolismo , Glutamato Deshidrogenasa/genética , Formiato Deshidrogenasas/metabolismo , Formiato Deshidrogenasas/genética , Candida/enzimología , Candida/metabolismo , Ciclohexilaminas/metabolismo
3.
Biotechnol J ; 19(6): e2400290, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900053

RESUMEN

Synthetic biology is contributing to the advancement of the global net-negative carbon economy, with emphasis on formate as a member of the one-carbon substrate garnering substantial attention. In this study, we employed base editing tools to facilitate adaptive evolution, achieving a formate tolerance of Yarrowia lipolytica to 1 M within 2 months. This effort resulted in two mutant strains, designated as M25-70 and M25-14, both exhibiting significantly enhanced formate utilization capabilities. Transcriptomic analysis revealed the upregulation of nine endogenous genes encoding formate dehydrogenases when cultivated utilizing formate as the sole carbon source. Furthermore, we uncovered the pivotal role of the glyoxylate and threonine-based serine pathway in enhancing glycine supply to promote formate assimilation. The full potential of Y. lipolytica to tolerate and utilize formate establishing the foundation for pyruvate carboxylase-based carbon sequestration pathways. Importantly, this study highlights the existence of a natural formate metabolic pathway in Y. lipolytica.


Asunto(s)
Formiatos , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Formiatos/metabolismo , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Evolución Molecular Dirigida , Glioxilatos/metabolismo , Edición Génica
4.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 5): 98-106, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38699971

RESUMEN

Molybdenum- or tungsten-dependent formate dehydrogenases have emerged as significant catalysts for the chemical reduction of CO2 to formate, with biotechnological applications envisaged in climate-change mitigation. The role of Met405 in the active site of Desulfovibrio vulgaris formate dehydrogenase AB (DvFdhAB) has remained elusive. However, its proximity to the metal site and the conformational change that it undergoes between the resting and active forms suggests a functional role. In this work, the M405S variant was engineered, which allowed the active-site geometry in the absence of methionine Sδ interactions with the metal site to be revealed and the role of Met405 in catalysis to be probed. This variant displayed reduced activity in both formate oxidation and CO2 reduction, together with an increased sensitivity to oxygen inactivation.


Asunto(s)
Desulfovibrio vulgaris , Formiato Deshidrogenasas , Desulfovibrio vulgaris/enzimología , Desulfovibrio vulgaris/genética , Formiato Deshidrogenasas/química , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Oxidación-Reducción , Modelos Moleculares , Formiatos/metabolismo , Formiatos/química , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
5.
J Agric Food Chem ; 72(17): 9974-9983, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625685

RESUMEN

5-Methyltetrahydrofolate (5-MTHF) is the sole active form of folate functioning in the human body and is widely used as a nutraceutical. Unlike the pollution from chemical synthesis, microbial synthesis enables green production of 5-MTHF. In this study, Escherichia coli BL21 (DE3) was selected as the host. Initially, by deleting 6-phosphofructokinase 1 and overexpressing glucose-6-phosphate 1-dehydrogenase and 6-phosphogluconate dehydrogenase, the glycolysis pathway flux decreased, while the pentose phosphate pathway flux enhanced. The ratios of NADH/NAD+ and NADPH/NADP+ increased, indicating elevated NAD(P)H supply. This led to more folate being reduced and the successful accumulation of 5-MTHF to 44.57 µg/L. Subsequently, formate dehydrogenases from Candida boidinii and Candida dubliniensis were expressed, which were capable of catalyzing the reaction of sodium formate oxidation for NAD(P)H regeneration. This further increased the NAD(P)H supply, leading to a rise in 5-MTHF production to 247.36 µg/L. Moreover, to maintain the balance between NADH and NADPH, pntAB and sthA, encoding transhydrogenase, were overexpressed. Finally, by overexpressing six key enzymes in the folate to 5-MTHF pathway and employing fed-batch cultivation in a 3 L fermenter, strain Z13 attained a peak 5-MTHF titer of 3009.03 µg/L, the highest level reported in E. coli so far. This research is a significant step toward industrial-scale microbial 5-MTHF production.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , NADP , Oxidación-Reducción , Tetrahidrofolatos , Tetrahidrofolatos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , NADP/metabolismo , Candida/metabolismo , Candida/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , NAD/metabolismo , Formiato Deshidrogenasas/metabolismo , Formiato Deshidrogenasas/genética
6.
FEMS Microbiol Lett ; 3712024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38196139

RESUMEN

Reduction of CO2 to formate utilizing formate dehydrogenases (FDHs) has been attempted biologically and electrochemically. However, the conversion efficiency is very low due to the low energy potential of electron donors and/or electron competition with other electron acceptors. To overcome such a low conversion efficiency, I focused on a direct electron transfer between two unrelated redox enzymes for the efficient reduction of CO2 and utilized the quantum mechanical magnetic properties of the [Fe-S] ([iron-sulfur]) cluster to develop a novel electron path. Using this electron path, we connected non-interacting carbon monoxide dehydrogenase and FDH, constructing a synthetic carbon monoxide:formate oxidoreductase as a single functional enzyme complex in the previous study. Here, a theoretical hypothesis that can explain the direct electron transfer phenomenon based on the magnetic properties of the [Fe-S] cluster is proposed.


Asunto(s)
Dióxido de Carbono , Electrones , Dióxido de Carbono/metabolismo , Transporte de Electrón , Oxidación-Reducción , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Formiatos/metabolismo
7.
J Biol Chem ; 300(1): 105550, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072055

RESUMEN

Methanogens are essential for the complete remineralization of organic matter in anoxic environments. Most cultured methanogens are hydrogenotrophic, using H2 as an electron donor to reduce CO2 to CH4, but in the absence of H2 many can also use formate. Formate dehydrogenase (Fdh) is essential for formate oxidation, where it transfers electrons for the reduction of coenzyme F420 or to a flavin-based electron bifurcating reaction catalyzed by heterodisulfide reductase (Hdr), the terminal reaction of methanogenesis. Furthermore, methanogens that use formate encode at least two isoforms of Fdh in their genomes, but how these different isoforms participate in methanogenesis is unknown. Using Methanococcus maripaludis, we undertook a biochemical characterization of both Fdh isoforms involved in methanogenesis. Both Fdh1 and Fdh2 interacted with Hdr to catalyze the flavin-based electron bifurcating reaction, and both reduced F420 at similar rates. F420 reduction preceded flavin-based electron bifurcation activity for both enzymes. In a Δfdh1 mutant background, a suppressor mutation was required for Fdh2 activity. Genome sequencing revealed that this mutation resulted in the loss of a specific molybdopterin transferase (moeA), allowing for Fdh2-dependent growth, and the metal content of the proteins suggested that isoforms are dependent on either molybdenum or tungsten for activity. These data suggest that both isoforms of Fdh are functionally redundant, but their activities in vivo may be limited by gene regulation or metal availability under different growth conditions. Together these results expand our understanding of formate oxidation and the role of Fdh in methanogenesis.


Asunto(s)
Formiato Deshidrogenasas , Methanococcus , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Methanococcus/genética , Methanococcus/metabolismo , Flavinas/metabolismo , Formiatos/metabolismo , Isoformas de Proteínas/metabolismo
8.
Bioresour Technol ; 393: 130027, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37977496

RESUMEN

Bioconversion of CO2 to high-valuable products is a globally pursued sustainable technology for carbon neutrality. However, low CO2 activation with formate dehydrogenase (FDH) remains a major challenge for further upcycling due to the poor CO2 affinity, reduction activity and stability of currently used FDHs. Here, we present two recombined mutants, ΔFDHPa48 and ΔFDHPa4814, which exhibit high CO2 reduction activity and antioxidative activity. Compared to FDHPa, the reduction activity of ΔFDHPa48 was increased up to 743 % and the yield in the reduction of CO2 to methanol was increased by 3.16-fold. Molecular dynamics identified that increasing the width of the substrate pocket of ΔFDHPa48 could improve the enzyme reduction activity. Meanwhile, the enhanced rigidity of C-terminal residues effectively protected the active center. These results fundamentally advanced our understanding of the CO2 activation process and efficient FDH for enzymatic CO2 activation and conversion.


Asunto(s)
Dióxido de Carbono , Formiato Deshidrogenasas , Dióxido de Carbono/metabolismo , Formiato Deshidrogenasas/genética , NAD/metabolismo , NADH Deshidrogenasa , Oxidación-Reducción , Formiatos/química
9.
Biochimie ; 216: 194-204, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37925050

RESUMEN

NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) from the bacterium Staphylococcus aureus (SauFDH) plays an important role in the vital activity of this bacterium, especially in the form of biofilms. Understanding its mechanism and structure-function relationship can help to find special inhibitors of this enzyme, which can be used as medicines against staphylococci. The gene encoding SauFDH was successfully cloned and expressed in our laboratory. This enzyme has the highest kcat value among the described FDHs and also has a high temperature stability compared to other enzymes of this group. That is why it can also be considered as a promising catalyst for NAD(P)H regeneration in the processes of chiral synthesis with oxidoreductases. In this work, the principle of rational design was used to improve SauFDH catalytic efficiency. After bioinformatics analysis of the amino acid sequence in combination with visualization of the enzyme structure (PDB 6TTB), 9 probable catalytically significant positions 119, 194, 196, 217-219, 246, 303 and 323 were identified, and 16 new mutant forms of SauFDH were obtained and characterized by kinetic experiments. The introduction of the mentioned substitutions in most cases leads to a decrease in stability at high temperatures and an increase at low temperatures. Substitutions in positions 119 and 194 lead to a decreasing of KMNAD+. A consistent decrease in the Michaelis constant in the Ile-Val-Ala-Gly series at position 119 of SauFDH is shown. KMNAD+ of mutant SauFDH V119G decreased by 27 times compared to the wild-type enzyme. After substitution Phe194Val KMNAD + decreased by 3.5 times. The catalytic constant for this mutant form practically did not change. For this mutant form, an increase in catalytic efficiency was demonstrated through the use of a multicomponent buffer system.


Asunto(s)
Formiato Deshidrogenasas , NAD , NAD/metabolismo , Mutagénesis Sitio-Dirigida , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/química , Formiato Deshidrogenasas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Modelos Moleculares , Relación Estructura-Actividad , Cinética
10.
Appl Environ Microbiol ; 89(12): e0147423, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37966269

RESUMEN

IMPORTANCE: The strategy using structural homology with the help of structure prediction by AlphaFold was very successful in finding potential targets for the frhAGB-encoded hydrogenase of Thermococcus onnurineus NA1. The finding that the hydrogenase can interact with FdhB to reduce the cofactor NAD(P)+ is significant in that the enzyme can function to supply reducing equivalents, just as F420-reducing hydrogenases in methanogens use coenzyme F420 as an electron carrier. Additionally, it was identified that T. onnurineus NA1 could produce formate from H2 and CO2 by the concerted action of frhAGB-encoded hydrogenase and formate dehydrogenase Fdh3.


Asunto(s)
Hidrogenasas , Thermococcus , Thermococcus/genética , Hidrogenasas/genética , Formiato Deshidrogenasas/genética , Dióxido de Carbono , NADP
11.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003259

RESUMEN

Formate dehydrogenases catalyze the reversible oxidation of formate to carbon dioxide. These enzymes play an important role in CO2 reduction and serve as nicotinamide cofactor recycling enzymes. More recently, the CO2-reducing activity of formate dehydrogenases, especially metal-containing formate dehydrogenases, has been further explored for efficient atmospheric CO2 capture. Here, we investigate the nicotinamide binding site of formate dehydrogenase from Rhodobacter capsulatus for its specificity toward NAD+ vs. NADP+ reduction. Starting from the NAD+-specific wild-type RcFDH, key residues were exchanged to enable NADP+ binding on the basis of the NAD+-bound cryo-EM structure (PDB-ID: 6TG9). It has been observed that the lysine at position 157 (Lys157) in the ß-subunit of the enzyme is essential for the binding of NAD+. RcFDH variants that had Glu259 exchanged for either a positively charged or uncharged amino acid had additional activity with NADP+. The FdsBL279R and FdsBK276A variants also showed activity with NADP+. Kinetic parameters for all the variants were determined and tested for activity in CO2 reduction. The variants were able to reduce CO2 using NADPH as an electron donor in a coupled assay with phosphite dehydrogenase (PTDH), which regenerates NADPH. This makes the enzyme suitable for applications where it can be coupled with other enzymes that use NADPH.


Asunto(s)
NAD , Rhodobacter capsulatus , NADP/metabolismo , NAD/metabolismo , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo , Dióxido de Carbono/metabolismo , Electrones , Oxidación-Reducción , Oxidantes , Niacinamida , Cinética
12.
Acta Crystallogr D Struct Biol ; 79(Pt 11): 1010-1017, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37860962

RESUMEN

Candida boidinii NAD+-dependent formate dehydrogenase (CbFDH) has gained significant attention for its potential application in the production of biofuels and various industrial chemicals from inorganic carbon dioxide. The present study reports the atomic X-ray crystal structures of wild-type CbFDH at cryogenic and ambient temperatures, as well as that of the Val120Thr mutant at cryogenic temperature, determined at the Turkish Light Source `Turkish DeLight'. The structures reveal new hydrogen bonds between Thr120 and water molecules in the active site of the mutant CbFDH, suggesting increased stability of the active site and more efficient electron transfer during the reaction. Further experimental data is needed to test these hypotheses. Collectively, these findings provide invaluable insights into future protein-engineering efforts that could potentially enhance the efficiency and effectiveness of CbFDH.


Asunto(s)
Formiato Deshidrogenasas , Saccharomycetales , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/química , Candida/genética , Cristalografía por Rayos X
13.
World J Microbiol Biotechnol ; 39(12): 352, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37864750

RESUMEN

Formate dehydrogenase (FDH) is a D-2-hydroxy acid dehydrogenase, which can reversibly reduce CO2 to formate and thus act as non-photosynthetic CO2 reductase. In order to increase catalytic efficiency of formate dehydrogenase for CO2 reduction, two mutants V328I/F285W and V354G/F285W were obtained of which reduction activity was about two times more than the parent CbFDHM2, and the formate production from CO2 catalyzed by mutants were 2.9 and 2.7-fold higher than that of the parent CbFDHM2. The mutants had greater potential in CO2 reduction. The optimal temperature for V328I/F285W and V354G/F285W was 55 °C, and they showed increasement of relative activity under 45 °C to 55 °C compared with parent. The optimal pH for the mutants was 9.0, and they showed excellent stability in pH 4.0-11.5. The kcat/Km values of mutants were 1.75 times higher than that of the parent. Then the molecular basis for its improvement of biochemical characteristics were preliminarily elucidated by computer-aided methods. All of these results further established a solid foundation for molecular modification of formate dehydrogenase and CO2 reduction.


Asunto(s)
Dióxido de Carbono , Formiato Deshidrogenasas , Dióxido de Carbono/metabolismo , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/química , Formiato Deshidrogenasas/metabolismo , Catálisis , Formiatos/metabolismo
14.
J Genet ; 1022023.
Artículo en Inglés | MEDLINE | ID: mdl-37850386

RESUMEN

The formate dehydrogenase (FDH) is regarded as a universal stress protein involved in various plant abiotic stress responses. This study aims to ascertain GmFDH function in conferring tolerance to aluminum (Al) stress. The bioinformatics analysis demonstrates that GmFDH from Tamba black soybean (TBS) encodes FDH. Quantitative reverse transcription-PCR (qRT-PCR) showed that GmFDH expression was induced by Al stress with a concentration-time-specific pattern. Moreover, Al stress promotes formate content and activates FDH activity. Further studies revealed that GmFDH overexpression alleviated root growth of tobacco under Al stress inhibition and reduced Al and ROS accumulation in roots. In addition, transgenic tobacco had much more root citrate exudation and much higher activity of antioxidant enzymes than wild type. Moreover, under Al stress, NtMATE and NtALS3 expression showed no changes in wild type and overexpression lines, suggesting that here the known Al-resistant mechanisms are not involved. However citrate synthase activity is higher in transgenic tobaccos than that of wild type, which might be the reason for citrate secretion increase. Thus, the increased Al tolerance of GmFDH overexpression lines is likely attributable to enhanced activities of antioxidant enzymes and promoting citrate secretion. Taken together, our findings advance understanding of higher plant Al toxicity mechanisms and suggest a possible new route towards the improvement of plant growth under Al stress.


Asunto(s)
Aluminio , Nicotiana , Nicotiana/genética , Aluminio/toxicidad , Aluminio/metabolismo , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Antioxidantes , Plantas Modificadas Genéticamente , Citratos/metabolismo , Raíces de Plantas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Protein Eng Des Sel ; 362023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-37658768

RESUMEN

Oxidoreductases catalyze essential redox reactions, and many require a diffusible cofactor for electron transport, such as NAD(H). Non-canonical cofactor analogs have been explored as a means to create enzymatic reactions that operate orthogonally to existing metabolism. Here, we aimed to engineer the formate dehydrogenase from Candid boidinii (CbFDH) for activity with the non-canonical cofactor nicotinamide adenine dinucleotide 3'-phosphate (3'-NADP(H)). We used PyRosetta, the Cofactor Specificity Reversal Structural Analysis and Library Design (CSR-SALAD), and structure-guided saturation mutagenesis to identify mutations that enable CbFDH to use 3'-NADP+. Two single mutants, D195A and D195G, had the highest activities with 3'-NADP+, while the double mutant D195G/Y196S exhibited the highest cofactor selectivity reversal behavior. Steady state kinetic analyses were performed; the D195A mutant exhibited the highest KTS value with 3'-NADP+. This work compares the utility of computational approaches for cofactor specificity engineering while demonstrating the engineering of an important enzyme for novel non-canonical cofactor selectivity.


Asunto(s)
Formiato Deshidrogenasas , Oxidorreductasas , NADP/metabolismo , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , NAD/química
16.
IUCrJ ; 10(Pt 5): 544-554, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37668215

RESUMEN

Formate dehydrogenases (FDHs) catalyze the two-electron oxidation of formate to carbon dioxide. FDHs can be divided into several groups depending on their subunit composition and active-site metal ions. Metal-dependent (Mo- or W-containing) FDHs from prokaryotic organisms belong to the superfamily of molybdenum enzymes and are members of the dimethylsulfoxide reductase family. In this short review, recent progress in the structural analysis of FDHs together with their potential biotechnological applications are summarized.


Asunto(s)
Biotecnología , Formiato Deshidrogenasas , Dióxido de Carbono , Catálisis , Electrones , Formiato Deshidrogenasas/genética
17.
Chembiochem ; 24(20): e202300390, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37455264

RESUMEN

Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) constitute major hydrogen donors for oxidative/reductive bio-transformations. NAD(P)H regeneration systems coupled with formate dehydrogenases (FDHs) represent a dreamful method. However, most of the native FDHs are NAD+ -dependent and suffer from insufficient reactivity compared to other enzymatic tools, such as glucose dehydrogenase. An efficient and competitive NADP+ -utilizing FDH necessitates the availability and robustness of NADPH regeneration systems. Herein, we report the engineering of a new FDH from Candida dubliniensis (CdFDH), which showed no strict NAD+ preference by a structure-guided rational/semi-rational design. A combinatorial mutant CdFDH-M4 (D197Q/Y198R/Q199N/A372S/K371T/▵Q375/K167R/H16L/K159R) exhibited 75-fold intensification of catalytic efficiency (kcat /Km ). Moreover, CdFDH-M4 has been successfully employed in diverse asymmetric oxidative/reductive processes with cofactor total turnover numbers (TTNs) ranging from 135 to 986, making it potentially useful for NADPH-required biocatalytic transformations.


Asunto(s)
Formiato Deshidrogenasas , NAD , NADP/metabolismo , NAD/metabolismo , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Ingeniería de Proteínas/métodos , Oxidación-Reducción
18.
FEBS J ; 290(17): 4238-4255, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37213112

RESUMEN

Formate dehydrogenases (Fdhs) mediate the oxidation of formate to carbon dioxide and concomitant reduction of nicotinamide adenine dinucleotide (NAD+ ). The low cost of the substrate formate and importance of the product NADH as a cellular source of reducing power make this reaction attractive for biotechnological applications. However, the majority of Fdhs are sensitive to inactivation by thiol-modifying reagents. In this study, we report a chemically resistant Fdh (FdhSNO ) from the soil bacterium Starkeya novella strictly specific for NAD+ . We present its recombinant overproduction, purification and biochemical characterization. The mechanistic basis of chemical resistance was found to be a valine in position 255 (rather than a cysteine as in other Fdhs) preventing the inactivation by thiol-modifying compounds. To further improve the usefulness of FdhSNO as for generating reducing power, we rationally engineered the protein to reduce the coenzyme nicotinamide adenine dinucleotide phosphate (NADP+ ) with better catalytic efficiency than NAD+ . The single mutation D221Q enabled the reduction of NADP+ with a catalytic efficiency kCAT /KM of 0.4 s-1 ·mm-1 at 200 mm formate, while a quadruple mutant (A198G/D221Q/H379K/S380V) resulted in a fivefold increase in catalytic efficiency for NADP+ compared with the single mutant. We determined the cofactor-bound structure of the quadruple mutant to gain mechanistic evidence behind the improved specificity for NADP+ . Our efforts to unravel the key residues for the chemical resistance and cofactor specificity of FdhSNO may lead to wider use of this enzymatic group in a more sustainable (bio)manufacture of value-added chemicals, as for instance the biosynthesis of chiral compounds.


Asunto(s)
Formiato Deshidrogenasas , NAD , NAD/metabolismo , Formiato Deshidrogenasas/genética , NADP/metabolismo , Formiatos/metabolismo , Compuestos de Sulfhidrilo
19.
Environ Microbiol Rep ; 15(2): 129-141, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36779246

RESUMEN

Acetogens are anaerobes using Wood-Ljungdahl pathway (WLP) as the terminal electron acceptor for both assimilation and dissimilation of CO2 and widely distributed in diverse habitats. However, their habitat adaptation is often unclear. Given that bacterial genome evolution is often the result of environmental selective pressure, hereby we analysed gene copy number, phylogeny and selective pressure of genes involved in WLP within known genomes of 43 species to study the habitat adaption of gastrointestinal acetogens. The gene copy number of formate dehydrogenase (FDH) in gastrointestinal acetogens was much lower than that of non-gastrointestinal acetogens, and in five cases, no FDH genes were found in the genomes of five gastrointestinal acetogens, but that of the other WLP genes showed no difference. The evolutionary pattern of FDH genes was significantly different from that of the other enzymes. Additionally, seven positively selected sites were only identified in the fdhF genes, which means fdhF mutations favoured their adaptation. Collectively, reduction or loss of FDH genes and their evolutionary pattern as well as positive selection in gastrointestinal acetogens indicated their adaptation to formate-rich habitats, implying that FDH genes catalysing CO2 reduction to formate as the first step of methyl branch of WLP may have evolved independently.


Asunto(s)
Formiato Deshidrogenasas , Madera , Madera/metabolismo , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Dióxido de Carbono/metabolismo , Ecosistema , Formiatos/metabolismo
20.
Appl Environ Microbiol ; 88(23): e0115922, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36374033

RESUMEN

The complete remineralization of organic matter in anoxic environments relies on communities of microorganisms that ferment organic acids and alcohols to CH4. This is accomplished through syntrophic association of H2 or formate producing bacteria and methanogenic archaea, where exchange of these intermediates enables growth of both organisms. While these communities are essential to Earth's carbon cycle, our understanding of the dynamics of H2 or formate exchanged is limited. Here, we establish a model partnership between Syntrophotalea carbinolica and Methanococcus maripaludis. Through sequencing a transposon mutant library of M. maripaludis grown with ethanol oxidizing S. carbinolica, we found that genes encoding the F420-dependent formate dehydrogenase (Fdh) and F420-dependent methylene-tetrahydromethanopterin dehydrogenase (Mtd) are important for growth. Competitive growth of M. maripaludis mutants defective in either H2 or formate metabolism verified that, across multiple substrates, interspecies formate exchange was dominant in these communities. Agitation of these cultures to facilitate diffusive loss of H2 to the culture headspace resulted in an even greater competitive advantage for M. maripaludis strains capable of oxidizing formate. Finally, we verified that an M. maripaludis Δmtd mutant had a defect during syntrophic growth. Together, these results highlight the importance of formate exchange for the growth of methanogens under syntrophic conditions. IMPORTANCE In the environment, methane is typically generated by fermentative bacteria and methanogenic archaea working together in a process called syntrophy. Efficient exchange of small molecules like H2 or formate is essential for growth of both organisms. However, difficulties in determining the relative contribution of these intermediates to methanogenesis often hamper efforts to understand syntrophic interactions. Here, we establish a model syntrophic coculture composed of S. carbinolica and the genetically tractable methanogen M. maripaludis. Using mutant strains of M. maripaludis that are defective for either H2 or formate metabolism, we determined that interspecies formate exchange drives syntrophic growth of these organisms. Together, these results advance our understanding of the degradation of organic matter in anoxic environments.


Asunto(s)
Formiatos , Methanococcus , Formiatos/metabolismo , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Metano/metabolismo , Hidrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...