Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 740
Filtrar
1.
J Transl Med ; 22(1): 664, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014470

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is a progressive and devastating muscle disease, resulting from the absence of dystrophin. This leads to cell membrane instability, susceptibility to contraction-induced muscle damage, subsequent muscle degeneration, and eventually disability and early death of patients. Currently, there is no cure for DMD. Our recent studies identified that lipin1 plays a critical role in maintaining myofiber stability and integrity. However, lipin1 gene expression levels are dramatically reduced in the skeletal muscles of DMD patients and mdx mice. METHODS: To identify whether increased lipin1 expression could prevent dystrophic pathology, we employed unique muscle-specific mdx:lipin1 transgenic (mdx:lipin1Tg/0) mice in which lipin1 was restored in the dystrophic muscle of mdx mice, intramuscular gene delivery, as well as cell culture system. RESULTS: We found that increased lipin1 expression suppressed muscle degeneration and inflammation, reduced fibrosis, strengthened membrane integrity, and resulted in improved muscle contractile and lengthening force, and muscle performance in mdx:lipin1Tg/0 compared to mdx mice. To confirm the role of lipin1 in dystrophic muscle, we then administered AAV1-lipin1 via intramuscular injection in mdx mice. Consistently, lipin1 restoration inhibited myofiber necroptosis and lessened muscle degeneration. Using a cell culture system, we further found that differentiated primary mdx myoblasts had elevated expression levels of necroptotic markers and medium creatine kinase (CK), which could be a result of sarcolemmal damage. Most importantly, increased lipin1 expression levels in differentiated myoblasts from mdx:lipin1Tg/0 mice substantially inhibited the elevation of necroptotic markers and medium CK levels. CONCLUSIONS: Overall, our data suggest that lipin1 is a promising therapeutic target for the treatment of dystrophic muscles.


Asunto(s)
Ratones Endogámicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne , Fosfatidato Fosfatasa , Animales , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/metabolismo , Fosfatidato Fosfatasa/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Ratones Transgénicos , Ratones , Contracción Muscular , Terapia Molecular Dirigida , Ratones Endogámicos C57BL , Terapia Genética , Masculino
2.
Mol Cell Biol ; 44(7): 273-288, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38961766

RESUMEN

Here, we report a novel role for the yeast lysine acetyltransferase NuA4 in regulating phospholipid availability for organelle morphology. Disruption of the NuA4 complex results in 70% of cells displaying nuclear deformations and nearly 50% of cells exhibiting vacuolar fragmentation. Cells deficient in NuA4 also show severe defects in the formation of nuclear-vacuole junctions (NJV), as well as a decrease in piecemeal microautophagy of the nucleus (PMN). To determine the cause of these defects we focused on Pah1, an enzyme that converts phosphatidic acid into diacylglycerol, favoring accumulation of lipid droplets over phospholipids that are used for membrane expansion. NuA4 subunit Eaf1 was required for Pah1 localization to the inner nuclear membrane and artificially tethering of Pah1 to the nuclear membrane rescued nuclear deformation and vacuole fragmentation defects, but not defects related to the formation of NVJs. Mutation of a NuA4-dependent acetylation site on Pah1 also resulted in aberrant Pah1 localization and defects in nuclear morphology and NVJ. Our work suggests a critical role for NuA4 in organelle morphology that is partially mediated through the regulation of Pah1 subcellular localization.


Asunto(s)
Núcleo Celular , Metabolismo de los Lípidos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vacuolas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Núcleo Celular/metabolismo , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Fosfatidato Fosfatasa/metabolismo , Fosfatidato Fosfatasa/genética , Acetilación , Membrana Nuclear/metabolismo , Fosfolípidos/metabolismo , Mutación
3.
J Clin Invest ; 134(11)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702076

RESUMEN

Sarcopenia burdens the older population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are lacking. The glucocorticoid prednisone remodels muscle metabolism on the basis of frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone administration rescued muscle quality in aged 24-month-old mice to a level comparable to that seen in young 4-month-old mice. We discovered an age- and sex-independent glucocorticoid receptor transactivation program in muscle encompassing peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1α) and its cofactor Lipin1. Treatment coordinately improved mitochondrial abundance through isoform 1 and muscle mass through isoform 4 of the myocyte-specific PGC1α, which was required for the treatment-driven increase in carbon shuttling from glucose oxidation to amino acid biogenesis. We also probed myocyte-specific Lipin1 as a nonredundant factor coaxing PGC1α upregulation to the stimulation of both oxidative and anabolic effects. Our study unveils an aging-resistant druggable program in myocytes for the coordinated rescue of energy and mass in sarcopenia.


Asunto(s)
Envejecimiento , Glucocorticoides , Músculo Esquelético , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosfatidato Fosfatasa , Sarcopenia , Animales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Sarcopenia/metabolismo , Sarcopenia/tratamiento farmacológico , Sarcopenia/patología , Sarcopenia/genética , Ratones , Envejecimiento/metabolismo , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo , Glucocorticoides/farmacología , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Femenino
4.
Mol Biol Cell ; 35(7): ar101, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38776127

RESUMEN

Lipin 1 is an ER enzyme that produces diacylglycerol, the lipid intermediate that feeds into the synthesis of glycerophospholipids for membrane expansion or triacylglycerol for storage into lipid droplets. CTD-Nuclear Envelope Phosphatase 1 (CTDNEP1) regulates lipin 1 to restrict ER membrane synthesis, but a role for CTDNEP1 in lipid storage in mammalian cells is not known. Furthermore, how NEP1R1, the regulatory subunit of CTDNEP1, contributes to these functions in mammalian cells is not fully understood. Here, we show that CTDNEP1 is reliant on NEP1R1 for its stability and function in limiting ER expansion. CTDNEP1 contains an amphipathic helix at its N-terminus that targets to the ER, nuclear envelope and lipid droplets. We identify key residues at the binding interface of CTDNEP1 and NEP1R1 and show that they facilitate complex formation in vivo and in vitro. We demonstrate that NEP1R1 binding to CTDNEP1 shields CTDNEP1 from proteasomal degradation to regulate lipin 1 and restrict ER size. Unexpectedly, NEP1R1 was not required for CTDNEP1's role in restricting lipid droplet biogenesis. Thus, the reliance of CTDNEP1 function on NEP1R1 depends on cellular demands for membrane production versus lipid storage. Together, our work provides a framework into understanding how the ER regulates lipid synthesis under different metabolic conditions.


Asunto(s)
Retículo Endoplásmico , Membrana Nuclear , Fosfatidato Fosfatasa , Retículo Endoplásmico/metabolismo , Membrana Nuclear/metabolismo , Humanos , Fosfatidato Fosfatasa/metabolismo , Animales , Metabolismo de los Lípidos , Ratones , Gotas Lipídicas/metabolismo , Células HEK293 , Unión Proteica , Lípidos/biosíntesis , Proteínas Nucleares/metabolismo
5.
Mol Biol Rep ; 51(1): 578, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668789

RESUMEN

Mg2+-independent phosphatidic acid phosphatase (PAP2), diacylglycerol pyrophosphate phosphatase 1 (Dpp1) is a membrane-associated enzyme in Saccharomyces cerevisiae. The enzyme is responsible for inducing the breakdown of ß-phosphate from diacylglycerol pyrophosphate (DGPP) into phosphatidate (PA) and then removes the phosphate from PA to give diacylglycerol (DAG). In this study through RNAi suppression, we have demonstrated that Trypanosoma brucei diacylglycerol pyrophosphate phosphatase 1 (TbDpp1) procyclic form production is not required for parasite survival in culture. The steady-state levels of triacylglycerol (TAG), the number of lipid droplets, and the PA content are all maintained constant through the inducible down-regulation of TbDpp1. Furthermore, the localization of C-terminally tagged variants of TbDpp1 in the lysosome was demonstrated by immunofluorescence microscopy.


Asunto(s)
Glicerol/análogos & derivados , Lisosomas , Trypanosoma brucei brucei , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética , Lisosomas/metabolismo , Lisosomas/enzimología , Triglicéridos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Fosfatidato Fosfatasa/metabolismo , Fosfatidato Fosfatasa/genética , Interferencia de ARN , Difosfatos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Diglicéridos/metabolismo , Ácidos Fosfatidicos/metabolismo
6.
Biochem Pharmacol ; 222: 116106, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442792

RESUMEN

Lipins are phosphatidic acid phosphatases (PAP) that catalyze the conversion of phosphatidic acid (PA) to diacylglycerol (DAG). Three lipin isoforms have been identified: lipin-1, -2 and -3. In addition to their PAP activity, lipin-1 and -2 act as transcriptional coactivators and corepressors. Lipins have been intensely studied for their role in regulation of lipid metabolism and adipogenesis; however, lipins are hypothesized to mediate several pathologies, such as those involving metabolic diseases, neuropathy and even cognitive impairment. Recently, an emerging role for lipins have been proposed in cancer. The study of lipins in cancer has been hampered by lack of inhibitors that have selectivity for lipins, that differentiate between lipin family members, or that are suitable for in vivo studies. Such inhibitors have the potential to be extremely useful as both molecular tools and therapeutics. This review describes the expression and function of lipins in various tissues and their roles in several diseases, but with an emphasis on their possible role in cancer. The mechanisms by which lipins mediate cancer cell growth are discussed and the potential usefulness of selective lipin inhibitors is hypothesized. Finally, recent studies reporting the crystallization of lipin-1 are discussed to facilitate rational design of novel lipin inhibitors.


Asunto(s)
Neoplasias , Fosfatidato Fosfatasa , Fosfatidato Fosfatasa/química , Fosfatidato Fosfatasa/metabolismo , Adipogénesis , Isoformas de Proteínas/metabolismo , Ácidos Fosfatidicos/metabolismo , Neoplasias/tratamiento farmacológico , Compuestos Orgánicos
7.
Plant Physiol ; 195(2): 1506-1520, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38401529

RESUMEN

Galactolipids comprise the majority of chloroplast membranes in plants, and their biosynthesis requires dephosphorylation of phosphatidic acid at the chloroplast envelope membranes. In Arabidopsis (Arabidopsis thaliana), the lipid phosphate phosphatases LPPγ, LPPε1, and LPPε2 have been previously implicated in chloroplast lipid assembly, with LPPγ being essential, as null mutants were reported to exhibit embryo lethality. Here, we show that lppγ mutants are in fact viable and that LPPγ, LPPε1, and LPPε2 do not appear to have central roles in the plastid pathway of membrane lipid biosynthesis. Redundant LPPγ and LPPε1 activity at the outer envelope membrane is important for plant development, and the respective lppγ lppε1 double mutant exhibits reduced flux through the ER pathway of galactolipid synthesis. While LPPε2 is imported and associated with interior chloroplast membranes, its role remains elusive and does not include basal nor phosphate limitation-induced biosynthesis of glycolipids. The specific physiological roles of LPPγ, LPPε1, and LPPε2 are yet to be uncovered, as does the identity of the phosphatidic acid phosphatase required for plastid galactolipid biosynthesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Galactolípidos , Fosfatidato Fosfatasa , Fosfolípidos , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Galactolípidos/metabolismo , Fosfolípidos/metabolismo , Fosfatidato Fosfatasa/metabolismo , Fosfatidato Fosfatasa/genética , Mutación , Regulación de la Expresión Génica de las Plantas , Retículo Endoplásmico/metabolismo , Plastidios/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética
8.
Biotechnol Bioeng ; 121(1): 403-408, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37749915

RESUMEN

The efficient hydrolysis of lignocellulosic biomass into fermentable sugars is key for viable economic production of biofuels and biorenewable chemicals from second-generation feedstocks. Consolidated bioprocessing (CBP) combines lignocellulose saccharification and chemical production in a single step. To avoid wasting valuable resources during CBP, the selective secretion of enzymes (independent or attached to the surface) based on the carbon source available is advantageous. To enable enzyme expression and secretion based on extracellular glucose levels, we implemented a G-protein-coupled receptor (GPCR)-based extracellular glucose sensor; this allows the secretion and display of cellulases in the presence of the cellulosic fraction of lignocellulose by leveraging cellobiose-dependent signal amplification. We focused on the glucose-responsiveness of the HXT1 promoter and engineered PHXT1 by changing its core to that of the strong promoter PTHD3 , increasing extracellular enzyme activity by 81%. We then demonstrated glucose-mediated expression and cell-surface display of the ß-glucosidase BglI on the surface of Saccharomyces cerevisiae. The display system was further optimized by re-directing fatty acid pools from lipid droplet synthesis toward formation of membrane precursors via knock-out of PAH1. This resulted in an up to 4.2-fold improvement with respect to the baseline strain. Finally, we observed cellobiose-dependent signal amplification of the system with an increase in enzymatic activity of up to 3.1-fold when cellobiose was added.


Asunto(s)
Celulosa , Proteínas de Saccharomyces cerevisiae , Celulosa/metabolismo , Celobiosa/metabolismo , Fermentación , Saccharomyces cerevisiae/metabolismo , beta-Glucosidasa , Glucosa/metabolismo , Fosfatidato Fosfatasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Eur J Pharmacol ; 965: 176196, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38006926

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common chronic liver disease, but there are few specific medications for it. Lusianthridin, a major phenanthrene component that originates from Dendrobium Sonia, has various in vitro biological functions. In this study, we aimed to evaluate the therapeutic effects of lusianthridin on high-fat diet (HFD)-induced MAFLD as well as to examine the mechanism of its effects. We fed male mice high-fat-diet for 12 weeks to induce MAFLD and then continued to feed them, either with or without lusianthridin, for another six weeks. We found that lusianthridin decreased serum triacylglycerol, hepatic triacylglycerol, and serum low density lipoprotein cholesterol. It also reduced hepatic lipid accumulation based on the results of morphology analysis. Besides, it improved hepatic inflammation as well, including a decrease in serum alanine aminotransferase and a reduction in macrophage and neutrophil infiltration. Mechanistically, surface plasmon resonance, cell thermal shift assay and dual-luciferase report system results suggested that lusianthridin combined with farnesoid X receptor (FXR) ligand binding region and activated its transcriptional activity. Lusianthridin also decreased de no lipogenesis though inhibiting Srebp1c and downstream Scd-1, Lpin1 and Dgat2 expression in a FXR-dependent manner in oleic acid treated L02 cells. Correspondingly, lusianthridin inhibited Srebp1c and downstream lipogenesis in MAFLD liver tissues of mice at both of genetic and protein levels. Finally, the protective effects of lusianthridin on hepatic steaotosis were abolished in Fxr-/- mice. Taken together, our results suggested that lusianthridin attenuated high-fat-diet induced MAFLD via activation the FXR signaling pathway.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Fenantrenos , Masculino , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Receptores Citoplasmáticos y Nucleares/metabolismo , Hígado , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fenantrenos/farmacología , Triglicéridos , Transducción de Señal , Ratones Endogámicos C57BL , Fosfatidato Fosfatasa/metabolismo , Fosfatidato Fosfatasa/farmacología
10.
Plant Commun ; 5(1): 100679, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37653727

RESUMEN

Plant diseases cause enormous economic losses in agriculture and threaten global food security, and application of agrochemicals is an important method of crop disease control. Exploration of disease-resistance mechanisms and synthesis of highly bioactive agrochemicals are thus important research objectives. Here, we show that propranolol, a phosphatidate phosphatase (Pah) inhibitor, effectively suppresses fungal growth, sporulation, sexual reproduction, and infection of diverse plants. The MoPah1 enzyme activity of the rice blast fungus Magnaporthe oryzae is inhibited by propranolol. Alterations in lipid metabolism are associated with inhibited hyphal growth and appressorium formation caused by propranolol in M. oryzae. Propranolol inhibits a broad spectrum of 12 plant pathogens, effectively inhibiting infection of barley, wheat, maize, tomato, and pear. To improve antifungal capacity, we synthesized a series of propranolol derivatives, one of which shows a 16-fold increase in antifungal ability and binds directly to MoPah1. Propranolol and its derivatives can also reduce the severity of rice blast and Fusarium head blight of wheat in the field. Taken together, our results demonstrate that propranolol suppresses fungal development and infection through mechanisms involved in lipid metabolism. Propranolol and its derivatives may therefore be promising candidates for fungicide development.


Asunto(s)
Fungicidas Industriales , Magnaporthe , Oryza , Fungicidas Industriales/farmacología , Fungicidas Industriales/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Oryza/microbiología , Fosfatidato Fosfatasa/metabolismo , Fosfatidato Fosfatasa/farmacología , Propranolol/farmacología , Propranolol/metabolismo , Magnaporthe/metabolismo , Triticum
11.
J Biol Chem ; 300(1): 105560, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097185

RESUMEN

The PAH1-encoded phosphatidate (PA) phosphatase is a major source of diacylglycerol for the production of the storage lipid triacylglycerol and a key regulator for the de novo phospholipid synthesis in Saccharomyces cerevisiae. The catalytic function of Pah1 depends on its membrane localization which is mediated through its phosphorylation by multiple protein kinases and dephosphorylation by the Nem1-Spo7 protein phosphatase complex. The full-length Pah1 is composed of a catalytic core (N-LIP and HAD-like domains, amphipathic helix, and the WRDPLVDID domain) and non-catalytic regulatory sequences (intrinsically disordered regions, RP domain, and acidic tail) for phosphorylation and interaction with Nem1-Spo7. How the catalytic core regulates Pah1 localization and cellular function is not clear. In this work, we analyzed a variant of Pah1 (i.e., Pah1-CC (catalytic core)) that is composed only of the catalytic core. Pah1-CC expressed on a low-copy plasmid complemented the pah1Δ mutant phenotypes (e.g., nuclear/ER membrane expansion, reduced levels of triacylglycerol, and lipid droplet formation) without requiring Nem1-Spo7. The cellular function of Pah1-CC was supported by its PA phosphatase activity mostly associated with the membrane fraction. Although functional, Pah1-CC was distinct from Pah1 in the protein and enzymological properties, which include overexpression toxicity, association with heat shock proteins, and significant reduction of the Vmax value. These findings on the Pah1 catalytic core enhance the understanding of its structural requirements for membrane localization and activity control.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfatidato Fosfatasa/metabolismo , Dominio Catalítico , Triglicéridos/metabolismo , Proteínas Nucleares/metabolismo
12.
Redox Biol ; 69: 102996, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103341

RESUMEN

Diabetic encephalopathy (DE) is a common central nervous system complication of diabetes mellitus without effective therapy currently. Recent studies have highlighted synaptic mitochondrial damages as a possible pathological basis for DE, but the underlying mechanisms remain unclear. Our previous work has revealed that phosphatidate phosphatase Lipin1, a critical enzyme involved with phospholipid synthesis, is closely related to the pathogenesis of DE. Here, we demonstrate that Lipin1 is significantly down-regulated in rat hippocampus of DE. Knock-down of Lipin1 within hippocampus of normal rats induces dysregulation of homeostasis in synaptic mitochondrial dynamics with an increase of mitochondrial fission and a decrease of fusion, then causes synaptic mitochondrial dysfunction, synaptic plasticity deficits as well as cognitive impairments, similar to that observed in response to chronic hyperglycemia exposure. In contrast, an up-regulation of Lipin1 within hippocampus in the DE model ameliorates this cascade of dysfunction. We also find that the effect of Lipin1 that regulating mitochondrial dynamics results from maintaining appropriate phospholipid components in the mitochondrial membrane. In conclusion, alterations in hippocampal Lipin1 contribute to hippocampal synaptic mitochondrial dysfunction and cognitive deficits observed in DE. Targeting Lipin1 might be a potential therapeutic strategy for the clinical treatment of DE.


Asunto(s)
Encefalopatías , Diabetes Mellitus , Hipoglucemia , Enfermedades Mitocondriales , Animales , Ratas , Hipocampo/metabolismo , Dinámicas Mitocondriales , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo , Fosfolípidos
13.
J Biol Chem ; 300(1): 105587, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141768

RESUMEN

The Saccharomyces cerevisiae Nem1-Spo7 protein phosphatase complex dephosphorylates and thereby activates Pah1 at the nuclear/endoplasmic reticulum membrane. Pah1, a phosphatidate phosphatase catalyzing the dephosphorylation of phosphatidate to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The diacylglycerol produced in the lipid phosphatase reaction is utilized for the synthesis of triacylglycerol that is stored in lipid droplets. Disruptions of the Nem1-Spo7/Pah1 phosphatase cascade cause a plethora of physiological defects. Spo7, the regulatory subunit of the Nem1-Spo7 complex, is required for the Nem1 catalytic function and interacts with the acidic tail of Pah1. Spo7 contains three conserved homology regions (CR1-3) that are important for the interaction with Nem1, but its region for the interaction with Pah1 is unknown. Here, by deletion and site-specific mutational analyses of Spo7, we revealed that the C-terminal basic tail (residues 240-259) containing five arginine and two lysine residues is important for the Nem1-Spo7 complex-mediated dephosphorylation of Pah1 and its cellular function (triacylglycerol synthesis, lipid droplet formation, maintenance of nuclear/endoplasmic reticulum membrane morphology, and cell growth at elevated temperatures). The glutaraldehyde cross-linking analysis of synthetic peptides indicated that the Spo7 basic tail interacts with the Pah1 acidic tail. This work advances our understanding of the Spo7 function and the Nem1-Spo7/Pah1 phosphatase cascade in yeast lipid synthesis.


Asunto(s)
Proteínas de la Membrana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Diglicéridos/biosíntesis , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatasa/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Triglicéridos/biosíntesis , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
14.
EMBO Rep ; 24(12): e57238, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37929625

RESUMEN

Interferons (IFN) are crucial antiviral and immunomodulatory cytokines that exert their function through the regulation of a myriad of genes, many of which are not yet characterized. Here, we reveal that lipin-2, a phosphatidic acid phosphatase whose mutations produce an autoinflammatory syndrome known as Majeed syndrome in humans, is regulated by IFN in a STAT-1-dependent manner. Lipin-2 inhibits viral replication both in vitro and in vivo. Moreover, lipin-2 also acts as a regulator of inflammation in a viral context by reducing the signaling through TLR3 and the generation of ROS and release of mtDNA that ultimately activate the NLRP3 inflammasome. Inhibitors of mtDNA release from mitochondria restrict IL-1ß production in lipin-2-deficient animals in a model of viral infection. Finally, analyses of databases from COVID-19 patients show that LPIN2 expression levels negatively correlate with the severity of the disease. Overall, these results uncover novel regulatory mechanisms of the IFN response driven by lipin-2 and open new perspectives for the future management of patients with LPIN2 mutations.


Asunto(s)
ADN Mitocondrial , Interferones , Animales , Humanos , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo
15.
Biophys J ; 122(22): 4382-4394, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37853695

RESUMEN

The ß-barrel assembly machinery (BAM) complex is responsible for inserting outer membrane proteins (OMPs) into the Escherichia coli outer membrane. The SecYEG translocon inserts inner membrane proteins into the inner membrane and translocates both soluble proteins and nascent OMPs into the periplasm. Recent reports describe Sec possibly playing a direct role in OMP biogenesis through interactions with the soluble polypeptide transport-associated (POTRA) domains of BamA (the central OMP component of BAM). Here we probe the diffusion behavior of these protein complexes using photoactivatable super-resolution localization microscopy and single-particle tracking in live E. coli cells of BAM and SecYEG components BamA and SecE and compare them to other outer and inner membrane proteins. To accurately measure trajectories on the highly curved cell surface, three-dimensional tracking was performed using double-helix point-spread function microscopy. All proteins tested exhibit two diffusive modes characterized by "slow" and "fast" diffusion coefficients. We implement a diffusion coefficient analysis as a function of the measurement lag time to separate positional uncertainty from true mobility. The resulting true diffusion coefficients of the slow and fast modes showed a complete immobility of full-length BamA constructs in the time frame of the experiment, whereas the OMP OmpLA displayed a slow diffusion consistent with the high viscosity of the outer membrane. The periplasmic POTRA domains of BamA were found to anchor BAM to other cellular structures and render it immobile. However, deletion of individual distal POTRA domains resulted in increased mobility, suggesting that these domains are required for the full set of cellular interactions. SecE diffusion was much slower than that of the inner membrane protein PgpB and was more like OMPs and BamA. Strikingly, SecE diffused faster upon POTRA domain deletion. These results are consistent with the existence of a BAM-SecYEG trans-periplasmic assembly in live E. coli cells.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Canales de Translocación SEC/metabolismo , Proteínas de Escherichia coli/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Pliegue de Proteína , Fosfatidato Fosfatasa/metabolismo
16.
Bull Entomol Res ; 113(5): 665-675, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37555240

RESUMEN

Environment-induced epigenetics are involved in diapause regulation, but the molecular mechanism that epigenetically couples nutrient metabolism to diapause regulation remains unclear. In this study, we paid special attention to the significant differences in the level of N6-adenosine methylation (m6A) of dihydroxyacetone phosphate acyltransferase (DHAPAT) and phosphatidate phosphatase (PAP) genes in the lipid metabolism pathway of the bivoltine silkworm (Bombyx mori) strain Qiufeng developed from eggs incubated at a normal temperature (QFHT, diapause egg producer) compared to those from eggs incubated at a low temperature (QFLT, non-diapause egg producer). We knocked down DHAPAT in the pupal stage of the QFLT group, resulting in the non-diapause destined eggs becoming diapausing eggs. In the PAP knockdown group, the colour of the non-diapause destined eggs changed from light yellow to pink 3 days after oviposition, but they hatched as normal. Moreover, we validated that YTHDF3 binds to m6A-modified DHAPAT and PAP mRNAs to promote their stability and translation. These results suggest that RNA m6A methylation participates in the diapause regulation of silkworm by changing the expression levels of DHAPAT and PAP and reveal that m6A epigenetic modification can be combined with a lipid metabolism signal pathway to participate in the regulation of insect diapause traits, which provides a clearer image for exploring the physiological basis of insect diapause.


Asunto(s)
Bombyx , Diapausa de Insecto , Diapausa , Femenino , Animales , Bombyx/genética , Diapausa de Insecto/genética , Fosfatidato Fosfatasa/metabolismo , ARN/metabolismo , Metabolismo de los Lípidos , Adenosina/metabolismo , Óvulo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
17.
J Biol Chem ; 299(8): 105025, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37423305

RESUMEN

The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The enzyme controls whether cells utilize PA to produce membrane phospholipids or the major storage lipid triacylglycerol. PA levels, which are regulated by the enzyme reaction, also control the expression of UASINO-containing phospholipid synthesis genes via the Henry (Opi1/Ino2-Ino4) regulatory circuit. Pah1 function is largely controlled by its cellular location, which is mediated by phosphorylation and dephosphorylation. Multiple phosphorylations sequester Pah1 in the cytosol and protect it from 20S proteasome-mediated degradation. The endoplasmic reticulum-associated Nem1-Spo7 phosphatase complex recruits and dephosphorylates Pah1 allowing the enzyme to associate with and dephosphorylate its membrane-bound substrate PA. Pah1 contains domains/regions that include the N-LIP and haloacid dehalogenase-like catalytic domains, N-terminal amphipathic helix for membrane binding, C-terminal acidic tail for Nem1-Spo7 interaction, and a conserved tryptophan within the WRDPLVDID domain required for enzyme function. Through bioinformatics, molecular genetics, and biochemical approaches, we identified a novel RP (regulation of phosphorylation) domain that regulates the phosphorylation state of Pah1. We showed that the ΔRP mutation results in a 57% reduction in the endogenous phosphorylation of the enzyme (primarily at Ser-511, Ser-602, and Ser-773/Ser-774), an increase in membrane association and PA phosphatase activity, but reduced cellular abundance. This work not only identifies a novel regulatory domain within Pah1 but emphasizes the importance of the phosphorylation-based regulation of Pah1 abundance, location, and function in yeast lipid synthesis.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fosforilación , Fosfatidato Fosfatasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Lípidos , Proteínas Nucleares/metabolismo
18.
Biomolecules ; 13(4)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37189334

RESUMEN

Proteasomes are highly sophisticated protease complexes that degrade non-lysosomal proteins, and their proper regulation ensures various biological functions such as spermatogenesis. The proteasome-associated proteins, PA200 and ECPAS, are predicted to function during spermatogenesis; however, male mice lacking each of these genes sustain fertility, raising the possibility that these proteins complement each other. To address this issue, we explored these possible roles during spermatogenesis by producing mice lacking these genes (double-knockout mice; dKO mice). Expression patterns and quantities were similar throughout spermatogenesis in the testes. In epididymal sperm, PA200 and ECPAS were expressed but were differentially localized to the midpiece and acrosome, respectively. Proteasome activity was considerably reduced in both the testes and epididymides of dKO male mice, resulting in infertility. Mass spectrometric analysis revealed LPIN1 as a target protein for PA200 and ECPAS, which was confirmed via immunoblotting and immunostaining. Furthermore, ultrastructural and microscopic analyses demonstrated that the dKO sperm displayed disorganization of the mitochondrial sheath. Our results indicate that PA200 and ECPAS work cooperatively during spermatogenesis and are essential for male fertility.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Semen , Masculino , Animales , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Semen/metabolismo , Espermatogénesis , Espermatozoides/metabolismo , Ratones Noqueados , Fosfatidato Fosfatasa/metabolismo , Proteínas Nucleares/metabolismo
19.
J Agric Food Chem ; 71(22): 8527-8539, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37224334

RESUMEN

Goat milk is increasingly recognized by consumers due to its high nutritional value, richness in short- and medium-chain fatty acids, and richness in polyunsaturated fatty acids (PUFA). Exogenous supplementation of docosahexaenoic acid (DHA) is an important approach to increasing the content of PUFA in goat milk. Several studies have reported benefits of dietary DHA in terms of human health, including potential against chronic diseases and tumors. However, the mechanisms whereby an increased supply of DHA regulates mammary cell function is unknown. In this study, we investigated the effect of DHA on lipid metabolism processes in goat mammary epithelial cells (GMEC) and the function of H3K9ac epigenetic modifications in this process. Supplementation of DHA promoted lipid droplet accumulation increased the DHA content and altered fatty acid composition in GMEC. Lipid metabolism processes were altered by DHA supplementation through transcriptional programs in GMEC. ChIP-seq analysis revealed that DHA induced genome-wide H3K9ac epigenetic changes in GMEC. Multiomics analyses (H3K9ac genome-wide screening and RNA-seq) revealed that DHA-induced expression of lipid metabolism genes (FASN, SCD1, FADS1, FADS2, LPIN1, DGAT1, MBOAT2), which were closely related with changes in lipid metabolism processes and fatty acid profiles, were regulated by modification of H3K9ac. In particular, DHA increased the enrichment of H3K9ac in the promoter region of PDK4 and promoted its transcription, while PDK4 inhibited lipid synthesis and activated AMPK signaling in GMEC. The activation of the expression of fatty acid metabolism-related genes FASN, FADS2, and SCD1 and their upstream transcription factor SREBP1 by the AMPK inhibitor was attenuated in PDK4-overexpressing GMEC. In conclusion, DHA alters lipid metabolism processes via H3K9ac modifications and the PDK4-AMPK-SREBP1 signaling axis in goat mammary epithelial cells, providing new insights into the mechanism through which DHA affects mammary cell function and regulates milk fat metabolism.


Asunto(s)
Ácidos Docosahexaenoicos , Metabolismo de los Lípidos , Humanos , Animales , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Triglicéridos/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Epigénesis Genética , Cabras/genética , Cabras/metabolismo , Glándulas Mamarias Animales/metabolismo , Células Epiteliales/metabolismo , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo
20.
J Biol Chem ; 299(5): 104683, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030502

RESUMEN

In the yeast Saccharomyces cerevisiae, the Nem1-Spo7 complex is a protein phosphatase that activates Pah1 phosphatidate phosphatase at the nuclear-endoplasmic reticulum membrane for the synthesis of triacylglycerol. The Nem1-Spo7/Pah1 phosphatase cascade largely controls whether phosphatidate is partitioned into the storage lipid triacylglycerol or into membrane phospholipids. The regulated synthesis of the lipids is crucial for diverse physiological processes during cell growth. Spo7 in the protein phosphatase complex is required as a regulatory subunit for the Nem1 catalytic subunit to dephosphorylate Pah1. The regulatory subunit contains three conserved homology regions (CR1, CR2, and CR3). Previous work showed that the hydrophobicity of LLI (residues 54-56) within CR1 is important for Spo7 function in the Nem1-Spo7/Pah1 phosphatase cascade. In this work, by deletion and site-specific mutational analyses, we revealed that CR2 and CR3 are also required for Spo7 function. Mutations in any one of the conserved regions were sufficient to disrupt the function of the Nem1-Spo7 complex. We determined that the uncharged hydrophilicity of STN (residues 141-143) within CR2 was required for Nem1-Spo7 complex formation. In addition, the hydrophobicity of LL (residues 217 and 219) within CR3 was important for Spo7 stability, which indirectly affected complex formation. Finally, we showed the loss of Spo7 CR2 or CR3 function by the phenotypes (e.g., reduced amounts of triacylglycerol and lipid droplets, temperature sensitivity) that are attributed to defects in membrane translocation and dephosphorylation of Pah1 by the Nem1-Spo7 complex. These findings advance knowledge of the Nem1-Spo7 complex and its role in lipid synthesis regulation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfatidato Fosfatasa/metabolismo , Fosfolípidos/metabolismo , Triglicéridos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...