Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 785
Filtrar
1.
Front Immunol ; 15: 1440454, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176091

RESUMEN

B cells are adaptive immune cells in the tumor microenvironment and play an important role in tumor development and metastasis. However, the roles of genetic variants of the immunity B cell-related genes in the survival of patients with non-small cell lung cancer (NSCLC) remain unknown. In the present study, we first evaluated associations between 10,776 single nucleotide polymorphisms (SNPs) in 220 immunity B cell-related genes and survival of NSCLC in a discovery dataset of 1,185 patients from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. We found that 369 SNPs were significantly associated with overall survival (OS) of NSCLC in multivariable Cox proportional hazards regression analysis (P ≤ 0.05, Bayesian false discovery probability ≤ 0.80), of which 18 SNPs were validated in another independent genotyping dataset of 984 patients from the Harvard Lung Cancer Susceptibility (HLCS) Study. We then performed linkage disequilibrium (LD) analysis, followed by stepwise analysis with a multivariable Cox regression model. Finally, two independent SNPs, inositol polyphosphate-5-phosphatase D (INPP5D) rs13385922 C>T and exosome component 3 (EXOSC3) rs3208406 A>G, remained significantly associated withNSCLC OS with a combined hazards ratio (HR) of 1.14 (95% confidence interval = 1.06-1.23, P = 2.41×10-4) and 1.20 (95% confidence interval = 1.14-1.28, P = 3.41×10-9), respectively. Furthermore, NSCLC patients with the combination of unfavorable genotypes for these two SNPs were associated with a poor OS (P trend = 0.0002) and disease-specific survival (DSS, P trend < 0.0001) in the PLCO dataset. Expression quantitative trait loci (eQTL) analysis suggested that the INPP5D rs6782875 T allele was significantly correlated with elevated INPP5D mRNA expression levels in normal lung tissues and whole blood samples, while the EXOSC3 rs3208406 G allele was significantly correlated with increased EXOSC3 mRNA expression levels in normal lung tissues. Our data indicated that genetic variants in these immunity B cell-related genes may predict NSCLC survival possibly by influencing the gene expression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Polimorfismo de Nucleótido Simple , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/inmunología , Masculino , Femenino , Persona de Mediana Edad , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Anciano , Linfocitos B/inmunología , Predisposición Genética a la Enfermedad , Desequilibrio de Ligamiento , Pronóstico , Genotipo , Monoéster Fosfórico Hidrolasas/genética
2.
Virulence ; 15(1): 2375549, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38982595

RESUMEN

CagA is a significant oncogenic factor injected into host cells by Helicobacter pylori, which is divided into two subtypes: East Asian type (CagAE), characterized by the EPIYA-D motif, and western type (CagAW), harboring the EPIYA-C motif. CagAE has been reported to have higher carcinogenicity than CagAW, although the underlying reason is not fully understood. SHIP2 is an intracellular phosphatase that can be recruited by CagA to perturb the homeostasis of intracellular signaling pathways. In this study, we found that SHIP2 contributes to the higher oncogenicity of CagAE. Co-Immunoprecipitation and Pull-down assays showed that CagAE bind more SHIP2 than CagAW. Immunofluorescence staining showed that a higher amount of SHIP2 recruited by CagAE to the plasma membrane catalyzes the conversion of PI(3,4,5)P3 into PI(3,4)P2. This alteration causes higher activation of Akt signaling, which results in enhanced IL-8 secretion, migration, and invasion of the infected cells. SPR analysis showed that this stronger interaction between CagAE and SHIP2 stems from the higher affinity between the EPIYA-D motif of CagAE and the SH2 domain of SHIP2. Structural analysis revealed the crucial role of the Phe residue at the Y + 5 position in EPIYA-D. After mutating Phe of CagAE into Asp (the corresponding residue in the EPIYA-C motif) or Ala, the activation of downstream Akt signaling was reduced and the malignant transformation of infected cells was alleviated. These findings revealed that CagAE hijacks SHIP2 through its EPIYA-D motif to enhance its carcinogenicity, which provides a better understanding of the higher oncogenic risk of H. pylori CagAE.


Asunto(s)
Secuencias de Aminoácidos , Antígenos Bacterianos , Proteínas Bacterianas , Infecciones por Helicobacter , Helicobacter pylori , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Humanos , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Carcinogénesis , Pueblos del Este de Asia , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Unión Proteica , Transducción de Señal
4.
Cell Commun Signal ; 22(1): 360, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992657

RESUMEN

Inhibitory phosphatases, such as the inositol-5-phosphatase SHIP1 could potentially contribute to B-cell acute lymphoblastic leukemia (B-ALL) by raising the threshold for activation of the autoimmunity checkpoint, allowing malignant cells with strong oncogenic B-cell receptor signaling to escape negative selection. Here, we show that SHIP1 is differentially expressed across B-ALL subtypes and that high versus low SHIP1 expression is associated with specific B-ALL subgroups. In particular, we found high SHIP1 expression in both, Philadelphia chromosome (Ph)-positive and ETV6-RUNX1-rearranged B-ALL cells. As demonstrated by targeted knockdown of SHIP1 by RNA interference, proliferation of B-ALL cells in vitro and their tumorigenic spread in vivo depended in part on SHIP1 expression. We investigated the regulation of SHIP1, as an important antagonist of the AKT signaling pathway, by the B-cell-specific transcription factor Ikaros. Targeted restoration of Ikaros and pharmacological inhibition of the antagonistic casein kinase 2, led to a strong reduction in SHIP1 expression and at the same time to a significant inhibition of AKT activation and cell growth. Importantly, the tumor suppressive function of Ikaros was enhanced by a SHIP1-dependent additive effect. Furthermore, our study shows that all three AKT isoforms contribute to the pro-mitogenic and anti-apoptotic signaling in B-ALL cells. Conversely, hyperactivation of a single AKT isoform is sufficient to induce negative selection by increased oxidative stress. In summary, our study demonstrates the regulatory function of Ikaros on SHIP1 expression in B-ALL and highlights the relevance of sustained SHIP1 expression to prevent cells with hyperactivated PI3K/AKT/mTOR signaling from undergoing negative selection.


Asunto(s)
Linfocitos B , Factor de Transcripción Ikaros , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Humanos , Linfocitos B/metabolismo , Línea Celular Tumoral , Proliferación Celular , Animales , Ratones
5.
Acta Neuropathol ; 147(1): 94, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833073

RESUMEN

A recent large genome-wide association study has identified EGFR (encoding the epidermal growth factor EGFR) as a new genetic risk factor for late-onset AD. SHIP2, encoded by INPPL1, is taking part in the signalling and interactome of several growth factor receptors, such as the EGFR. While INPPL1 has been identified as one of the most significant genes whose RNA expression correlates with cognitive decline, the potential alteration of SHIP2 expression and localization during the progression of AD remains largely unknown. Here we report that gene expression of both EGFR and INPPL1 was upregulated in AD brains. SHIP2 immunoreactivity was predominantly detected in plaque-associated astrocytes and dystrophic neurites and its increase was correlated with amyloid load in the brain of human AD and of 5xFAD transgenic mouse model of AD. While mRNA of INPPL1 was increased in AD, SHIP2 protein undergoes a significant solubility change being depleted from the soluble fraction of AD brain homogenates and co-enriched with EGFR in the insoluble fraction. Using FRET-based flow cytometry biosensor assay for tau-tau interaction, overexpression of SHIP2 significantly increased the FRET signal while siRNA-mediated downexpression of SHIP2 significantly decreased FRET signal. Genetic association analyses suggest that some variants in INPPL1 locus are associated with the level of CSF pTau. Our data support the hypothesis that SHIP2 is an intermediate key player of EGFR and AD pathology linking amyloid and tau pathologies in human AD.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Progresión de la Enfermedad , Receptores ErbB , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expresión Génica , Ratones Transgénicos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Solubilidad , Proteínas tau/metabolismo , Proteínas tau/genética
6.
J Proteomics ; 302: 105198, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38777089

RESUMEN

Understanding microglial states in the aging brain has become crucial, especially with the discovery of numerous Alzheimer's disease (AD) risk and protective variants in genes such as INPP5D and TREM2, which are essential to microglia function in AD. Here we present a thorough examination of microglia-like cells and primary mouse microglia at the proteome and transcriptome levels to illuminate the roles these genes and the proteins they encode play in various cell states. First, we compared the proteome profiles of wildtype and INPP5D (SHIP1) knockout primary microglia. Our findings revealed significant proteome alterations only in the homozygous SHIP1 knockout, revealing its impact on the microglial proteome. Additionally, we compared the proteome and transcriptome profiles of commonly used in vitro microglia BV2 and HMC3 cells with primary mouse microglia. Our results demonstrated a substantial similarity between the proteome of BV2 and mouse primary cells, while notable differences were observed between BV2 and human HMC3. Lastly, we conducted targeted lipidomic analysis to quantify different phosphatidylinositols (PIs) species, which are direct SHIP1 targets, in the HMC3 and BV2 cells. This in-depth omics analysis of both mouse and human microglia enhances our systematic understanding of these microglia models. SIGNIFICANCE: Given the growing urgency of comprehending microglial function in the context of neurodegenerative diseases and the substantial therapeutic implications associated with SHIP1 modulation, we firmly believe that our study, through a rigorous and comprehensive proteomics, transcriptomics and targeted lipidomic analysis of microglia, contributes to the systematic understanding of microglial function in the context of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Proteoma , Microglía/metabolismo , Animales , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Ratones , Proteoma/metabolismo , Proteoma/análisis , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Ratones Noqueados , Transcriptoma , Fosfatidilinositoles/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Proteómica/métodos
7.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791291

RESUMEN

The src homology 2 domain-containing inositol 5-phosphatases SHIP1 and SHIP2 are two proteins involved in intracellular signaling pathways and have been linked to the pathogenesis of several diseases. Both protein paralogs are well known for their involvement in the formation of various kinds of cancer. SHIP1, which is expressed predominantly in hematopoietic cells, has been implicated as a tumor suppressor in leukemogenesis especially in myeloid leukemia, whereas SHIP2, which is expressed ubiquitously, has been implicated as an oncogene in a wider variety of cancer types and is suggested to be involved in the process of metastasis of carcinoma cells. However, there are numerous other diseases, such as inflammatory diseases as well as allergic responses, Alzheimer's disease, and stroke, in which SHIP1 can play a role. Moreover, SHIP2 overexpression was shown to correlate with opsismodysplasia and Alzheimer's disease, as well as metabolic diseases. The SHIP1-inhibitor 3-α-aminocholestane (3AC), and SHIP1-activators, such as AQX-435 and AQX-1125, and SHIP2-inhibitors, such as K161 and AS1949490, have been developed and partly tested in clinical trials, which indicates the importance of the SHIP-paralogs as possible targets in the therapy of those diseases. The aim of this article is to provide an overview of the current knowledge about the involvement of SHIP proteins in the pathogenesis of cancer and other human diseases and to create awareness that SHIP1 and SHIP2 are more than just tumor suppressors and oncogenes.


Asunto(s)
Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Humanos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Neoplasias/metabolismo , Neoplasias/patología , Animales , Dominios Homologos src , Transducción de Señal , Inositol Polifosfato 5-Fosfatasas/metabolismo , Inositol Polifosfato 5-Fosfatasas/genética
8.
Mol Immunol ; 170: 35-45, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613944

RESUMEN

Microglia play a pivotal role in the pathology of Alzheimer's Disease (AD), with the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) central to their neuroprotective functions. The R47H variant of TREM2 has emerged as a significant genetic risk factor for AD, leading to a loss-of-function phenotype in mouse AD models. This study elucidates the roles of TREM2 in human microglia-like HMC3 cells and the regulation of these functions by SH2-containing inositol-5'-phosphatase 1 (SHIP1). Using stable cell lines expressing wild-type TREM2, the R47H variant, and TREM2-deficient lines, we found that functional TREM2 is essential for the phagocytosis of Aß, lysosomal capacity, and mitochondrial activity. Notably, the R47H variant displayed increased phagocytic activity towards apoptotic neurons. Introducing SHIP1, known to modulate TREM2 signaling in other cells, revealed its role as a negative regulator of these TREM2-mediated functions. Moreover, pharmacological inhibition of both SHIP1 and its isoform SHIP2 amplified Aß phagocytosis and lysosomal capacity, independently of TREM2 or SHIP1 expression, suggesting a potential regulatory role for SHIP2 in these functions. The absence of TREM2, combined with the presence of both SHIP isoforms, suppressed mitochondrial activity. However, pan-SHIP1/2 inhibition enhanced mitochondrial function in these cells. In summary, our findings offer a deeper understanding of the relationship between TREM2 variants and SHIP1 in microglial functions, and emphasize the therapeutic potential of targeting the TREM2 and SHIP1 pathways in microglia for neurodegenerative diseases.


Asunto(s)
Glicoproteínas de Membrana , Microglía , Fagocitosis , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Receptores Inmunológicos , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Apoptosis/genética , Línea Celular , Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Microglía/metabolismo , Mitocondrias/metabolismo , Fagocitosis/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Transducción de Señal
9.
Artículo en Chino | MEDLINE | ID: mdl-38677987

RESUMEN

Objective: To analyze the differential genes and related signaling pathways of microglia subpopulations in Parkinson's disease (PD) -like mouse brains induced by paraquat (PQ) based on single-cell RNA sequencing, and provide clues to elucidate the mechanism of PQ-induced PD-like changes in the brain of animals. Methods: In September 2021, six male 6-week-old C57BL/6 mice were randomly divided into control group and experimental group (three mice in each group) . The mice were injected with saline, 10.0 mg/kg PQ intraperitoneally, once every three days, and 10 consecutive injections were used for modeling. After infection, the brains of mice were taken and 10×Genomics single-cell RNA sequencing was performed. Microglia subpopulations were screened based on gene expression characteristics, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. The differential genes of microglia subpopulations between the experimental group and control group were further screened, and functional enrichment analysis was performed using bioinformatics tools. Mouse microglia (BV2 cells) were treated with 0, 60, 90 µmol/L PQ solution, respectively. And real-time fluorescence quantitative PCR experiments were conducted to validate the expressions of differential genes hexokinase 2 (Hk2) , ATPase H+ Transporting V0 Subunit B (Atp6v0b) and Neuregulin 1 (Nrg1) . Results: Cluster 7 and Cluster 20 were identified as microglia subpopulations based on the signature genes inositol polyphosphate-5-phosphatase d, Inpp5d (Inpp5d) and transforming growth factor beta receptor 1 (Tgfbr1) , and they reflected the microglia-activated M2 phenotype. The bioinformatics analysis showed that the characteristic genes of identified microglia subpopulations were enriched in endocytosis. In terms of molecular function, it mainly enriched in transmembrane receptor protein kinase activity and cytokine binding. The up-regulated genes of Cluster 7 were mainly enriched in lysosomal pathway, endocytosis pathway, and down-regulated genes were mainly enriched in neurodegenerative disease and other signaling pathways. The up-regulated genes of Cluster 20 were mainly enriched in signaling pathways related to PD, and down-regulated genes were mainly enriched in cyclic adenosine 3', 5'-monophosphate (cAMP) signaling pathways, neurological development, synaptic function and other signaling pathways. The results of real-time fluorescence quantitative PCR showed that the expressions of Hk2 mRNA and Atp6v0b mRNA increased and the expression of Nrg1 mRNA decreased in the 90 µmol/L PQ-treated BV2 cells compared with the 0 µmol/L, and the differences were statistically significant (P<0.05) . Conclusion: Microglia are activated in the PQ-induced PD-like mouse model and polarized toward the M2 phenotype. And their functions are associated with lysosomal (endocytosis) , synaptic functions and the regulation of PD-related pathways.


Asunto(s)
Encéfalo , Ratones Endogámicos C57BL , Microglía , Paraquat , Animales , Paraquat/toxicidad , Ratones , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Perfilación de la Expresión Génica
10.
Int J Biol Macromol ; 268(Pt 1): 131734, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653431

RESUMEN

SARS-CoV-2 infection results in cytokine burst, leading to proinflammatory responses in lungs of COVID-19 patients. SARS-CoV-2 ORF3a triggers the generation of proinflammatory cytokines. However, the underlying mechanism of dysregulation of proinflammatory responses is not well understood. We studied the role of microRNA in the generation of proinflammatory responses as a bystander effect of SARS-CoV-2 ORF3a in human lung epithelial cells. We observed upregulation of hsa-miR-155-5p in SARS-CoV-2 ORF3a transfected human lung epithelial cells, which led to the reduced expression of SHIP1. This resulted in phosphorylation of AKT and NF-κB, which further led to the increased expression of the proinflammatory cytokines IL-6 and TNF-α. Additionally, overexpression and knockdown studies of hsa-miR-155-5p were performed to confirm the role of hsa-miR-155-5p in the regulation of the SHIP1. We demonstrated that hsa-miR-155-5p modulates the proinflammatory response by activating the PI3K/AKT pathway through the inhibition of SHIP1 in SARS-CoV-2 ORF3a transfected human lung epithelial cells.


Asunto(s)
COVID-19 , Células Epiteliales , Pulmón , MicroARNs , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Proteínas Proto-Oncogénicas c-akt , SARS-CoV-2 , Transducción de Señal , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , COVID-19/genética , COVID-19/virología , COVID-19/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/virología , Pulmón/virología , Pulmón/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , FN-kappa B/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Células A549
11.
Acta Trop ; 255: 107211, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38678844

RESUMEN

Toxoplasmosis is a prevalent parasitic infection caused by Toxoplasma gondii known to induce complex immune responses, to control the infection. MicroRNAs (miRNAs) are a cluster of small noncoding RNAs that are reported to have regulatory functions in the immune response. The objective of this study is to assess the expression of miR-155 and its targets, Src homology-2 domain-containing inositol 5- phosphatase 1 (SHIP-1) and suppressor of cytokine signaling-1 (SOCS1), in non-pregnant Iraqi women seropositive for toxoplasmosis. The study included 55 non-pregnant women positive for toxoplasmosis (20 in the acute phase and 35 in the chronic phase) and 35 non-pregnant women negative for toxoplasmosis (control group). Serum samples were collected from all participants to investigate the expression of miR-155 by RT‒PCR, in addition to the levels of SOCS1 and SHIP-1 measured by ELISA. The results showed a significant increase in the expression of miR-155 in both groups of acute and chronic toxoplasmosis compared to the control group. Lower levels of SOCS1 and SHIP-1 were found in acutely infected women compared to those with chronic infection and non-infected women. These findings showed the possible critical impact of miR-155 on host immune response during T.gondii infection, proposing that miR-155 can be explored as a prospective target to support host immune response against infectious diseases, with special help in early detection and management of toxoplasmosis in high-risk immunocompromised patients. Further studies are needed to evaluate the molecular pathways by which miRNAs improve immunity against toxoplasmosis.


Asunto(s)
MicroARNs , Proteína 1 Supresora de la Señalización de Citocinas , Toxoplasma , Toxoplasmosis , Adulto , Femenino , Humanos , Persona de Mediana Edad , Adulto Joven , Enfermedad Aguda , Enfermedad Crónica , Irak/epidemiología , MicroARNs/genética , MicroARNs/sangre , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Proteína 1 Supresora de la Señalización de Citocinas/genética , Toxoplasma/genética , Toxoplasma/inmunología , Toxoplasmosis/parasitología , Toxoplasmosis/genética , Adolescente
12.
Exp Anim ; 73(3): 310-318, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38447983

RESUMEN

Allele-specific monoallelic gene expression is a unique phenomenon and a great resource for analyzing gene regulation. To study this phenomenon, we established new embryonic stem (ES) cell lines derived from F1 hybrid blastocysts from crosses between four mouse subspecies (Mus musculus domesticus, C57BL/6; M. musculus molossinus, MSM/Ms; M. musculus musculus, PWK; M. musculus castaneus, HMI/Ms) and analyzed the expression levels of undifferentiated pluripotent stem cell markers and karyotypes of each line. To demonstrate the utility of our cell lines, we analyzed the allele-specific expression pattern of the Inpp5d gene as an example. The allelic expression depended on the parental alleles; this dependence could be a consequence of differences in compatibility between cis- and trans-elements of the Inpp5d gene from different subspecies. The use of parental mice from four subspecies greatly enhanced genetic polymorphism. The F1 hybrid ES cells retained this polymorphism not only in the Inpp5d gene, but also at a genome-wide level. As we demonstrated for the Inpp5d gene, the established cell lines can contribute to the analysis of allelic expression imbalance based on the incompatibility between cis- and trans-elements and of phenotypes related to this incompatibility.


Asunto(s)
Desequilibrio Alélico , Animales , Ratones , Desequilibrio Alélico/genética , Ratones Endogámicos C57BL , Alelos , Expresión Génica/genética , Línea Celular , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Polimorfismo Genético , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Híbridas , Células Madre Embrionarias , Femenino , Especificidad de la Especie , Masculino
13.
Ann Rheum Dis ; 83(5): 576-588, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38302261

RESUMEN

OBJECTIVES: B10 and B10pro cells suppress immune responses via secreting interleukin (IL)-10. However, their regulators and underlying mechanisms, especially in human autoimmune diseases, are elusive. This study aimed to address these questions in rheumatoid arthritis (RA), one of the most common highly disabling autoimmune diseases. METHODS: The frequencies and functions of B10 and B10pro cells in healthy individuals and patients with RA were first analysed. The effects of proinflammatory cytokines, particularly tumour necrosis factor (TNF)-α on the quantity, stability and pathogenic phenotype of these cells, were then assessed in patients with RA before and after anti-TNF therapy. The underlying mechanisms were further investigated by scRNA-seq database reanalysis, transcriptome sequencing, TNF-α-/- and B cell-specific SHIP-1-/- mouse disease model studies. RESULTS: TNF-α was a key determinant for B10 cells. TNF-α elicited the proinflammatory feature of B10 and B10pro cells by downregulating IL-10, and upregulating interferon-γ and IL-17A. In patients with RA, B10 and B10pro cells were impaired with exacerbated proinflammatory phenotype, while anti-TNF therapy potently restored their frequencies and immunosuppressive functions, consistent with the increased B10 cells in TNF-α-/- mice. Mechanistically, TNF-α diminished B10 and B10pro cells by inhibiting their glycolysis and proliferation. TNF-α also regulated the phosphatidylinositol phosphate signalling of B10 and B10pro cells and dampened the expression of SHIP-1, a dominant phosphatidylinositol phosphatase regulator of these cells. CONCLUSIONS: TNF-α provoked the proinflammatory phenotype of B10 and B10pro cells by disturbing SHIP-1 in RA, contributing to the disease development. Reinstating the immunosuppressive property of B10 and B10pro cells might represent novel therapeutic approaches for RA.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Linfocitos B Reguladores , Factor de Necrosis Tumoral alfa , Animales , Humanos , Ratones , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Enfermedades Autoinmunes/metabolismo , Linfocitos B Reguladores/metabolismo , Fenotipo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo
14.
Structure ; 32(4): 453-466.e6, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38309262

RESUMEN

SHIP1, an inositol 5-phosphatase, plays a central role in cellular signaling. As such, it has been implicated in many conditions. Exploiting SHIP1 as a drug target will require structural knowledge and the design of selective small molecules. We have determined apo, and magnesium and phosphate-bound structures of the phosphatase and C2 domains of SHIP1. The C2 domains of SHIP1 and the related SHIP2 modulate the activity of the phosphatase domain. To understand the mechanism, we performed activity assays, hydrogen-deuterium exchange mass spectrometry, and molecular dynamics on SHIP1 and SHIP2. Our findings demonstrate that the influence of the C2 domain is more pronounced for SHIP2 than SHIP1. We determined 91 structures of SHIP1 with fragments bound, with some near the interface between the two domains. We performed a mass spectrometry screen and determined four structures with covalent fragments. These structures could act as starting points for the development of potent, selective probes.


Asunto(s)
Dominios C2 , Monoéster Fosfórico Hidrolasas , Inositol Polifosfato 5-Fosfatasas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Humanos
15.
J Biol Chem ; 300(1): 105583, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141770

RESUMEN

Membrane polyphosphoinositides (PPIs) are lipid-signaling molecules that undergo metabolic turnover and influence a diverse range of cellular functions. PPIs regulate the activity and/or spatial localization of a number of actin-binding proteins (ABPs) through direct interactions; however, it is much less clear whether ABPs could also be an integral part in regulating PPI signaling. In this study, we show that ABP profilin1 (Pfn1) is an important molecular determinant of the cellular content of PI(4,5)P2 (the most abundant PPI in cells). In growth factor (EGF) stimulation setting, Pfn1 depletion does not impact PI(4,5)P2 hydrolysis but enhances plasma membrane (PM) enrichment of PPIs that are produced downstream of activated PI3-kinase, including PI(3,4,5)P3 and PI(3,4)P2, the latter consistent with increased PM recruitment of SH2-containing inositol 5' phosphatase (SHIP2) (a key enzyme for PI(3,4)P2 biosynthesis). Although Pfn1 binds to PPIs in vitro, our data suggest that Pfn1's affinity to PPIs and PM presence in actual cells, if at all, is negligible, suggesting that Pfn1 is unlikely to directly compete with SHIP2 for binding to PM PPIs. Additionally, we provide evidence for Pfn1's interaction with SHIP2 in cells and modulation of this interaction upon EGF stimulation, raising an alternative possibility of Pfn1 binding as a potential restrictive mechanism for PM recruitment of SHIP2. In conclusion, our findings challenge the dogma of Pfn1's binding to PM by PPI interaction, uncover a previously unrecognized role of Pfn1 in PI(4,5)P2 homeostasis and provide a new mechanistic avenue of how an ABP could potentially impact PI3K signaling byproducts in cells through lipid phosphatase control.


Asunto(s)
Fosfatidilinositoles , Profilinas , Factor de Crecimiento Epidérmico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Fosfatidilinositoles/metabolismo , Humanos , Células HEK293 , Profilinas/metabolismo
16.
Nat Commun ; 14(1): 7552, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38016942

RESUMEN

Microglia and neuroinflammation play an important role in the development and progression of Alzheimer's disease (AD). Inositol polyphosphate-5-phosphatase D (INPP5D/SHIP1) is a myeloid-expressed gene genetically-associated with AD. Through unbiased analyses of RNA and protein profiles in INPP5D-disrupted iPSC-derived human microglia, we find that reduction in INPP5D activity is associated with molecular profiles consistent with disrupted autophagy and inflammasome activation. These findings are validated through targeted pharmacological experiments which demonstrate that reduced INPP5D activity induces the formation of the NLRP3 inflammasome, cleavage of CASP1, and secretion of IL-1ß and IL-18. Further, in-depth analyses of human brain tissue across hundreds of individuals using a multi-analytic approach provides evidence that a reduction in function of INPP5D in microglia results in inflammasome activation in AD. These findings provide insights into the molecular mechanisms underlying microglia-mediated processes in AD and highlight the inflammasome as a potential therapeutic target for modulating INPP5D-mediated vulnerability to AD.


Asunto(s)
Enfermedad de Alzheimer , Inflamasomas , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Microglía/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo
17.
Mol Neurodegener ; 18(1): 89, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38017562

RESUMEN

Recent genetic studies on Alzheimer's disease (AD) have brought microglia under the spotlight, as loci associated with AD risk are enriched in genes expressed in microglia. Several of these genes have been recognized for their central roles in microglial functions. Increasing evidence suggests that SHIP1, the protein encoded by the AD-associated gene INPP5D, is an important regulator of microglial phagocytosis and immune response. A recent study from our group identified SHIP1 as a negative regulator of the NLRP3 inflammasome in human iPSC-derived microglial cells (iMGs). In addition, we found evidence for a connection between SHIP1 activity and inflammasome activation in the AD brain. The NLRP3 inflammasome is a multiprotein complex that induces the secretion of pro-inflammatory cytokines as part of innate immune responses against pathogens and endogenous damage signals. Previously published studies have suggested that the NLRP3 inflammasome is activated in AD and contributes to AD-related pathology. Here, we provide an overview of the current understanding of the microglial NLRP3 inflammasome in the context of AD-related inflammation. We then review the known intracellular functions of SHIP1, including its role in phosphoinositide signaling, interactions with microglial phagocytic receptors such as TREM2 and evidence for its intersection with NLRP3 inflammasome signaling. Through rigorous examination of the intricate connections between microglial signaling pathways across several experimental systems and postmortem analyses, the field will be better equipped to tailor newly emerging therapeutic strategies targeting microglia in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Inflamasomas/metabolismo , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Encéfalo/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo
18.
Cells ; 12(19)2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37830592

RESUMEN

Chronic neuroinflammation and glial activation are associated with the development of many neurodegenerative diseases and neuropsychological disorders. Recent evidence suggests that the protein tyrosine kinase Lyn and the lipid phosphatase SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) regulate neuroimmunological responses, but their homeostatic roles remain unclear. The current study investigated the roles of Lyn and SHIP-1 in microglial responses in the steady-state adult mouse brain. Young adult Lyn-/- and SHIP-1-/- mice underwent a series of neurobehavior tests and postmortem brain analyses. The microglial phenotype and activation state were examined by immunofluorescence and flow cytometry, and neuroimmune responses were assessed using gene expression analysis. Lyn-/- mice had an unaltered behavioral phenotype, neuroimmune response, and microglial phenotype, while SHIP-1-/- mice demonstrated reduced explorative activity and exhibited microglia with elevated activation markers but reduced granularity. In addition, expression of several neuroinflammatory genes was increased in SHIP-1-/- mice. In response to LPS stimulation ex vivo, the microglia from both Lyn-/- and SHIP-1-/- showed evidence of hyper-activity with augmented TNF-α production. Together, these findings demonstrate that both Lyn and SHIP-1 have the propensity to control microglial responses, but only SHIP-1 regulates neuroinflammation and microglial activation in the steady-state adult brain, while Lyn activity appears dispensable for maintaining brain homeostasis.


Asunto(s)
Microglía , Enfermedades Neuroinflamatorias , Ratones , Animales , Microglía/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Transducción de Señal , Encéfalo/metabolismo
19.
Genes (Basel) ; 14(10)2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895194

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia, accounting for approximately 38.5 million cases of all-cause dementia. Over 60% of these individuals live in low- and middle-income countries and are the worst affected, especially by its deleterious effects on the productivity of both patients and caregivers. Numerous risk factors for the disease have been identified and our understanding of gene-environment interactions have shed light on several gene variants that contribute to the most common, sporadic form of AD. Microglial cells, the innate immune cells of the central nervous system (CNS), have long been established as guardians of the brain by providing neuroprotection and maintaining cellular homeostasis. A protein with a myriad of effects on various important signaling pathways that is expressed in microglia is the Src Homology 2 (SH2) domain-containing Inositol 5' Phosphatase 1 (SHIP1) protein. Encoded by the INPP5D (Inositol Polyphosphate-5-Phosphatase D) gene, SHIP1 has diminutive effects on most microglia signaling processes. Polymorphisms of the INPP5D gene have been found to be associated with a significantly increased risk of AD. Several studies have elucidated mechanistic processes by which SHIP1 exerts its perturbations on signaling processes in peripheral immune cells. However, current knowledge of the controllers of INPP5D/SHIP1 expression and the idiosyncrasies of its influences on signaling processes in microglia and their relevance to AD pathophysiology is limited. In this review, we summarize these discoveries and discuss the potential of leveraging INPP5D/SHIP1 as a therapeutic target for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Microglía/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Inositol , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo
20.
Eur J Immunol ; 53(12): e2350446, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37742135

RESUMEN

Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Inmunoterapia , Inmunidad Innata , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Inositol Polifosfato 5-Fosfatasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...