Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Int J Biol Macromol ; 268(Pt 1): 131734, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653431

RESUMEN

SARS-CoV-2 infection results in cytokine burst, leading to proinflammatory responses in lungs of COVID-19 patients. SARS-CoV-2 ORF3a triggers the generation of proinflammatory cytokines. However, the underlying mechanism of dysregulation of proinflammatory responses is not well understood. We studied the role of microRNA in the generation of proinflammatory responses as a bystander effect of SARS-CoV-2 ORF3a in human lung epithelial cells. We observed upregulation of hsa-miR-155-5p in SARS-CoV-2 ORF3a transfected human lung epithelial cells, which led to the reduced expression of SHIP1. This resulted in phosphorylation of AKT and NF-κB, which further led to the increased expression of the proinflammatory cytokines IL-6 and TNF-α. Additionally, overexpression and knockdown studies of hsa-miR-155-5p were performed to confirm the role of hsa-miR-155-5p in the regulation of the SHIP1. We demonstrated that hsa-miR-155-5p modulates the proinflammatory response by activating the PI3K/AKT pathway through the inhibition of SHIP1 in SARS-CoV-2 ORF3a transfected human lung epithelial cells.


Asunto(s)
COVID-19 , Células Epiteliales , Pulmón , MicroARNs , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Proteínas Proto-Oncogénicas c-akt , SARS-CoV-2 , Transducción de Señal , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , COVID-19/genética , COVID-19/virología , COVID-19/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/virología , Pulmón/virología , Pulmón/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , FN-kappa B/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Células A549
2.
Mol Immunol ; 170: 35-45, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613944

RESUMEN

Microglia play a pivotal role in the pathology of Alzheimer's Disease (AD), with the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) central to their neuroprotective functions. The R47H variant of TREM2 has emerged as a significant genetic risk factor for AD, leading to a loss-of-function phenotype in mouse AD models. This study elucidates the roles of TREM2 in human microglia-like HMC3 cells and the regulation of these functions by SH2-containing inositol-5'-phosphatase 1 (SHIP1). Using stable cell lines expressing wild-type TREM2, the R47H variant, and TREM2-deficient lines, we found that functional TREM2 is essential for the phagocytosis of Aß, lysosomal capacity, and mitochondrial activity. Notably, the R47H variant displayed increased phagocytic activity towards apoptotic neurons. Introducing SHIP1, known to modulate TREM2 signaling in other cells, revealed its role as a negative regulator of these TREM2-mediated functions. Moreover, pharmacological inhibition of both SHIP1 and its isoform SHIP2 amplified Aß phagocytosis and lysosomal capacity, independently of TREM2 or SHIP1 expression, suggesting a potential regulatory role for SHIP2 in these functions. The absence of TREM2, combined with the presence of both SHIP isoforms, suppressed mitochondrial activity. However, pan-SHIP1/2 inhibition enhanced mitochondrial function in these cells. In summary, our findings offer a deeper understanding of the relationship between TREM2 variants and SHIP1 in microglial functions, and emphasize the therapeutic potential of targeting the TREM2 and SHIP1 pathways in microglia for neurodegenerative diseases.


Asunto(s)
Glicoproteínas de Membrana , Microglía , Fagocitosis , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Receptores Inmunológicos , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Microglía/metabolismo , Humanos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Fagocitosis/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Línea Celular , Mitocondrias/metabolismo , Animales , Lisosomas/metabolismo , Péptidos beta-Amiloides/metabolismo , Apoptosis/genética , Transducción de Señal , Ratones
3.
Artículo en Chino | MEDLINE | ID: mdl-38677987

RESUMEN

Objective: To analyze the differential genes and related signaling pathways of microglia subpopulations in Parkinson's disease (PD) -like mouse brains induced by paraquat (PQ) based on single-cell RNA sequencing, and provide clues to elucidate the mechanism of PQ-induced PD-like changes in the brain of animals. Methods: In September 2021, six male 6-week-old C57BL/6 mice were randomly divided into control group and experimental group (three mice in each group) . The mice were injected with saline, 10.0 mg/kg PQ intraperitoneally, once every three days, and 10 consecutive injections were used for modeling. After infection, the brains of mice were taken and 10×Genomics single-cell RNA sequencing was performed. Microglia subpopulations were screened based on gene expression characteristics, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. The differential genes of microglia subpopulations between the experimental group and control group were further screened, and functional enrichment analysis was performed using bioinformatics tools. Mouse microglia (BV2 cells) were treated with 0, 60, 90 µmol/L PQ solution, respectively. And real-time fluorescence quantitative PCR experiments were conducted to validate the expressions of differential genes hexokinase 2 (Hk2) , ATPase H+ Transporting V0 Subunit B (Atp6v0b) and Neuregulin 1 (Nrg1) . Results: Cluster 7 and Cluster 20 were identified as microglia subpopulations based on the signature genes inositol polyphosphate-5-phosphatase d, Inpp5d (Inpp5d) and transforming growth factor beta receptor 1 (Tgfbr1) , and they reflected the microglia-activated M2 phenotype. The bioinformatics analysis showed that the characteristic genes of identified microglia subpopulations were enriched in endocytosis. In terms of molecular function, it mainly enriched in transmembrane receptor protein kinase activity and cytokine binding. The up-regulated genes of Cluster 7 were mainly enriched in lysosomal pathway, endocytosis pathway, and down-regulated genes were mainly enriched in neurodegenerative disease and other signaling pathways. The up-regulated genes of Cluster 20 were mainly enriched in signaling pathways related to PD, and down-regulated genes were mainly enriched in cyclic adenosine 3', 5'-monophosphate (cAMP) signaling pathways, neurological development, synaptic function and other signaling pathways. The results of real-time fluorescence quantitative PCR showed that the expressions of Hk2 mRNA and Atp6v0b mRNA increased and the expression of Nrg1 mRNA decreased in the 90 µmol/L PQ-treated BV2 cells compared with the 0 µmol/L, and the differences were statistically significant (P<0.05) . Conclusion: Microglia are activated in the PQ-induced PD-like mouse model and polarized toward the M2 phenotype. And their functions are associated with lysosomal (endocytosis) , synaptic functions and the regulation of PD-related pathways.


Asunto(s)
Encéfalo , Ratones Endogámicos C57BL , Microglía , Paraquat , Animales , Paraquat/toxicidad , Ratones , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Perfilación de la Expresión Génica
4.
Structure ; 32(4): 453-466.e6, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38309262

RESUMEN

SHIP1, an inositol 5-phosphatase, plays a central role in cellular signaling. As such, it has been implicated in many conditions. Exploiting SHIP1 as a drug target will require structural knowledge and the design of selective small molecules. We have determined apo, and magnesium and phosphate-bound structures of the phosphatase and C2 domains of SHIP1. The C2 domains of SHIP1 and the related SHIP2 modulate the activity of the phosphatase domain. To understand the mechanism, we performed activity assays, hydrogen-deuterium exchange mass spectrometry, and molecular dynamics on SHIP1 and SHIP2. Our findings demonstrate that the influence of the C2 domain is more pronounced for SHIP2 than SHIP1. We determined 91 structures of SHIP1 with fragments bound, with some near the interface between the two domains. We performed a mass spectrometry screen and determined four structures with covalent fragments. These structures could act as starting points for the development of potent, selective probes.


Asunto(s)
Dominios C2 , Monoéster Fosfórico Hidrolasas , Inositol Polifosfato 5-Fosfatasas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Humanos
5.
Ann Rheum Dis ; 83(5): 576-588, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38302261

RESUMEN

OBJECTIVES: B10 and B10pro cells suppress immune responses via secreting interleukin (IL)-10. However, their regulators and underlying mechanisms, especially in human autoimmune diseases, are elusive. This study aimed to address these questions in rheumatoid arthritis (RA), one of the most common highly disabling autoimmune diseases. METHODS: The frequencies and functions of B10 and B10pro cells in healthy individuals and patients with RA were first analysed. The effects of proinflammatory cytokines, particularly tumour necrosis factor (TNF)-α on the quantity, stability and pathogenic phenotype of these cells, were then assessed in patients with RA before and after anti-TNF therapy. The underlying mechanisms were further investigated by scRNA-seq database reanalysis, transcriptome sequencing, TNF-α-/- and B cell-specific SHIP-1-/- mouse disease model studies. RESULTS: TNF-α was a key determinant for B10 cells. TNF-α elicited the proinflammatory feature of B10 and B10pro cells by downregulating IL-10, and upregulating interferon-γ and IL-17A. In patients with RA, B10 and B10pro cells were impaired with exacerbated proinflammatory phenotype, while anti-TNF therapy potently restored their frequencies and immunosuppressive functions, consistent with the increased B10 cells in TNF-α-/- mice. Mechanistically, TNF-α diminished B10 and B10pro cells by inhibiting their glycolysis and proliferation. TNF-α also regulated the phosphatidylinositol phosphate signalling of B10 and B10pro cells and dampened the expression of SHIP-1, a dominant phosphatidylinositol phosphatase regulator of these cells. CONCLUSIONS: TNF-α provoked the proinflammatory phenotype of B10 and B10pro cells by disturbing SHIP-1 in RA, contributing to the disease development. Reinstating the immunosuppressive property of B10 and B10pro cells might represent novel therapeutic approaches for RA.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Linfocitos B Reguladores , Factor de Necrosis Tumoral alfa , Animales , Humanos , Ratones , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Enfermedades Autoinmunes/metabolismo , Linfocitos B Reguladores/metabolismo , Fenotipo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo
6.
Genes (Basel) ; 14(10)2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37895194

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia, accounting for approximately 38.5 million cases of all-cause dementia. Over 60% of these individuals live in low- and middle-income countries and are the worst affected, especially by its deleterious effects on the productivity of both patients and caregivers. Numerous risk factors for the disease have been identified and our understanding of gene-environment interactions have shed light on several gene variants that contribute to the most common, sporadic form of AD. Microglial cells, the innate immune cells of the central nervous system (CNS), have long been established as guardians of the brain by providing neuroprotection and maintaining cellular homeostasis. A protein with a myriad of effects on various important signaling pathways that is expressed in microglia is the Src Homology 2 (SH2) domain-containing Inositol 5' Phosphatase 1 (SHIP1) protein. Encoded by the INPP5D (Inositol Polyphosphate-5-Phosphatase D) gene, SHIP1 has diminutive effects on most microglia signaling processes. Polymorphisms of the INPP5D gene have been found to be associated with a significantly increased risk of AD. Several studies have elucidated mechanistic processes by which SHIP1 exerts its perturbations on signaling processes in peripheral immune cells. However, current knowledge of the controllers of INPP5D/SHIP1 expression and the idiosyncrasies of its influences on signaling processes in microglia and their relevance to AD pathophysiology is limited. In this review, we summarize these discoveries and discuss the potential of leveraging INPP5D/SHIP1 as a therapeutic target for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Microglía/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Inositol , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo
7.
Cells ; 12(19)2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37830592

RESUMEN

Chronic neuroinflammation and glial activation are associated with the development of many neurodegenerative diseases and neuropsychological disorders. Recent evidence suggests that the protein tyrosine kinase Lyn and the lipid phosphatase SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) regulate neuroimmunological responses, but their homeostatic roles remain unclear. The current study investigated the roles of Lyn and SHIP-1 in microglial responses in the steady-state adult mouse brain. Young adult Lyn-/- and SHIP-1-/- mice underwent a series of neurobehavior tests and postmortem brain analyses. The microglial phenotype and activation state were examined by immunofluorescence and flow cytometry, and neuroimmune responses were assessed using gene expression analysis. Lyn-/- mice had an unaltered behavioral phenotype, neuroimmune response, and microglial phenotype, while SHIP-1-/- mice demonstrated reduced explorative activity and exhibited microglia with elevated activation markers but reduced granularity. In addition, expression of several neuroinflammatory genes was increased in SHIP-1-/- mice. In response to LPS stimulation ex vivo, the microglia from both Lyn-/- and SHIP-1-/- showed evidence of hyper-activity with augmented TNF-α production. Together, these findings demonstrate that both Lyn and SHIP-1 have the propensity to control microglial responses, but only SHIP-1 regulates neuroinflammation and microglial activation in the steady-state adult brain, while Lyn activity appears dispensable for maintaining brain homeostasis.


Asunto(s)
Microglía , Enfermedades Neuroinflamatorias , Ratones , Animales , Microglía/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Transducción de Señal , Encéfalo/metabolismo
8.
Eur J Immunol ; 53(12): e2350446, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37742135

RESUMEN

Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Inmunoterapia , Inmunidad Innata , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Inositol Polifosfato 5-Fosfatasas/metabolismo
9.
J Biol Chem ; 299(8): 105022, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37423304

RESUMEN

Signal transduction downstream of growth factor and immune receptor activation relies on the production of phosphatidylinositol-(3,4,5)-trisphosphate (PI(3,4,5)P3) lipids by PI3K. Regulating the strength and duration of PI3K signaling in immune cells, Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) controls the dephosphorylation of PI(3,4,5)P3 to generate phosphatidylinositol-(3,4)-bisphosphate. Although SHIP1 has been shown to regulate neutrophil chemotaxis, B-cell signaling, and cortical oscillations in mast cells, the role that lipid and protein interactions serve in controlling SHIP1 membrane recruitment and activity remains unclear. Using single-molecule total internal reflection fluorescence microscopy, we directly visualized membrane recruitment and activation of SHIP1 on supported lipid bilayers and the cellular plasma membrane. We find that localization of the central catalytic domain of SHIP1 is insensitive to dynamic changes in PI(3,4,5)P3 and phosphatidylinositol-(3,4)-bisphosphate both in vitro and in vivo. Very transient SHIP1 membrane interactions were detected only when membranes contained a combination of phosphatidylserine and PI(3,4,5)P3 lipids. Molecular dissection reveals that SHIP1 is autoinhibited with the N-terminal Src homology 2 domain playing a critical role in suppressing phosphatase activity. Robust SHIP1 membrane localization and relief of autoinhibition can be achieved through interactions with immunoreceptor-derived phosphopeptides presented either in solution or conjugated to a membrane. Overall, this work provides new mechanistic details concerning the dynamic interplay between lipid-binding specificity, protein-protein interactions, and the activation of autoinhibited SHIP1.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Monoéster Fosfórico Hidrolasas , Inositol Polifosfato 5-Fosfatasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Dominios Homologos src , Fosfatidilinositoles , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo
10.
Alzheimers Dement ; 19(11): 4908-4921, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37061460

RESUMEN

INTRODUCTION: Mutations in INPP5D, which encodes for the SH2-domain-containing inositol phosphatase SHIP-1, have recently been linked to an increased risk of developing late-onset Alzheimer's disease. While INPP5D expression is almost exclusively restricted to microglia in the brain, little is known regarding how SHIP-1 affects neurobiology or neurodegenerative disease pathogenesis. METHODS: We generated and investigated 5xFAD Inpp5dfl/fl Cx3cr1Ert2Cre mice to ascertain the function of microglial SHIP-1 signaling in response to amyloid beta (Aß)-mediated pathology. RESULTS: SHIP-1 deletion in microglia led to substantially enhanced recruitment of microglia to Aß plaques, altered microglial gene expression, and marked improvements in neuronal health. Further, SHIP-1 loss enhanced microglial plaque containment and Aß engulfment when compared to microglia from Cre-negative 5xFAD Inpp5dfl/fl littermate controls. DISCUSSION: These results define SHIP-1 as a pivotal regulator of microglial responses during Aß-driven neurological disease and suggest that targeting SHIP-1 may offer a promising strategy to treat Alzheimer's disease. HIGHLIGHTS: Inpp5d deficiency in microglia increases plaque-associated microglia numbers. Loss of Inpp5d induces activation and phagocytosis transcriptional pathways. Plaque encapsulation and engulfment by microglia are enhanced with Inpp5d deletion. Genetic ablation of Inpp5d protects against plaque-induced neuronal dystrophy.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/patología , Microglía/metabolismo , Ratones Transgénicos , Enfermedades Neurodegenerativas/patología , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Factores de Riesgo , Placa Amiloide/patología , Modelos Animales de Enfermedad
11.
J Immunol ; 210(6): 709-720, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36881903

RESUMEN

Multistep mast cell desensitization blocks the release of mediators following IgE crosslinking with increasing doses of Ag. Although its in vivo application has led to the safe reintroduction of drugs and foods in IgE-sensitized patients at risk for anaphylaxis, the mechanisms of the inhibitory process have remained elusive. We sought to investigate the kinetics, membrane, and cytoskeletal changes and to identify molecular targets. IgE-sensitized wild-type murine (WT) and FcεRIα humanized (h) bone marrow mast cells were activated and desensitized with DNP, nitrophenyl, dust mites, and peanut Ags. The movements of membrane receptors, FcεRI/IgE/Ag, actin, and tubulin and the phosphorylation of Syk, Lyn, P38-MAPK, and SHIP-1 were assessed. Silencing SHIP-1 protein was used to dissect the SHIP-1 role. Multistep IgE desensitization of WT and transgenic human bone marrow mast cells blocked the release of ß-hexosaminidase in an Ag-specific fashion and prevented actin and tubulin movements. Desensitization was regulated by the initial Ag dose, number of doses, and time between doses. FcεRI, IgE, Ags, and surface receptors were not internalized during desensitization. Phosphorylation of Syk, Lyn, p38 MAPK, and SHIP-1 increased in a dose-response manner during activation; in contrast, only SHIP-1 phosphorylation increased in early desensitization. SHIP-1 phosphatase function had no impact on desensitization, but silencing SHIP-1 increased ß-hexoxaminidase release, preventing desensitization. Multistep IgE mast cell desensitization is a dose- and time-regulated process that blocks ß-hexosaminidase, impacting membrane and cytoskeletal movements. Signal transduction is uncoupled, favoring early phosphorylation of SHIP-1. Silencing SHIP-1 impairs desensitization without implicating its phosphatase function.


Asunto(s)
Actinas , Mastocitos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Animales , Humanos , Ratones , Inmunoglobulina E , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Monoéster Fosfórico Hidrolasas , Receptores de IgE , Tubulina (Proteína)
12.
Genes (Basel) ; 14(3)2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36981033

RESUMEN

The single nucleotide polymorphisms rs35349669 and rs10933431 within Inositol Polyphosphate-5-Phosphatase D (INPP5D) are strongly associated with Alzheimer's Disease risk. To better understand INPP5D expression in the brain, we investigated INPP5D isoform expression as a function of rs35349669 and rs10933431, as well as Alzheimer's disease neuropathology, by qPCR and isoform-specific primers. In addition, INPP5D allelic expression imbalance was evaluated relative to rs1141328 within exon 1. Expression of INPP5D isoforms associated with transcription start sites in exon 1 and intron 14 was increased in individuals with high Alzheimer's disease neuropathology. In addition, a novel variant with 47bp lacking from exon 12 increased expression in Alzheimer's Disease brains, accounting for 13% of total INPP5D expression, and was found to undergo nonsense-mediated decay. Although inter-individual variation obscured a possible polymorphism effect on INPP5D isoform expression as measured by qPCR, rs35349669 was associated with rs1141328 allelic expression imbalance, suggesting that rs35349669 is significantly associated with full-length INPP5D isoform expression. In summary, expression of INPP5D isoforms with start sites in exon 1 and intron 14 are increased in brains with high Alzheimer's Disease neuropathology, a novel isoform lacking the phosphatase domain was significantly increased with the disease, and the polymorphism rs35349669 correlates with allele-specific full-length INPP5D expression.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Humanos , Alelos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
13.
Alzheimers Dement ; 19(6): 2239-2252, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36448627

RESUMEN

INTRODUCTION: The inositol polyphosphate-5-phosphatase D (INPP5D) gene encodes a dual-specificity phosphatase that can dephosphorylate both phospholipids and phosphoproteins. Single nucleotide polymorphisms in INPP5D impact risk for developing late onset sporadic Alzheimer's disease (LOAD). METHODS: To assess the consequences of inducible Inpp5d knockdown in microglia of APPKM670/671NL /PSEN1Δexon9 (PSAPP) mice, we injected 3-month-old Inpp5dfl/fl /Cx3cr1CreER/+ and PSAPP/Inpp5dfl/fl /Cx3cr1CreER/+ mice with either tamoxifen (TAM) or corn oil (CO) to induce recombination. RESULTS: At age 6 months, we found that the percent area of 6E10+ deposits and plaque-associated microglia in Inpp5d knockdown mice were increased compared to controls. Spatial transcriptomics identified a plaque-specific expression profile that was extensively altered by Inpp5d knockdown. DISCUSSION: These results demonstrate that conditional Inpp5d downregulation in the PSAPP mouse increases plaque burden and recruitment of microglia to plaques. Spatial transcriptomics highlighted an extended gene expression signature associated with plaques and identified CST7 (cystatin F) as a novel marker of plaques. HIGHLIGHTS: Inpp5d knockdown increases plaque burden and plaque-associated microglia number. Spatial transcriptomics identifies an expanded plaque-specific gene expression profile. Plaque-induced gene expression is altered by Inpp5d knockdown in microglia. Our plaque-associated gene signature overlaps with human Alzheimer's disease gene networks.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Humanos , Animales , Lactante , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Microglía/metabolismo , Ratones Transgénicos , Placa Amiloide/metabolismo , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo
14.
Int Immunopharmacol ; 115: 109625, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586275

RESUMEN

Aberrant neutrophil extracellular traps (NETs) are involved in the pathogenesis of rheumatoid arthritis (RA). However, the specific pathway leading to NET formation in RA is poorly understood. Therefore, therapies targeting NETs are not available in RA. In this study, we demonstrated Src homology 2 domain-containing inositol phosphatase-1 (SHIP1) function as a hub to regulate NETosis through SHIP1/ p38 MAPK/TNF-α pathway both in vitro and ex vivo and inhibiting SHIP1 expression ameliorated RA symptoms in vivo. Neutrophils from RA patients showed enhanced NETosis as well as increased SHIP1, p38 mitogen-activated protein kinase (MAPK) family expression and tumor necrosis factor-α (TNF-α) expression. Inhibiting SHIP1 in neutrophils using small molecules counteracted the above-mentioned dysregulations and resulted in decrease in NETosis, p38 expression and TNF-α concentration. Consistent with this, SHIP1 agonist led to upregulated p38MAPK and NET formation. Moreover, inhibiting SHIP1 in vivo led to decreased NETosis and showed beneficial therapeutic effects in Collagen-induced arthritis (CIA) mice. Taken together, these results indicated that activation of SHIP1/MAPK/TNF-α pathway was necessary for upregulated NETosis in RA, which provided evidence for targeting SHIP1 in RA treatment.


Asunto(s)
Artritis Reumatoide , Trampas Extracelulares , Animales , Ratones , Artritis Reumatoide/metabolismo , Neutrófilos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
15.
Cell Signal ; 101: 110485, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208705

RESUMEN

The characterization of dysregulated proteins in cell signaling pathways is important for the development of therapeutic approaches. The PI3K/AKT/mTOR pathway is frequently upregulated in cancer cells and the SH2-containing inositol 5-phosphatase SHIP1 can act as a negative regulator of the PI3K/AKT pathway. In this study, we investigated different patient-derived mutations within the conserved phosphatase domain of SHIP1. We could demonstrate that 2 out of 7 SHIP1-phosphatase domain mutations (G585K and R673Q) possessed reduced protein expression and reduced enzymatic activity in comparison to SHIP1 wild type (WT) protein and two additional mutations (E452K, R551Q) possessed reduced enzymatic activity at a comparable expression level compared to SHIP1 WT in the cell line H1299. The investigated mutations resulted in protein expression levels that were up to 93% lower than those of the SHIP1 WT for SHIP1 mutant R673Q and the enzymatic activity was below the detection limit of the performed phosphatase assay. Whereas the protein level of the R673Q mutant was reduced in comparison to SHIP1 WT the mRNA level was comparable indicating a post-transcriptional regulation. SHIP1 R673Q was rapidly degraded, with a calculated half-life of l.5 h. In addition, SHIP1 R673Q levels were significantly increased by the treatment with the proteasome inhibitor MG-132 in comparison to the DMSO control. Therefore, SHIP1 was confirmed as the target of enhanced proteasomal degradation. Computational analysis of the wild type and mutant protein structures revealed that the loss of the positively charged arginine residue R673 is associated with the loss of two salt bridges to the negatively charged amino acids D617 and E634 leading to an intramolecular instability of the mutated SHIP1 R673Q protein. Six out of seven SHIP1 mutants significantly affected the PI3K/AKT/mTOR pathway in the three cancer cell lines H1299, Reh and Sem. Four out of seven SHIP1 mutants affected phosphorylation of AKT and its target GSK3ß positively compared to SHIP1 WT, whereas a negative effect on the phosphorylation of S6 was found in five out of seven mutants. In general, SHIP1 mutants impacting signal transduction were either associated with decreased SHIP1 activity or SHIP1 expression or both. Overall, the presented results indicate a regulation of the protein expression and activity of SHIP1 by patient-derived mutations in its phosphatase domain.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Monoéster Fosfórico Hidrolasas , Humanos , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo
16.
Antiviral Res ; 207: 105424, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36155071

RESUMEN

Herpetic simplex keratitis (HSK) mainly represents an immune cell-mediated, and more specifically, CD4+ T cell-orchestrated inflammatory response to virus invasion. The virus in infected corneas could be easily inhibited or hidden in the trigeminal ganglion using antiviral drugs, but the immune-related inflammation will last for a long time and lead to significant complications. In the present study, we found that the subconjunctival injection of SHIP-1 activator AQX1125 in mouse HSK model alleviated the corneal inflammatory and angiogenic responses, as well as promoted quicker recovery of the cornea, with significantly fewer infiltration of CD4+ T lymphocytes. Furthermore, using primary CD4+ T lymphocytes, we observed that by modulating PI3K signaling and the expression of transcription factors KLF2 and CCR7, SHIP-1 could significantly influence the migration of lymphocytes toward CCL19 and 21, which are the "exit cues" for cells to emigrate from inflammatory sites. Thus, we propose that the pharmacological SHIP-1 activation represents a new potential therapeutic approach to control HSK lesions, and its function on the CCR7-CCL19/21 biological axis may be a novel underlying mechanism for its anti-inflammatory action.


Asunto(s)
Herpesvirus Humano 1 , Queratitis Herpética , Animales , Antivirales/uso terapéutico , Linfocitos T CD4-Positivos , Córnea , Modelos Animales de Enfermedad , Herpesvirus Humano 1/fisiología , Queratitis Herpética/tratamiento farmacológico , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/uso terapéutico , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Pronóstico , Receptores CCR7/genética , Receptores CCR7/metabolismo , Receptores CCR7/uso terapéutico , Factores de Transcripción/metabolismo
17.
Mol Biol Rep ; 49(9): 8575-8586, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35834034

RESUMEN

BACKGROUND: Pulpitis is a commonly seen oral inflammation condition in clinical practice, it can cause much pain for the patient and may induce infections in other systems. Much is still unknown for the pathogenic mechanism of pulpitis. In this work, we discovered that the expression of miR-155 was associated with dental pulpal inflammation both in vivo and in vitro. METHODS AND RESULTS: Our experiments of LPS stimulated odontoblast cell line MDPC-23 showed miR-155 could act as a positive regulator by increasing the production of pro-inflammatory cytokines IL-1ß and IL-6 during inflammatory responses, whereas knockdown of miR-155 can reverse the effects. Bioinformatics analysis demonstrated that SHIP1 is a direct target of miR-155 in odontoblasts, this result was further verified at both mRNA and protein level. Inhibition of miR-155 resulted in the downregulation of inflammation factors, while co-transfection of si-SHIP1 and miR-155 inhibitor promoted the inflammatory responses. Treatment with miR-155 mimic or si-SHIP1 up-regulated the protein level of p-PI3K and p-AKT. By contrast, miR-155 inhibitor exerted the opposite effects. miR-155 mimics could upregulate the gene expression of IL-1ß and IL-6. Co-transfection of LY294002 and miR-155 mimic attenuated the inflammatory responses. Consistent with in vitro results, miR-155-/- mice could alleviate inflammatory response, as well as decrease the activation of p-PI3K and p-AKT, whereas increase the activation of SHIP1. CONCLUSIONS: Our data revealed a novel role for miR-155 in regulation of dental pulpal inflammatory response by targeting SHIP1 through PI3K/AKT signaling pathway.


Asunto(s)
MicroARNs , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Pulpitis , Animales , Inflamación/genética , Interleucina-6/genética , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pulpitis/genética
18.
FEBS Lett ; 596(4): 417-426, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34990021

RESUMEN

PI3Kß is required for invadopodia-mediated matrix degradation by breast cancer cells. Invadopodia maturation requires GPCR activation of PI3Kß and its coupling to SHIP2 to produce PI(3,4)P2 . We now test whether selectivity for PI3Kß is preserved under conditions of mutational increases in PI3K activity. In breast cancer cells where PI3Kß is inhibited, short-chain diC8-PIP3 rescues gelatin degradation in a SHIP2-dependent manner; rescue by diC8-PI(3,4)P2 is SHIP2-independent. Surprisingly, the expression of either activated PI3Kß or PI3Kα mutants rescued the effects of PI3Kß inhibition. In both cases, gelatin degradation was SHIP2-dependent. These data confirm the requirement for PIP3 conversion to PI(3,4)P2 for invadopodia function and suggest that selectivity for distinct PI3K isotypes may be obviated by mutational activation of the PI3K pathway.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Matriz Extracelular/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Podosomas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Diglicéridos/química , Matriz Extracelular/ultraestructura , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/metabolismo , Mutación , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Podosomas/ultraestructura , Transducción de Señal
19.
BMC Pulm Med ; 21(1): 362, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758804

RESUMEN

BACKGROUND: LncRNA GAS5 and miR-155 are reported to play opposite roles in lung inflammatory responses. Lung inflammation participates in childhood pneumonia, indicating the involvement of GAS5 and miR-155 in pneumonia. The study aimed to analyze the potential interaction between GAS5 and miR-155 in childhood pneumonia. METHODS: GAS5 and miR-155 levels in plasma samples from pneumonia patients and controls were detected using RT-qPCR. The role of GAS5 in miR-155 RNA gene methylation in human bronchial epithelial cells (HBEpCs) was analyzed by methylation analysis. Flow cytometry and RT-qPCR were applied to analyze cell apoptosis and SHIP-1 expression, respectively. RESULTS: GAS5 was downregulated in pneumonia, and miR-155 was upregulated in pneumonia. GAS5 and miR-155 were inversely correlated. GAS5 overexpression decreased miR-155 expression in HBEpCs, while miR-155 overexpression showed no significant effects on GAS5 expression. In addition, GAS5 suppressed LPS-induced HBEpC apoptosis, promoted SHIP-1 expression, and reduced the enhancing effect of miR-155 on cell apoptosis and SHIP-1 expression. CONCLUSIONS: GAS5 may participate in childhood pneumonia by inhibiting cell apoptosis and promoting SHIP-1 expression via downregulating miR-155.


Asunto(s)
Proteínas Fetales/economía , MicroARNs/genética , Proteínas Asociadas a Microtúbulos/economía , Proteínas Nucleares/economía , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Neumonía/genética , ARN Largo no Codificante/genética , Apoptosis/genética , Preescolar , Regulación hacia Abajo/genética , Femenino , Humanos , Lactante , Masculino , Mongolia , Regulación hacia Arriba/genética
20.
J Cell Mol Med ; 25(21): 10049-10060, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34626074

RESUMEN

Liver fibrogenesis is a dynamic cellular and tissue process which has the potential to progress into cirrhosis of even liver cancer and liver failure. The activation of hepatic stellate cells (HSCs) is the central event underlying liver fibrosis. Besides, hepatic macrophages have been proposed as potential targets in combatting fibrosis. As for the relationship between HSCs and hepatic macrophages in liver fibrosis, it is generally considered that macrophages promoted liver fibrosis via activating HSCs. However, whether activated HSCs could in turn affect macrophage polarization has rarely been studied. In this study, mRNAs with significant differences were explored using exosomal RNA-sequencing of activated Lx-2 cells and normal RNA-sequencing of DHFR loss-of-function Lx-2 cell models. Cell functional experiments in both Lx-2 cells and macrophages animal model experiments were performed. The results basically confirmed exosomes secreted from activated HSCs could promote M1 polarization of macrophages further. Exosome harbouring DHFR played an important role in this process. DHFR silence in HSCs could decrease Lx-2 activation and M1 polarization of M0 macrophages and then alleviate the development of liver fibrosis both in vitro and vivo. Our work brought a new insight that exosomal DHFR derived from HSCs had a crucial role in crosstalk between HSCs activation and macrophage polarization, which may be a potential therapeutic target in liver fibrosis.


Asunto(s)
Silenciador del Gen , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Macrófagos/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Animales , Biomarcadores , Comunicación Celular , Línea Celular , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Exosomas/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Cirrosis Hepática/patología , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Masculino , Modelos Biológicos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA