Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.305
Filtrar
1.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998973

RESUMEN

Nucleic acid chemistry is a huge research area that has received new impetus due to the recent explosive success of oligonucleotide therapy. In order for an oligonucleotide to become clinically effective, its monomeric parts are subjected to modifications. Although a large number of redesigned natural nucleic acids have been proposed in recent years, the vast majority of them are combinations of simple modifications proposed over the past 50 years. This review is devoted to the main modifications of the sugar phosphate backbone of natural nucleic acids known to date. Here, we propose a systematization of existing knowledge about modifications of nucleic acid monomers and an acceptable classification from the point of view of chemical logic. The visual representation is intended to inspire researchers to create a new type of modification or an original combination of known modifications that will produce unique oligonucleotides with valuable characteristics.


Asunto(s)
Ácidos Nucleicos , Fosfatos de Azúcar , Ácidos Nucleicos/química , Fosfatos de Azúcar/química , Fosfatos de Azúcar/metabolismo , Oligonucleótidos/química , Conformación de Ácido Nucleico
2.
Funct Integr Genomics ; 24(4): 116, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910225

RESUMEN

Chloroplasts are not only critical photosynthesis sites in plants, but they also participate in plastidial retrograde signaling in response to developmental and environmental signals. MEcPP (2-C-Methyl-D-erythritol-2,4-cyclopyrophosphate) is an intermediary in the methylerythritol phosphate (MEP) pathway in chloroplasts. It is a critical precursor for the synthesis of isoprenoids and terpenoid derivatives, which play crucial roles in plant growth and development, photosynthesis, reproduction, and defense against environmental constraints. Accumulation of MEcPP under stressful conditions triggers the expression of IMPα-9 and TPR2, contributing to the activation of abiotic stress-responsive genes. In this correspondence, we discuss plastidial retrograde signaling in support of a recently published paper in Molecular Plant (Zeng et al. 2024). We hope that it can shed more insight on the retrograde signaling cascade.


Asunto(s)
Cloroplastos , Estrés Fisiológico , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Eritritol/metabolismo , Eritritol/análogos & derivados , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosfatos de Azúcar/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética
3.
Nat Commun ; 15(1): 5303, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38906898

RESUMEN

The methylerythritol phosphate (MEP) pathway is responsible for biosynthesis of the precursors of isoprenoid compounds in eubacteria and plastids. It is a metabolic alternative to the well-known mevalonate pathway for isoprenoid production found in archaea and eukaryotes. Recently, a role for the MEP pathway in oxidative stress detection, signalling, and response has been identified. This role is executed in part through the unusual cyclic intermediate, methylerythritol cyclodiphosphate (MEcDP). We postulate that this response is triggered through the oxygen sensitivity of the MEP pathway's terminal iron-sulfur (Fe-S) cluster enzymes. MEcDP is the substrate of IspG, the first Fe-S cluster enzyme in the pathway; it accumulates under oxidative stress conditions and acts as a signalling molecule. It may also act as an antioxidant. Furthermore, evidence is emerging for a broader and highly nuanced role of the MEP pathway in oxidative stress responses, implemented through a complex system of differential regulation and sensitivity at numerous nodes in the pathway. Here, we explore the evidence for such a role (including the contribution of the Fe-S cluster enzymes and different pathway metabolites, especially MEcDP), the evolutionary implications, and the many questions remaining about the behaviour of the MEP pathway in the presence of oxidative stress.


Asunto(s)
Eritritol , Estrés Oxidativo , Fosfatos de Azúcar , Eritritol/metabolismo , Eritritol/análogos & derivados , Fosfatos de Azúcar/metabolismo , Proteínas Hierro-Azufre/metabolismo , Transducción de Señal , Terpenos/metabolismo
4.
Ecotoxicol Environ Saf ; 280: 116545, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850709

RESUMEN

Isoprenoid metabolism and its derivatives took part in photosynthesis, growth regulation, signal transduction, and plant defense to biotic and abiotic stresses. However, how aluminum (Al) stress affects the isoprenoid metabolism and whether isoprenoid metabolism plays a vital role in the Citrus plants in coping with Al stress remain unclear. In this study, we reported that Al-treatment-induced alternation in the volatilization rate of monoterpenes (α-pinene, ß-pinene, limonene, α-terpinene, γ-terpinene and 3-carene) and isoprene were different between Citrus sinensis (Al-tolerant) and C. grandis (Al-sensitive) leaves. The Al-induced decrease of CO2 assimilation, maximum quantum yield of primary PSII photochemistry (Fv/Fm), the lower contents of glucose and starch, and the lowered activities of enzymes involved in the mevalonic acid (MVA) pathway and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway might account for the different volatilization rate of isoprenoids. Furthermore, the altered transcript levels of genes related to isoprenoid precursors and/or derivatives metabolism, such as geranyl diphosphate (GPP) synthase (GPPS) in GPP biosynthesis, geranylgeranyl diphosphate synthase (GGPPS), chlorophyll synthase (CHS) and GGPP reductase (GGPPR) in chlorophyll biosynthesis, limonene synthase (LS) and α-pinene synthase (APS) in limonene and α-pinene synthesis, respectively, might be responsible for the different contents of corresponding products in C. grandis and C. sinensis. Our data suggested that isoprenoid metabolism was involved in Al tolerance response in Citrus, and the alternation of some branches of isoprenoid metabolism could confer different Al-tolerance to Citrus species.


Asunto(s)
Aluminio , Monoterpenos Bicíclicos , Citrus , Limoneno , Fotosíntesis , Hojas de la Planta , Terpenos , Aluminio/toxicidad , Terpenos/metabolismo , Citrus/metabolismo , Citrus/efectos de los fármacos , Limoneno/metabolismo , Fotosíntesis/efectos de los fármacos , Monoterpenos Bicíclicos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Monoterpenos/metabolismo , Hemiterpenos/metabolismo , Ciclohexenos/metabolismo , Fosfatos de Azúcar/metabolismo , Butadienos/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Ácido Mevalónico/metabolismo , Monoterpenos Ciclohexánicos , Citrus sinensis/metabolismo , Citrus sinensis/efectos de los fármacos , Citrus sinensis/genética , Clorofila/metabolismo , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/genética , Volatilización
6.
Sci Adv ; 10(20): eadn0895, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758793

RESUMEN

SUCROSE-NON-FERMENTING1-RELATED PROTEIN KINASE1 (SnRK1), a central plant metabolic sensor kinase, phosphorylates its target proteins, triggering a global shift from anabolism to catabolism. Molecular modeling revealed that upon binding of KIN10 to GEMINIVIRUS REP-INTERACTING KINASE1 (GRIK1), KIN10's activation T-loop reorients into GRIK1's active site, enabling its phosphorylation and activation. Trehalose 6-phosphate (T6P) is a proxy for cellular sugar status and a potent inhibitor of SnRK1. T6P binds to KIN10, a SnRK1 catalytic subunit, weakening its affinity for GRIK1. Here, we investigate the molecular details of T6P inhibition of KIN10. Molecular dynamics simulations and in vitro phosphorylation assays identified and validated the T6P binding site on KIN10. Under high-sugar conditions, T6P binds to KIN10, blocking the reorientation of its activation loop and preventing its phosphorylation and activation by GRIK1. Under these conditions, SnRK1 maintains only basal activity levels, minimizing phosphorylation of its target proteins, thereby facilitating a general shift from catabolism to anabolism.


Asunto(s)
Proteínas de Arabidopsis , Proteínas Serina-Treonina Quinasas , Fosfatos de Azúcar , Trehalosa , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/química , Sitios de Unión , Simulación de Dinámica Molecular , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Fosfatos de Azúcar/metabolismo , Factores de Transcripción , Trehalosa/análogos & derivados , Trehalosa/metabolismo
7.
Microb Cell Fact ; 23(1): 121, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725068

RESUMEN

BACKGROUND: Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS: To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION: Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.


Asunto(s)
Aminoácidos , Glucólisis , Vía de Pentosa Fosfato , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Aminoácidos/metabolismo , Ingeniería Metabólica/métodos , Nostoc/metabolismo , Nostoc/genética , Fosfatos de Azúcar/metabolismo , Glicina/metabolismo , Glicina/análogos & derivados , Ciclohexilaminas
8.
Plant Physiol ; 196(1): 409-431, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38593032

RESUMEN

Trehalose 6-phosphate (Tre6P) is an essential signal metabolite that regulates the level of sucrose, linking growth and development to the metabolic status. We hypothesized that Tre6P plays a role in mediating the regulation of gene expression by sucrose. To test this, we performed transcriptomic profiling on Arabidopsis (Arabidopsis thaliana) plants that expressed a bacterial TREHALOSE 6-PHOSPHATE SYNTHASE (TPS) under the control of an ethanol-inducible promoter. Induction led to a 4-fold rise in Tre6P levels, a concomitant decrease in sucrose, significant changes (FDR ≤ 0.05) of over 13,000 transcripts, and 2-fold or larger changes of over 5,000 transcripts. Comparison with nine published responses to sugar availability allowed some of these changes to be linked to the rise in Tre6P, while others were probably due to lower sucrose or other indirect effects. Changes linked to Tre6P included repression of photosynthesis-related gene expression and induction of many growth-related processes including ribosome biogenesis. About 500 starvation-related genes are known to be induced by SUCROSE-NON-FERMENTING-1-RELATED KINASE 1 (SnRK1). They were largely repressed by Tre6P in a manner consistent with SnRK1 inhibition by Tre6P. SnRK1 also represses many genes that are involved in biosynthesis and growth. These responded to Tre6P in a more complex manner, pointing toward Tre6P interacting with other C-signaling pathways. Additionally, elevated Tre6P modified the expression of genes encoding regulatory subunits of the SnRK1 complex and TPS class II and FCS-LIKE ZINC FINGER proteins that are thought to modulate SnRK1 function and genes involved in circadian, TARGET OF RAPAMYCIN, light, abscisic acid, and other hormone signaling.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas , Sacarosa , Fosfatos de Azúcar , Transcriptoma , Trehalosa , Arabidopsis/genética , Arabidopsis/metabolismo , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Trehalosa/metabolismo , Sacarosa/metabolismo , Transcriptoma/genética , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Perfilación de la Expresión Génica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal
9.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673766

RESUMEN

The plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway supplies the precursors of a large variety of essential plant isoprenoids, but its regulation is still not well understood. Using metabolic control analysis (MCA), we examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), in multiple grey poplar (Populus × canescens) lines modified in their DXS activity. Single leaves were dynamically labeled with 13CO2 in an illuminated, climate-controlled gas exchange cuvette coupled to a proton transfer reaction mass spectrometer, and the carbon flux through the MEP pathway was calculated. Carbon was rapidly assimilated into MEP pathway intermediates and labeled both the isoprene released and the IDP+DMADP pool by up to 90%. DXS activity was increased by 25% in lines overexpressing the DXS gene and reduced by 50% in RNA interference lines, while the carbon flux in the MEP pathway was 25-35% greater in overexpressing lines and unchanged in RNA interference lines. Isoprene emission was also not altered in these different genetic backgrounds. By correlating absolute flux to DXS activity under different conditions of light and temperature, the flux control coefficient was found to be low. Among isoprenoid end products, isoprene itself was unchanged in DXS transgenic lines, but the levels of the chlorophylls and most carotenoids measured were 20-30% less in RNA interference lines than in overexpression lines. Our data thus demonstrate that DXS in the isoprene-emitting grey poplar plays only a minor part in controlling flux through the MEP pathway.


Asunto(s)
Eritritol , Eritritol/análogos & derivados , Populus , Fosfatos de Azúcar , Transferasas , Populus/genética , Populus/metabolismo , Populus/enzimología , Eritritol/metabolismo , Fosfatos de Azúcar/metabolismo , Transferasas/metabolismo , Transferasas/genética , Hemiterpenos/metabolismo , Butadienos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Pentanos/metabolismo , Plantas Modificadas Genéticamente
10.
Biochemistry ; 63(10): 1359-1368, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38685871

RESUMEN

Sedoheptulose 7-phosphate (SH7P) cyclases are a subset of sugar phosphate cyclases that are known to catalyze the first committed step in many biosynthetic pathways in primary and secondary metabolism. Among them are 2-epi-5-epi-valiolone synthase (EEVS) and 2-epi-valiolone synthase (EVS), two closely related SH7P cyclases that catalyze the conversion of SH7P to 2-epi-5-epi-valiolone and 2-epi-valiolone, respectively. However, how these two homologous enzymes use a common substrate to produce stereochemically different products is unknown. Two competing hypotheses have been proposed for the stereospecificity of EEVS and EVS: (1) variation in aldol acceptor geometry during enzyme catalysis, and (2) preselection of the α-pyranose or ß-pyranose forms of the substrate by the enzymes. Yet, there is no direct evidence to support or rule out either of these hypotheses. Here we report the synthesis of the carba-analogs of the α-pyranose and ß-pyranose forms of SH7P and their use in probing the stereospecificity of ValA (EEVS from Streptomyces hygroscopicus subsp. jinggangensis) and Amir_2000 (EVS from Actinosynnema mirum DSM 43827). Kinetic studies of the enzymes in the presence of the synthetic compounds as well as docking studies of the enzymes with the α- and ß-pyranose forms of SH7P suggest that the inverted configuration of the products of EEVS and EVS is not due to the preselection of the different forms of the substrate by the enzymes.


Asunto(s)
Heptosas , Fosfatos de Azúcar , Fosfatos de Azúcar/metabolismo , Fosfatos de Azúcar/química , Heptosas/química , Heptosas/metabolismo , Estereoisomerismo , Especificidad por Sustrato , Streptomyces/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo
11.
Plant Physiol ; 195(3): 2323-2338, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38478585

RESUMEN

Hydroxylated monoterpenes (HMTPs) are differentially emitted by tomato (Solanum lycopersicum) plants resisting bacterial infection. We have studied the defensive role of these volatiles in the tomato response to bacteria, whose main entrance is through stomatal apertures. Treatments with some HMTPs resulted in stomatal closure and pathogenesis-related protein 1 (PR1) induction. Particularly, α-terpineol induced stomatal closure in a salicylic acid (SA) and abscisic acid-independent manner and conferred resistance to bacteria. Interestingly, transgenic tomato plants overexpressing or silencing the monoterpene synthase MTS1, which displayed alterations in the emission of HMTPs, exhibited changes in the stomatal aperture but not in plant resistance. Measures of both 2-C-methyl-D-erythritol-2,4-cyclopyrophosphate (MEcPP) and SA levels revealed competition for MEcPP by the methylerythritol phosphate (MEP) pathway and SA biosynthesis activation, thus explaining the absence of resistance in transgenic plants. These results were confirmed by chemical inhibition of the MEP pathway, which alters MEcPP levels. Treatments with benzothiadiazole (BTH), a SA functional analog, conferred enhanced resistance to transgenic tomato plants overexpressing MTS1. Additionally, these MTS1 overexpressors induced PR1 gene expression and stomatal closure in neighboring plants. Our results confirm the role of HMTPs in both intra- and interplant immune signaling and reveal a metabolic crosstalk between the MEP and SA pathways in tomato plants.


Asunto(s)
Monoterpenos , Enfermedades de las Plantas , Estomas de Plantas , Plantas Modificadas Genéticamente , Ácido Salicílico , Solanum lycopersicum , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Ácido Salicílico/metabolismo , Monoterpenos/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de los fármacos , Hidroxilación , Tiadiazoles/farmacología , Regulación de la Expresión Génica de las Plantas , Fosfatos de Azúcar/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/fisiología , Eritritol/análogos & derivados , Eritritol/metabolismo , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/efectos de los fármacos
12.
J Plant Physiol ; 294: 154188, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295650

RESUMEN

Sugar homeostasis is a critical feature of biological systems. In humans, raised and dysregulated blood sugar is a serious health issue. In plants, directed changes in sucrose homeostasis and allocation represent opportunities in crop improvement. Plant tissue sucrose varies more than blood glucose and is found at higher concentrations (cytosol and phloem ca. 100 mM v 3.9-6.9 mM for blood glucose). Tissue sucrose varies with developmental stage and environment, but cytosol and phloem exhibit tight sucrose control. Sucrose homeostasis is a consequence of the integration of photosynthesis, synthesis of storage end-products such as starch, transport of sucrose to sinks and sink metabolism. Trehalose 6-phosphate (T6P)-SnRK1 and TOR play central, still emerging roles in regulating and coordinating these processes. Overall, tissue sucrose levels are more strongly related to growth than to photosynthesis. As a key sucrose signal, T6P regulates sucrose levels, transport and metabolic pathways to coordinate source and sink at a whole plant level. Emerging evidence shows that T6P interacts with meristems. With careful targeting, T6P manipulation through exploiting natural variation, chemical intervention and genetic modification is delivering benefits for crop yields. Regulation of cereal grain set, filling and retention may be the most strategically important aspect of sucrose allocation and homeostasis for food security.


Asunto(s)
Sacarosa , Fosfatos de Azúcar , Humanos , Sacarosa/metabolismo , Glucemia , Fosfatos de Azúcar/metabolismo , Plantas/metabolismo , Fotosíntesis , Trehalosa , Homeostasis
13.
Nat Prod Rep ; 41(4): 604-648, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38170905

RESUMEN

Covering: 1997 to 2023The shikimate pathway is the metabolic process responsible for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. Seven metabolic steps convert phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) into shikimate and ultimately chorismate, which serves as the branch point for dedicated aromatic amino acid biosynthesis. Bacteria, fungi, algae, and plants (yet not animals) biosynthesize chorismate and exploit its intermediates in their specialized metabolism. This review highlights the metabolic diversity derived from intermediates of the shikimate pathway along the seven steps from PEP and E4P to chorismate, as well as additional sections on compounds derived from prephenate, anthranilate and the synonymous aminoshikimate pathway. We discuss the genomic basis and biochemical support leading to shikimate-derived antibiotics, lipids, pigments, cofactors, and other metabolites across the tree of life.


Asunto(s)
Ácidos Ciclohexanocarboxílicos , Ciclohexenos , Ácido Shikímico , Ácido Shikímico/análogos & derivados , Ácido Shikímico/metabolismo , Estructura Molecular , Ácido Corísmico/metabolismo , Fosfoenolpiruvato/metabolismo , Fosfatos de Azúcar/metabolismo , Bacterias/metabolismo , Hongos/metabolismo , Plantas/metabolismo
14.
J Biol Chem ; 300(2): 105598, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159859

RESUMEN

Cofactor imbalance obstructs the productivities of metabolically engineered cells. Herein, we employed a minimally perturbing system, xylose reductase and lactose (XR/lactose), to increase the levels of a pool of sugar phosphates which are connected to the biosynthesis of NAD(P)H, FAD, FMN, and ATP in Escherichia coli. The XR/lactose system could increase the amounts of the precursors of these cofactors and was tested with three different metabolically engineered cell systems (fatty alcohol biosynthesis, bioluminescence light generation, and alkane biosynthesis) with different cofactor demands. Productivities of these cells were increased 2-4-fold by the XR/lactose system. Untargeted metabolomic analysis revealed different metabolite patterns among these cells, demonstrating that only metabolites involved in relevant cofactor biosynthesis were altered. The results were also confirmed by transcriptomic analysis. Another sugar reducing system (glucose dehydrogenase) could also be used to increase fatty alcohol production but resulted in less yield enhancement than XR. This work demonstrates that the approach of increasing cellular sugar phosphates can be a generic tool to increase in vivo cofactor generation upon cellular demand for synthetic biology.


Asunto(s)
Ingeniería Metabólica , Redes y Vías Metabólicas , Aldehído Reductasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Alcoholes Grasos/metabolismo , Fermentación , Lactosa/metabolismo , Ingeniería Metabólica/métodos , Fosfatos de Azúcar/metabolismo , Xilosa/metabolismo
15.
Physiol Plant ; 175(6): e14096, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148193

RESUMEN

Trehalose 6-phosphate (Tre6P), the intermediate of trehalose biosynthesis, is an essential signalling metabolite linking plant growth and development to carbon metabolism. While recent work has focused predominantly on the enzymes that produce Tre6P, little is known about the proteins that catalyse its degradation, the trehalose 6-phosphate phosphatases (TPPs). Often occurring in large protein families, TPPs exhibit cell-, tissue- and developmental stage-specific expression patterns, suggesting important regulatory functions in controlling local levels of Tre6P and trehalose as well as Tre6P signalling. Furthermore, growing evidence through gene expression studies and transgenic approaches shows that TPPs play an important role in integrating environmental signals with plant metabolism. This review highlights the large diversity of TPP isoforms in model and crop plants and identifies how modulating Tre6P metabolism in certain cell types, tissues, and at different developmental stages may promote stress tolerance, resilience and increased crop yield.


Asunto(s)
Arabidopsis , Fosfatos de Azúcar , Arabidopsis/metabolismo , Trehalosa/metabolismo , Plantas/genética , Plantas/metabolismo , Fosfatos de Azúcar/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfatos
16.
J Plant Physiol ; 291: 154140, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38007969

RESUMEN

Plants exhibit enormous plasticity in regulating their architecture to be able to adapt to a constantly changing environment and carry out vital functions such as photosynthesis, anchoring, and nutrient uptake. Phytohormones play a role in regulating these responses, but sugar signalling mechanisms are also crucial. Sucrose is not only an important source of carbon and energy fuelling plant growth, but it also functions as a signalling molecule that influences various developmental processes. Trehalose 6-phosphate (Tre6P), a sucrose-specific signalling metabolite, is emerging as an important regulator in plant metabolism and development. Key players involved in sucrose and Tre6P signalling pathways, including MAX2, SnRK1, bZIP11, and TOR, have been implicated in processes such as flowering, branching, and root growth. We will summarize our current knowledge of how these pathways shape shoot and root architecture and highlight how sucrose and Tre6P signalling are integrated with known signalling networks in shaping plant growth.


Asunto(s)
Sacarosa , Fosfatos de Azúcar , Sacarosa/metabolismo , Trehalosa , Plantas/metabolismo , Fosfatos de Azúcar/metabolismo , Desarrollo de la Planta , Fosfatos/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
J Biosci Bioeng ; 135(5): 382-388, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36868984

RESUMEN

Overproduction of isopentenyl diphosphate by the amplification of the genes for the methylerythritol 4-phosphate pathway, dxs and dxr, is known to be deleterious for the growth of Escherichia coli. We hypothesized that overproduction of one of the endogenous isoprenoids, in addition to isopentenyl diphosphate itself, might be the cause of the reported reduced growth rate and attempted to identify the causative agent. In order to analyze polyprenyl phosphates, they were methylated by the reaction with diazomethane. The resulting dimethyl esters of polyprenyl phosphates with carbon numbers from 40 to 60 were quantitated by high-performance liquid chromatography-mass spectrometric analysis detecting ion peaks of the sodium ion adducts. The E. coli was transformed by a multi-copy plasmid carrying both the dxs and dxr genes. Amplification of dxs and dxr significantly increased the levels of polyprenyl phosphates and 2-octaprenylphenol. The levels of Z,E-mixed polyprenyl phosphates with carbon numbers of 50-60 in the strain in which ispB was co-amplified with dxs and dxr were lower than those in the control strain where only dxs and dxr were amplified. The levels of (all-E)-octaprenyl phosphate and 2-octaprenylphenol in the strains in which ispU/rth or crtE was co-amplified with dxs and dxr were lower than those in the control strain. Although the increase in the level of each isoprenoid intermediate was blocked, the growth rates of these strains were not restored. Neither polyprenyl phosphates nor 2-octaprenylphenol can be determined to be the cause of the growth rate reduction seen with dxs and dxr amplification.


Asunto(s)
Escherichia coli , Fosfatos de Azúcar , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfatos/metabolismo , Terpenos , Fosfatos de Azúcar/metabolismo , Eritritol , Cromatografía Liquida , Transferasas/genética
18.
Molecules ; 28(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36771066

RESUMEN

Isoprenoids, a diverse class of natural products, are present in all living organisms. Their two universal building blocks are synthesized via two independent pathways: the mevalonate pathway and the 2-C-methyl-ᴅ-erythritol 4-phosphate (MEP) pathway. The presence of the latter in pathogenic bacteria and its absence in humans make all its enzymes suitable targets for the development of novel antibacterial drugs. (E)-4-Hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), the last intermediate of this pathway, is a natural ligand for the human Vγ9Vδ2 T cells and the most potent natural phosphoantigen known to date. Moreover, 5-hydroxypentane-2,3-dione, a metabolite produced by Escherichia coli 1-deoxy-ᴅ-xylulose 5-phosphate synthase (DXS), the first enzyme of the MEP pathway, structurally resembles (S)-4,5-dihydroxy-2,3-pentanedione, a signal molecule implied in bacterial cell communication. In this review, we shed light on the diversity of potential uses of the MEP pathway in antibacterial therapies, starting with an overview of the antibacterials developed for each of its enzymes. Then, we provide insight into HMBPP, its synthetic analogs, and their prodrugs. Finally, we discuss the potential contribution of the MEP pathway to quorum sensing mechanisms. The MEP pathway, providing simultaneously antibacterial drug targets and potent immunostimulants, coupled with its potential role in bacterial cell-cell communication, opens new therapeutic perspectives.


Asunto(s)
Fosfatos de Azúcar , Humanos , Fosfatos de Azúcar/metabolismo , Terpenos/farmacología , Terpenos/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Eritritol/metabolismo
19.
Nat Plants ; 8(11): 1245-1261, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36376753

RESUMEN

The central metabolic regulator SnRK1 controls plant growth and survival upon activation by energy depletion, but detailed molecular insight into its regulation and downstream targets is limited. Here we used phosphoproteomics to infer the sucrose-dependent processes targeted upon starvation by kinases as SnRK1, corroborating the relation of SnRK1 with metabolic enzymes and transcriptional regulators, while also pointing to SnRK1 control of intracellular trafficking. Next, we integrated affinity purification, proximity labelling and crosslinking mass spectrometry to map the protein interaction landscape, composition and structure of the SnRK1 heterotrimer, providing insight in its plant-specific regulation. At the intersection of this multi-dimensional interactome, we discovered a strong association of SnRK1 with class II T6P synthase (TPS)-like proteins. Biochemical and cellular assays show that TPS-like proteins function as negative regulators of SnRK1. Next to stable interactions with the TPS-like proteins, similar intricate connections were found with known regulators, suggesting that plants utilize an extended kinase complex to fine-tune SnRK1 activity for optimal responses to metabolic stress.


Asunto(s)
Proteínas de Arabidopsis , Fosfatos de Azúcar , Fosfatos de Azúcar/metabolismo , Trehalosa/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Plantas/metabolismo , Transducción de Señal , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
Plant Physiol Biochem ; 184: 112-125, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35640518

RESUMEN

Sugar is involved in initiating leaf senescence. However, its regulatory role, especially as a signal in the senescence process, is unclear. Therefore, this study was designed to illustrate how sugar stimulates the onset of leaf senescence and controls sugar homeostasis through the T6P-SnRK (sucrose non-fermenting (SNF)-related kinase) and HXK (hexokinase) signaling pathways. We used a leaf disc system detached from fully expanded leaves of Nicotiana tabacum cv. K326 and designed a time-course study (days 3, 5, 7, and 9) with exogenously gradient concentrations (0, 30, 60, 90, 120, and 150 mM) of sucrose (Suc) treatment to identify how Suc application affects sugar metabolism and induces senescence. Our results revealed that early decreases of Fv/Fm and increases in electrolyte leakage responded to Suc on day 3. Furthermore, a substantial increase in lipid peroxidation and up-regulated expression of senescence marker genes (NtSAG12) (except 60 mM on day 3) responded sequentially by day 5. The glucose, G6P, and HXK contents were first induced by Suc on day 3 and then repressed from day 5 to day 7. However, exogenous Suc treatment significantly improved the TPS content and the subsequent precursor T6P from day 3 to day 7. Following exogenous Suc treatments, the transcript level of NtSnRK1 was markedly down-regulated from day 3 to day 7. On the other hand, a linear regression analysis demonstrated that the T6P-NtSnRK1 signaling pathway was strongly associated with senescence initiation, and was accompanied by membrane degradation and NtCP1/NtSAG12 up-regulation by day 3. The T6P-NtSnRK1 signaling pathway experienced membrane and chloroplast degradation by day 5. HXK functioned as a metabolic enzyme promoting Glc-G6P and as a Glc sensor, accelerating the initiation of senescence through the HXK-dependent pathway by repressing PSII by day 3 and the senescence process through the Glycolytic pathway by day 7. These physiological, biochemical, and molecular analyses demonstrate that exogenous Suc regulates T6P accumulation, inducing senescence through the NtSnRK signaling pathway. These results illustrate the role of Suc and the transition of the sugar signaling pathway during the progression of senescence initiation.


Asunto(s)
Sacarosa , Fosfatos de Azúcar , Carbohidratos , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Sacarosa/metabolismo , Sacarosa/farmacología , Fosfatos de Azúcar/metabolismo , Azúcares , Trehalosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...