Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34385319

RESUMEN

The protein kinase Akt is one of the primary effectors of growth factor signaling in the cell. Akt responds specifically to the lipid second messengers phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2] via its PH domain, leading to phosphorylation of its activation loop and the hydrophobic motif of its kinase domain, which are critical for activity. We have now determined the crystal structure of Akt1, revealing an autoinhibitory interface between the PH and kinase domains that is often mutated in cancer and overgrowth disorders. This interface persists even after stoichiometric phosphorylation, thereby restricting maximum Akt activity to PI(3,4,5)P3- or PI(3,4)P2-containing membranes. Our work helps to resolve the roles of lipids and phosphorylation in the activation of Akt and has wide implications for the spatiotemporal control of Akt and potentially lipid-activated kinase signaling in general.


Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Animales , Sitios de Unión , Humanos , Insectos , Metabolismo de los Lípidos , Fosfatos de Fosfatidilinositol/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas Proto-Oncogénicas c-akt/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Células Sf9
2.
Dev Cell ; 56(13): 1961-1975.e5, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34107300

RESUMEN

Autophagy is an essential catabolic process induced to provide cellular energy sources in response to nutrient limitation through the activation of kinases, like AMP-activated protein kinase (AMPK) and ULK1. Although glucose starvation induces autophagy, the exact mechanism underlying this signaling has yet to be elucidated. Here, we reveal a role for ULK1 in non-canonical autophagy signaling using diverse cell lines. ULK1 activated by AMPK during glucose starvation phosphorylates the lipid kinase PIKfyve on S1548, thereby increasing its activity and the synthesis of the phospholipid PI(5)P without changing the levels of PI(3,5)P2. ULK1-mediated activation of PIKfyve enhances the formation of PI(5)P-containing autophagosomes upon glucose starvation, resulting in an increase in autophagy flux. Phospho-mimic PIKfyve S1548D drives autophagy upregulation and lowers autophagy substrate levels. Our study has identified how ULK1 upregulates autophagy upon glucose starvation and induces the formation of PI(5)P-containing autophagosomes by activating PIKfyve.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Autofagia/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Quinasas/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Autofagosomas/genética , Autofagosomas/metabolismo , Línea Celular , Regulación de la Expresión Génica/genética , Glucosa/metabolismo , Humanos , Metabolismo/genética , Fosfatos de Fosfatidilinositol/genética , Fosfolípidos/genética , Transducción de Señal/genética
3.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33653949

RESUMEN

Charcot-Marie-Tooth type 4B1 (CMT4B1) is a severe autosomal recessive demyelinating neuropathy with childhood onset, caused by loss-of-function mutations in the myotubularin-related 2 (MTMR2) gene. MTMR2 is a ubiquitously expressed catalytically active 3-phosphatase, which in vitro dephosphorylates the 3-phosphoinositides PtdIns3P and PtdIns(3,5)P2, with a preference for PtdIns(3,5)P2 A hallmark of CMT4B1 neuropathy are redundant loops of myelin in the nerve termed myelin outfoldings, which can be considered the consequence of altered growth of myelinated fibers during postnatal development. How MTMR2 loss and the resulting imbalance of 3'-phosphoinositides cause CMT4B1 is unknown. Here we show that MTMR2 by regulating PtdIns(3,5)P2 levels coordinates mTORC1-dependent myelin synthesis and RhoA/myosin II-dependent cytoskeletal dynamics to promote myelin membrane expansion and longitudinal myelin growth. Consistent with this, pharmacological inhibition of PtdIns(3,5)P2 synthesis or mTORC1/RhoA signaling ameliorates CMT4B1 phenotypes. Our data reveal a crucial role for MTMR2-regulated lipid turnover to titrate mTORC1 and RhoA signaling thereby controlling myelin growth.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/metabolismo , Vaina de Mielina/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Transducción de Señal , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Noqueados , Vaina de Mielina/genética , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Fosfatos de Fosfatidilinositol/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649206

RESUMEN

Increases in cytosolic Ca2+ concentration regulate diverse cellular activities and are usually evoked by opening of Ca2+ channels in intracellular Ca2+ stores and the plasma membrane (PM). For the many signals that evoke formation of inositol 1,4,5-trisphosphate (IP3), IP3 receptors coordinate the contributions of these two Ca2+ sources by mediating Ca2+ release from the endoplasmic reticulum (ER). Loss of Ca2+ from the ER then activates store-operated Ca2+ entry (SOCE) by causing dimers of STIM1 to cluster and unfurl cytosolic domains that interact with the PM Ca2+ channel, Orai1, causing its pore to open. The relative concentrations of STIM1 and Orai1 are important, but most analyses of their interactions use overexpressed proteins that perturb the stoichiometry. We tagged endogenous STIM1 with EGFP using CRISPR/Cas9. SOCE evoked by loss of ER Ca2+ was unaffected by the tag. Step-photobleaching analysis of cells with empty Ca2+ stores revealed an average of 14.5 STIM1 molecules within each sub-PM punctum. The fluorescence intensity distributions of immunostained Orai1 puncta were minimally affected by store depletion, and similar for Orai1 colocalized with STIM1 puncta or remote from them. We conclude that each native SOCE complex is likely to include only a few STIM1 dimers associated with a single Orai1 channel. Our results, demonstrating that STIM1 does not assemble clusters of interacting Orai channels, suggest mechanisms for digital regulation of SOCE by local depletion of the ER.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Multimerización de Proteína , Molécula de Interacción Estromal 1/metabolismo , Retículo Endoplásmico/genética , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Molécula de Interacción Estromal 1/genética
5.
J Genet Genomics ; 47(10): 627-636, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33358778

RESUMEN

The primary cilium, an important microtubule-based organelle, protrudes from nearly all the vertebrate cells. The motility of cilia is necessary for various developmental and physiological processes. Phosphoinositides (PIs) and its metabolite, PtdIns(4,5)P2, have been revealed to contribute to cilia assembly and disassembly. As an important kinase of the PI pathway and signaling, phosphatidylinositol 4-kinase ß (PI4KB) is the one of the most extensively studied phosphatidylinositol 4-kinase isoform. However, its potential roles in organ development remain to be characterized. To investigate the developmental role of Pi4kb, especially its function on zebrafish ciliogenesis, we generated pi4kb deletion mutants using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 technique. The homozygous pi4kb mutants exhibit an absence of primary cilia in the inner ear, neuromasts, and pronephric ducts accompanied by severe edema in the eyes and other organs. Moreover, smaller otic vesicle, malformed semicircular canals, and the insensitivity on sound stimulation were characteristics of pi4kb mutants. At the protein level, both in vivo and in vitro analyses revealed that synthesis of Pi4p was greatly reduced owing to the loss of Pi4kb. In addition, the expression of the Pi4kb-binding partner of neuronal calcium sensor-1, as well as the phosphorylation of phosphatidylinositol-4-phosphate downstream effecter of Akt, was significantly inhibited in pi4kb mutants. Taken together, our work uncovers a novel role of Pi4kb in zebrafish inner ear development and the functional formation of hearing ability by determining hair cell ciliogenesis.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/genética , Cilios/genética , Desarrollo Embrionario/genética , Proteínas de Pez Cebra/genética , Animales , Sistemas CRISPR-Cas/genética , Movimiento Celular/genética , Cilios/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Fosfatos de Fosfatidilinositol/genética , Eliminación de Secuencia/genética , Transducción de Señal/genética , Pez Cebra/genética
6.
Elife ; 92020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32975513

RESUMEN

Phosphatidylinositol 3-phosphate (PI(3)P) levels in Plasmodium falciparum correlate with tolerance to cellular stresses caused by artemisinin and environmental factors. However, PI(3)P function during the Plasmodium stress response was unknown. Here, we used PI3K inhibitors and antimalarial agents to examine the importance of PI(3)P under thermal conditions recapitulating malarial fever. Live cell microscopy using chemical and genetic reporters revealed that PI(3)P stabilizes the digestive vacuole (DV) under heat stress. We demonstrate that heat-induced DV destabilization in PI(3)P-deficient P. falciparum precedes cell death and is reversible after withdrawal of the stress condition and the PI3K inhibitor. A chemoproteomic approach identified PfHsp70-1 as a PI(3)P-binding protein. An Hsp70 inhibitor and knockdown of PfHsp70-1 phenocopy PI(3)P-deficient parasites under heat shock. Furthermore, PfHsp70-1 downregulation hypersensitizes parasites to heat shock and PI3K inhibitors. Our findings underscore a mechanistic link between PI(3)P and PfHsp70-1 and present a novel PI(3)P function in DV stabilization during heat stress.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico/fisiología , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Muerte Celular/fisiología , Aptitud Genética , Proteínas HSP70 de Choque Térmico/genética , Calor , Fosfatos de Fosfatidilinositol/antagonistas & inhibidores , Fosfatos de Fosfatidilinositol/genética , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacuolas/metabolismo
7.
Biochim Biophys Acta Biomembr ; 1862(9): 183349, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32407779

RESUMEN

Chorein is a protein of the Vps13 family, and defects in this protein cause the rare neurodegenerative disorder chorea-acanthocytosis (ChAc). Chorein is involved in the actin cytoskeleton organization, calcium ion flux, neuronal cell excitability, exocytosis and autophagy. The function of this protein is poorly understood, and obtaining this knowledge is a key to finding a cure for ChAc. Chorein, as well as the Vps13 protein from yeast, contains the APT1 domain. Our previous research has shown that the APT1 domain from yeast Vps13 (yAPT1v) binds phosphatidylinositol 3-phosphate (PI3P) in vitro. In this study, we showed that although the APT1 domain from chorein (hAPT1) binds to PI3P it could not functionally replace yAPT1v. The hAPT1 domain binds, in addition to PI3P, to phosphatidylinositol 5-phosphate (PI5P). The binding of hAPT1 to PI3P, unlike the binding of yAPT1v to PI3P, is regulated by the bivalent ions, calcium and magnesium. Regulation of PI3P binding via calcium is also observed for the APT1 domain of yeast autophagy protein Atg2. The substitution I2771R, found in chorein of patient suffering from ChAc, reduces the binding of the hAPT1 domain to PI3P and PI5P. These results suggest that the ability of APT1 domains to bind phosphoinositides is regulated differently in yeast and human protein and that this regulation is important for chorein function.


Asunto(s)
Neuroacantocitosis/genética , Proteínas de Saccharomyces cerevisiae/genética , Tioléster Hidrolasas/genética , Proteínas de Transporte Vesicular/genética , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Calcio/química , Humanos , Iones/química , Magnesio/química , Mutación/genética , Neuroacantocitosis/metabolismo , Neuroacantocitosis/patología , Neuronas/metabolismo , Neuronas/patología , Fosfatos de Fosfatidilinositol/genética , Unión Proteica/genética , Dominios Proteicos/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Tioléster Hidrolasas/química , Proteínas de Transporte Vesicular/química
8.
Carcinogenesis ; 41(3): 377-389, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31241130

RESUMEN

The phosphoinositide 3-kinase (PI3-K)/Akt signaling pathway is important in the regulation of cell proliferation through its production of phosphatidylinositol 3,4,5-triphosphate (PIP3). Activation of this pathway is frequently observed in human cancers, including non-small cell lung carcinoma. The PI3-K/Akt pathway is negatively regulated by the dual-specificity phosphatase and tensin homolog (PTEN) protein. PTEN acts as a direct antagonist of PI3-K by dephosphorylating PIP3. Studies have shown that PTEN phosphatase activity is inhibited by PREX2, a guanine nucleotide exchanger factor (GEF). Multiple studies revealed that CELF2, an RNA binding protein, cooperates synergistically with PTEN as a tumor suppressor in multiple cancers. However, the underlying mechanism as to how CELF2 enhances PTEN activity remains unclear. Here, we report that CELF2 interacts with PREX2 and reduces the association of PREX2 with PTEN. Consistent with this observation, PTEN phosphatase activity is upregulated with CELF2 overexpression. In addition, overexpression of CELF2 represses both Akt phosphorylation and cell proliferation only in the presence of PTEN. In an ex vivo study, CELF2 gene delivery could significantly inhibit patient-derived xenografts (PDX) tumor growth. To further investigate the clinical relevance of this finding, we analyzed 87 paired clinical lung adenocarcinoma samples and the results showed that CELF2 protein expression is downregulated in tumor tissues and associated with poor prognosis. The CELF2 gene is located on the chromosome 10p arm, a region frequently lost in human cancers, including breast invasive carcinoma, low-grade glioma and glioblastoma. Analysis of TCGA datasets showed that CELF2 expression is also associated with shorter patient survival time in all these cancers. Overall, our work suggests that CELF2 plays a novel role in PI3-K signaling by antagonizing the oncogenic effect of PREX2.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Proteínas CELF/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas del Tejido Nervioso/genética , Fosfohidrolasa PTEN/genética , Adenocarcinoma del Pulmón/patología , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Masculino , Ratones , Fosfatidilinositol 3-Quinasas/genética , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal/genética
9.
Cell Rep ; 29(7): 2028-2040.e8, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31722215

RESUMEN

In developing neurons, phosphoinositide 3-kinases (PI3Ks) control axon growth and branching by positively regulating PI3K/PI(3,4,5)P3, but how neurons are able to generate sufficient PI(3,4,5)P3 in the presence of high levels of the antagonizing phosphatase PTEN is difficult to reconcile. We find that normal axon morphogenesis involves homeostasis of elongation and branch growth controlled by accumulation of PI(3,4,5)P3 through PTEN inhibition. We identify a plasma membrane-localized protein-protein interaction of PTEN with plasticity-related gene 2 (PRG2). PRG2 stabilizes membrane PI(3,4,5)P3 by inhibiting PTEN and localizes in nanoclusters along axon membranes when neurons initiate their complex branching behavior. We demonstrate that PRG2 is both sufficient and necessary to account for the ability of neurons to generate axon filopodia and branches in dependence on PI3K/PI(3,4,5)P3 and PTEN. Our data indicate that PRG2 is part of a neuronal growth program that induces collateral branch growth in axons by conferring local inhibition of PTEN.


Asunto(s)
Axones/metabolismo , Proteínas de la Membrana/metabolismo , Fosfohidrolasa PTEN/metabolismo , Animales , Células COS , Chlorocebus aethiops , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo
10.
Sci Rep ; 9(1): 15557, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664099

RESUMEN

Emerging evidences suggest that phospholipid metabolism is altered in Alzheimer's disease (AD), but molecular mechanisms on how this affects neurodegeneration in AD is poorly understood. SHIP2 is a phosphoinositide-metabolizing enzyme, which dephosphorylates PI(3,4,5)P3 resulting to PI(3,4)P2, and it has been recently shown that Aß directly increases the activity of SHIP2. Here we monitored, utilizing fluorescent SHIP2 biosensor, real-time increase of PI(3,4)P2-containing vesicles in HT22 cells treated with Aß. Interestingly, PI(3,4)P2 is accumulated at late endosomes and lysosomal vesicles. We further discovered that ARAP3 can be attracted to PI(3,4)P2-positive mature endosomes via its PH domain and this facilitates the degradation of ARAP3. The reduced level of ARAP3 then causes RhoA hyperactivation and filamentous actin, which are critical for neurodegeneration in AD. These results provide a novel molecular link between Aß and actin disruption through dysregulated phosphoinositide metabolism, and the SHIP2-PI(3,4)P2-ARAP3-RhoA signaling pathway can be considered as new therapeutic targets for synaptic dysfunctions in Alzheimer's disease.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Línea Celular , Endosomas/genética , Endosomas/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
11.
J Cell Sci ; 132(20)2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31540955

RESUMEN

Akt signalling is central to cell survival, metabolism, protein and lipid homeostasis, and is impaired in Parkinson's disease (PD). Akt activation is reduced in the brain in PD, and by many PD-causing genes, including PINK1 This study investigated the mechanisms by which PINK1 regulates Akt signalling. Our results reveal for the first time that PINK1 constitutively activates Akt in a PINK1-kinase dependent manner in the absence of growth factors, and enhances Akt activation in normal growth medium. In PINK1-modified MEFs, agonist-induced Akt signalling failed in the absence of PINK1, due to PINK1 kinase-dependent increases in PI(3,4,5)P3 at both plasma membrane and Golgi being significantly impaired. In the absence of PINK1, PI(3,4,5)P3 levels did not increase in the Golgi, and there was significant Golgi fragmentation, a recognised characteristic of PD neuropathology. PINK1 kinase activity protected the Golgi from fragmentation in an Akt-dependent fashion. This study demonstrates a new role for PINK1 as a primary upstream activator of Akt via PINK1 kinase-dependent regulation of its primary activator PI(3,4,5)P3, providing novel mechanistic information on how loss of PINK1 impairs Akt signalling in PD.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Enfermedad de Parkinson/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Membrana Celular/genética , Aparato de Golgi/genética , Humanos , Ratones , Ratones Noqueados , Enfermedad de Parkinson/genética , Fosfatos de Fosfatidilinositol/genética , Proteínas Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética
12.
J Cell Sci ; 132(16)2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31331963

RESUMEN

Ras proteins are small GTPases localized to the plasma membrane (PM), which regulate cellular proliferation, apoptosis and differentiation. After a series of post-translational modifications, H-Ras and N-Ras traffic to the PM from the Golgi via the classical exocytic pathway, but the exact mechanism of K-Ras trafficking to the PM from the ER is not fully characterized. ATP5G1 (also known as ATP5MC1) is one of the three proteins that comprise subunit c of the F0 complex of the mitochondrial ATP synthase. In this study, we show that overexpression of the mitochondrial targeting sequence of ATP5G1 perturbs glucose metabolism, inhibits oncogenic K-Ras signaling, and redistributes phosphatidylserine (PtdSer) to mitochondria and other endomembranes, resulting in K-Ras translocation to mitochondria. Also, it depletes phosphatidylinositol 4-phosphate (PI4P) at the Golgi. Glucose supplementation restores PtdSer and K-Ras PM localization and PI4P at the Golgi. We further show that inhibition of the Golgi-localized PI4-kinases (PI4Ks) translocates K-Ras, and PtdSer to mitochondria and endomembranes, respectively. We conclude that PI4P at the Golgi regulates the PM localization of PtdSer and K-Ras.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Aparato de Golgi/metabolismo , Mitocondrias/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Cricetinae , Perros , Aparato de Golgi/genética , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Mitocondrias/genética , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Fosfatos de Fosfatidilinositol/genética , Transporte de Proteínas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
13.
Dev Cell ; 50(4): 397-410.e3, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31231039

RESUMEN

Phagocytosis, the engulfment of particulate matter, requires the coordinated polymerization of F-actin; however, the nature and dynamics of the F-actin structures generated during the process are incompletely defined. Using super-resolution microscopy, we observed the formation of podosome-like structures during Fc receptor-mediated phagocytosis. Unlike conventional podosomes, these structures are short lived and vectorial, expanding radially from the sites where phagocytic targets are initially engaged. The expanding ring of podosome-like structures requires the localized formation of PtdIns(3,4,5)P3. Concomitantly, the initial podosome-like structures disappear from the center of the phagocytic cup, enabling membrane bending around the target. This coordinated disappearance is mediated by localized hydrolysis of PtdIns(4,5)P2 at the center of the cup. Interference reflection microscopy revealed that the podosome-like structures attach tightly to the target, facilitating the progressive engagement and activation of phagocytic receptors, creating a diffusion barrier and serving as support for the extension of exploratory lamellipodia that probe the target surface.


Asunto(s)
Actinas/genética , Fagocitosis/genética , Fagosomas/genética , Podosomas/genética , Actinas/ultraestructura , Femenino , Humanos , Integrinas/genética , Masculino , Microscopía Fluorescente , Microscopía de Interferencia , Monocitos , Fagosomas/ultraestructura , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/genética , Fosfatidilinositoles/metabolismo , Podosomas/ultraestructura , Seudópodos/genética , Seudópodos/ultraestructura , Receptores Fc/genética , Propiedades de Superficie
14.
J Cell Biol ; 218(7): 2198-2214, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31118240

RESUMEN

The tumor suppressor PTEN dephosphorylates PtdIns(3,4,5)P3 into PtdIns(4,5)P2 Here, we make the unexpected discovery that in Drosophila melanogaster PTEN reduces PtdIns(4,5)P2 levels on endosomes, independently of its phosphatase activity. This new PTEN function requires the enzymatic action of dPLCXD, an atypical phospholipase C. Importantly, we discovered that this novel PTEN/dPLCXD pathway can compensate for depletion of dOCRL, a PtdIns(4,5)P2 phosphatase. Mutation of OCRL1, the human orthologue of dOCRL, causes oculocerebrorenal Lowe syndrome, a rare multisystemic genetic disease. Both OCRL1 and dOCRL loss have been shown to promote accumulation of PtdIns(4,5)P2 on endosomes and cytokinesis defects. Here, we show that PTEN or dPLCXD overexpression prevents these defects. In addition, we found that chemical activation of this pathway restores normal cytokinesis in human Lowe syndrome cells and rescues OCRL phenotypes in a zebrafish Lowe syndrome model. Our findings identify a novel PTEN/dPLCXD pathway that controls PtdIns(4,5)P2 levels on endosomes. They also point to a potential new strategy for the treatment of Lowe syndrome.


Asunto(s)
Proteínas de Drosophila/genética , Síndrome Oculocerebrorrenal/genética , Fosfohidrolasa PTEN/genética , Monoéster Fosfórico Hidrolasas/genética , Fosfolipasas de Tipo C/genética , Animales , Citocinesis/genética , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Endosomas/genética , Endosomas/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Síndrome Oculocerebrorrenal/metabolismo , Síndrome Oculocerebrorrenal/patología , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal
15.
J Biol Chem ; 294(21): 8412-8423, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30944173

RESUMEN

The innate immune system plays an essential role in initial recognition of pathogen infection by producing inflammatory cytokines and type I interferons. cGAS is a cytoplasmic sensor for DNA derived from DNA viruses. cGAS binding with DNA induces the production of cGAMP, a second messenger that associates with STING in endoplasmic reticulum (ER). STING changes its cellular distribution from ER to perinuclear Golgi, where it activates the protein kinase TBK1 that catalyzes the phosphorylation of IRF3. Here we found that STING trafficking is regulated by myotubularin-related protein (MTMR) 3 and MTMR4, members of protein tyrosine phosphatases that dephosphorylate 3' position in phosphatidylinositol (PtdIns) and generate PtdIns5P from PtdIns3,5P2 and PtdIns from PtdIns3P. We established MTMR3 and MTMR4 double knockout (DKO) RAW264.7 macrophage cells and found that they exhibited increased type I interferon production after interferon-stimulatory DNA (ISD) stimulation and herpes simplex virus 1 infection concomitant with enhanced IRF3 phosphorylation. In DKO cells, STING rapidly trafficked from ER to Golgi after ISD stimulation. Notably, DKO cells exhibited enlarged cytosolic puncta positive for PtdIns3P and STING was aberrantly accumulated in this puncta. Taken together, these results suggest that MTMR3 and MTMR4 regulate the production of PtdIns3P, which plays a critical role in suppressing DNA-mediated innate immune responses via modulating STING trafficking.


Asunto(s)
ADN Viral/inmunología , Herpesvirus Humano 1/inmunología , Inmunidad Innata , Macrófagos/inmunología , Proteínas de la Membrana/inmunología , Fosfatos de Fosfatidilinositol/inmunología , Proteínas Tirosina Fosfatasas no Receptoras/inmunología , Animales , ADN Viral/genética , Herpesvirus Humano 1/genética , Proteínas de la Membrana/genética , Ratones , Fosfatos de Fosfatidilinositol/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Transporte de Proteínas/genética , Transporte de Proteínas/inmunología , Proteínas Tirosina Fosfatasas no Receptoras/genética , Células RAW 264.7
16.
J Biol Chem ; 294(16): 6405-6415, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30733336

RESUMEN

Upon phagocytosis into macrophages, the intracellular bacterial pathogen Legionella pneumophila secretes effector proteins that manipulate host cell components, enabling it to evade lysosomal degradation. However, the bacterial proteins involved in this evasion are incompletely characterized. Here we show that the L. pneumophila effector protein RavD targets host membrane compartments and contributes to the molecular mechanism the pathogen uses to prevent encounters with lysosomes. Protein-lipid binding assays revealed that RavD selectively binds phosphatidylinositol-3-phosphate (PI(3)P) in vitro We further determined that a C-terminal RavD region mediates the interaction with PI(3)P and that this interaction requires Arg-292. In transiently transfected mammalian cells, mCherry-RavD colocalized with the early endosome marker EGFP-Rab5 as well as the PI(3)P biosensor EGFP-2×FYVE. However, treatment with the phosphoinositide 3-kinase inhibitor wortmannin did not disrupt localization of mCherry-RavD to endosomal compartments, suggesting that RavD's interaction with PI(3)P is not necessary to anchor RavD to endosomal membranes. Using superresolution and immunogold transmission EM, we observed that, upon translocation into macrophages, RavD was retained onto the Legionella-containing vacuole and was also present on small vesicles adjacent to the vacuole. We also report that despite no detectable effects on intracellular growth of L. pneumophila within macrophages or amebae, the lack of RavD significantly increased the number of vacuoles that accumulate the late endosome/lysosome marker LAMP-1 during macrophage infection. Together, our findings suggest that, although not required for intracellular replication of L. pneumophila, RavD is a part of the molecular mechanism that steers the Legionella-containing vacuole away from endolysosomal maturation pathways.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endosomas/metabolismo , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/metabolismo , Lisosomas/metabolismo , Macrófagos/metabolismo , Vacuolas/metabolismo , Proteínas Bacterianas/genética , Endosomas/genética , Endosomas/ultraestructura , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/genética , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/genética , Enfermedad de los Legionarios/patología , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/genética , Lisosomas/ultraestructura , Macrófagos/microbiología , Macrófagos/ultraestructura , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/antagonistas & inhibidores , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Células U937 , Vacuolas/genética , Vacuolas/microbiología , Vacuolas/ultraestructura , Wortmanina/farmacología , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
17.
mSphere ; 4(1)2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30728282

RESUMEN

Aspergillus fumigatus is a ubiquitous mold that produces small airborne conidia capable of traversing deep into the respiratory system. Recognition, processing, and clearance of A. fumigatus conidia by bronchial airway epithelial cells are thought to be relevant to host defense and immune signaling. Using z-stack confocal microscopy, we observed that only 10 to 20% of adherent conidia from the AF293 clinical isolate are internalized by BEAS-2B cells 6 h postchallenge and not prior. Similar percentages of internalization were observed for the CEA10 clinical isolate. A large subset of both AF293 and CEA10 conidia are rendered metabolically inactive without internalization at 3 h postchallenge by BEAS-2B cells. A significantly larger percentage of CEA10 conidia are metabolically active at 9 and 12 h postchallenge in comparison to the AF293 isolate, demonstrating heterogeneity among clinical isolates. We identified 7 host markers (caveolin, flotillin-2, RAB5C, RAB8B, RAB7A, 2xFYVE, and FAPP1) that consistently localized around internalized conidia 9 h postchallenge. Transient gene silencing of RAB5C, PIK3C3, and flotillin-2 resulted in a larger population of metabolically active conidia. Our findings emphasize the abundance of both host phosphatidylinositol 3-phosphate (PI3P) and PI4P around internalized conidia, as well as the importance of class III PI3P kinase for conidial processing. Therapeutic development focused on RAB5C-, PIK3C3-, and flotillin-2-mediated pathways may provide novel opportunities to modulate conidial processing and internalization. Determination of how contacted, external conidia are processed by airway epithelial cells may also provide a novel avenue to generate host-targeted therapeutics.IMPORTANCE Conidia from the fungus Aspergillus fumigatus are notorious for their ability to stay airborne. This characteristic is believed to allow conidia to penetrate into the cleanest environments. Several hundred conidia are thought to be inhaled each day by a given individual and then expelled by mucociliary clearance. Given that airway epithelial cells make up a significant portion of the pulmonary-air interface, we set out to determine the percentage of conidia that are actually internalized after initial contact with airway epithelial cells. We determined this through an in vitro assay using an immortalized bronchial airway epithelial cell line known as BEAS-2B. Our results suggest a small fraction of conidia are internalized by BEAS-2B cells, while the majority stay adherent to the surface of cells or are washed away during sample processing. Internalization of conidia was observed at 6 h postchallenge and not prior. Our data also indicate conidia are rendered metabolically inactive within 3 h of challenge, suggesting BEAS-2B cells process a large number of conidia without internalization in this early time frame. We have also identified several host endocytosis markers that localize around internalized conidia as well as contribute to the processing of conidia. Understanding how these host endocytosis markers affect the processing of internal and/or external conidia may provide a novel avenue for therapeutic development.


Asunto(s)
Aspergillus fumigatus/patogenicidad , Endocitosis , Células Epiteliales/microbiología , Animales , Biomarcadores , Bronquios/citología , Bronquios/microbiología , Caveolina 1/genética , Línea Celular , Células Cultivadas , Interacciones Huésped-Patógeno , Humanos , Macrófagos/microbiología , Masculino , Proteínas de la Membrana/genética , Ratones , Fosfatos de Fosfatidilinositol/genética , Aspergilosis Pulmonar/microbiología , Esporas Fúngicas/patogenicidad
18.
Biochim Biophys Acta Mol Cell Res ; 1866(5): 793-805, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30742930

RESUMEN

Phosphatidylinositol-3-phosphate (PI3P) is a lipid that accumulates in the early endosomal membrane, and acts as a scaffold to recruit proteins that contain a PI3P-binding domain, such as the FYVE domain. In this study, we examined the effect of PI3P depletion on the insulin response in rat hepatoma-derived H4IIEC3 cells. We found that insulin treatment induced the transient formation of an actin domain structure, a mesh-like tangled network of actin filaments where phosphorylated Akt, endosomal proteins, and PI3P accumulated. Actin domain formation was repressed by the depletion of PI3P by SAR405, an inhibitor of the class III PI3 kinase, Vps34, by the inhibition of PI3P function by the competitive binding of an excess amount of GST-fused 2xFYVE protein to intracellular PI3P, and by the use of diabetic model cells, in which PI3P was depleted. SAR405 did not affect the phosphorylation level of Akt, and the transcriptional regulation of gluconeogenic and cholesterol synthetic genes after insulin treatment. Interestingly, insulin-induced DNA synthesis was specifically inhibited by SAR405, cytochalasin B, and also in diabetic model cells. These results suggest that PI3P is required for the formation of actin domains, which affected a signaling pathway downstream of Akt associated with DNA synthesis in H4IIEC3 cells.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , ADN de Neoplasias/biosíntesis , Insulina/farmacología , Neoplasias Hepáticas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas Clase III/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas Clase III/genética , Citocalasina B/farmacología , ADN de Neoplasias/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Fosfatos de Fosfatidilinositol/genética , Dominios Proteicos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/farmacología , Pirimidinonas/farmacología , Ratas
19.
J Cell Biol ; 218(3): 783-797, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30659099

RESUMEN

Phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide with key roles in the Golgi complex, is made by Golgi-associated phosphatidylinositol-4 kinases and consumed by the 4-phosphatase Sac1 that, instead, is an ER membrane protein. Here, we show that the contact sites between the ER and the TGN (ERTGoCS) provide a spatial setting suitable for Sac1 to dephosphorylate PI4P at the TGN. The ERTGoCS, though necessary, are not sufficient for the phosphatase activity of Sac1 on TGN PI4P, since this needs the phosphatidyl-four-phosphate-adaptor-protein-1 (FAPP1). FAPP1 localizes at ERTGoCS, interacts with Sac1, and promotes its in-trans phosphatase activity in vitro. We envision that FAPP1, acting as a PI4P detector and adaptor, positions Sac1 close to TGN domains with elevated PI4P concentrations allowing PI4P consumption. Indeed, FAPP1 depletion induces an increase in TGN PI4P that leads to increased secretion of selected cargoes (e.g., ApoB100), indicating that FAPP1, by controlling PI4P levels, acts as a gatekeeper of Golgi exit.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Retículo Endoplásmico/genética , Aparato de Golgi/genética , Células HeLa , Células Hep G2 , Humanos , Proteínas de la Membrana/genética , Ratones , Fosfatos de Fosfatidilinositol/genética
20.
PLoS Pathog ; 15(1): e1007530, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625229

RESUMEN

Tombusviruses depend on subversions of multiple host factors and retarget cellular pathways to support viral replication. In this work, we demonstrate that tomato bushy stunt virus (TBSV) and the closely-related carnation Italian ringspot virus (CIRV) recruit the cellular Vps34 phosphatidylinositol 3-kinase (PI3K) into the large viral replication compartment. The kinase function of Vps34 is critical for TBSV replication, suggesting that PI(3)P phosphoinositide is utilized by TBSV for building of the replication compartment. We also observed increased expression of Vps34 and the higher abundance of PI(3)P in the presence of the tombusviral replication proteins, which likely leads to more efficient tombusvirus replication. Accordingly, overexpression of PI(3)P phosphatase in yeast or plants inhibited TBSV replication on the peroxisomal membranes and CIRV replication on the mitochondrial membranes. Moreover, the purified PI(3)P phosphatase reduced TBSV replicase assembly in a cell-free system. Detection of PI(3)P with antibody or a bioprobe revealed the enrichment of PI(3)P in the replication compartment. Vps34 is directly recruited into the replication compartment through interaction with p33 replication protein. Gene deletion analysis in surrogate yeast host unraveled that TBSV replication requires the vesicle transport function of Vps34. In the absence of Vps34, TBSV cannot efficiently recruit the Rab5-positive early endosomes, which provide PE-rich membranes for membrane biogenesis of the TBSV replication compartment. We found that Vps34 and PI(3)P needed for the stability of the p33 replication protein, which is degraded by the 26S proteasome when PI(3)P abundance was decreased by an inhibitor of Vps34. In summary, Vps34 and PI(3)P are needed for providing the optimal microenvironment for the replication of the peroxisomal TBSV and the mitochondrial CIRV.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Tombusvirus/genética , Fosfatidilinositol 3-Quinasas Clase III/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Peroxisomas/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatidilinositoles , Virus ARN/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Tombusvirus/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA