Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18862, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143171

RESUMEN

Cell adhesion to the extracellular matrix and its natural outcome of cell spreading, along with the maintenance of barrier activity, are essential behaviors of epithelial cells, including retinal pigment epithelium (RPE). Disruptions in these characteristics can result in severe vision-threatening diseases such as diabetic macular edema and age-related macular degeneration. However, the precise mechanisms underlying how RPE cells regulate their barrier integrity and cell spreading are not fully understood. This study aims to elucidate the relative importance of upper glycolytic components in governing these cellular behaviors of RPE cells. Electric Cell-Substrate Impedance Sensing (ECIS) technology was utilized to assess in real-time the effects of targeting various upper glycolytic enzymes on RPE barrier function and cell spreading by measuring cell resistance and capacitance, respectively. Specific inhibitors used included WZB117 for Glut1 inhibition, Lonidamine for Hexokinase inhibition, PFK158 for PFKFB3/PFK axis inhibition, and TDZD-8 for Aldolase inhibition. Additionally, the viability of RPE cells was evaluated using a lactate dehydrogenase (LDH) cytotoxicity assay. The most significant decrease in electrical resistance and increase in capacitance of RPE cells were observed due to dose-dependent inhibition of Glut1 using WZB117, as well as Aldolase inhibition with TDZD-8. LDH level analysis at 24-72 h post-treatment with WZB117 (1 and 10 µM) or TDZD-8 (1 µM) showed no significant difference compared to the control, indicating that the disruption of RPE functionality was not attributed to cell death. Lastly, inhibition of other upper glycolytic components, including PFKFB3/PFK with PFK158 or Hexokinase with Lonidamine, did not significantly affect RPE cell behavior. This study provides insights into the varied roles of upper glycolytic components in regulating the functionality of RPE cells. Specifically, it highlights the critical roles of Glut1 and Aldolase in preserving barrier integrity and promoting RPE cell adhesion and spreading. Such understanding will guide the development of safe interventions to treat RPE cell dysfunction in various retinal disorders.


Asunto(s)
Glucólisis , Epitelio Pigmentado de la Retina , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/citología , Glucólisis/efectos de los fármacos , Humanos , Transportador de Glucosa de Tipo 1/metabolismo , Hexoquinasa/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Impedancia Eléctrica , Fosfofructoquinasa-2/metabolismo , Fosfofructoquinasa-2/antagonistas & inhibidores
2.
Cancer Res Commun ; 4(8): 2008-2024, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39007350

RESUMEN

Treatment of patients with locally advanced rectal cancer (RC) is based on neoadjuvant chemoradiotherapy followed by surgery. In order to reduce the development of therapy resistance, it is necessary to further improve previous treatment approaches. Recent in vivo experimental studies suggested that the reduction of tumor hypoxia by tumor vessel normalization (TVN), through the inhibition of the glycolytic activator PFKFB3, could significantly improve tumor response to therapy. We have evaluated in vitro and in vivo the effects of the PFKFB3 inhibitor 2E-3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) on cell survival, clonogenicity, migration, invasion, and metabolism using colorectal cancer cells, patient-derived tumor organoid (PDO), and xenograft (PDX). 3PO treatment of colorectal cancer cells increased radiation-induced cell death and reduced cancer cell invasion. Moreover, gene set enrichment analysis shows that 3PO is able to alter the metabolic status of PDOs toward oxidative phosphorylation. Additionally, in vivo neoadjuvant treatment with 3PO induced TVN, alleviated tumor hypoxia, and increased tumor necrosis. Our results support PFKFB3 inhibition as a possible future neoadjuvant addition for patients with RC. SIGNIFICANCE: Novel therapies to better treat colorectal cancer are necessary to improve patient outcomes. Therefore, in this study, we evaluated the combination of a metabolic inhibitor (3PO) and standard radiotherapy in different experimental settings. We have observed that the addition of 3PO increased radiation effects, ultimately improving tumor cell response to therapy.


Asunto(s)
Fosfofructoquinasa-2 , Neoplasias del Recto , Animales , Humanos , Ratones , Línea Celular Tumoral , Necrosis , Terapia Neoadyuvante/métodos , Neovascularización Patológica/tratamiento farmacológico , Fosfofructoquinasa-2/antagonistas & inhibidores , Piridinas/farmacología , Piridinas/uso terapéutico , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/radioterapia , Hipoxia Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Acta Pharmacol Sin ; 44(3): 680-692, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36114272

RESUMEN

The growth of solid tumors depends on tumor vascularization and the endothelial cells (ECs) that line the lumen of blood vessels. ECs generate a large fraction of ATP through glycolysis, and elevation of their glycolytic activity is associated with angiogenic behavior in solid tumors. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) positively regulates glycolysis via fructose-2/6-bisphosphate, the product of its kinase activity. Partial inhibition of glycolysis in tumor ECs by targeting PFKFB3 normalizes the otherwise abnormal tumor vessels, thereby reducing metastasis and improving the outcome of chemotherapy. Although a limited number of tool compounds exist, orally available PFKFB3 inhibitors are unavailable. In this study we conducted a high-throughput screening campaign against the kinase activity of PFKFB3, involving 250,240 chemical compounds. A total of 507 initial hits showing >50% inhibition at 20 µM were identified, 66 of them plus 1 analog from a similarity search consistently displayed low IC50 values (<10 µM). In vitro experiments yielded 22 nontoxic hits that suppressed the tube formation of primary human umbilical vein ECs at 10 µM. Of them, 15 exhibited binding affinity to PFKFB3 in surface plasmon resonance assays, including 3 (WNN0403-E003, WNN1352-H007 and WNN1542-F004) that passed the pan-assay interference compounds screening without warning flags. This study provides potential leads to the development of new PFKFB3 inhibitors.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Neoplasias , Fosfofructoquinasa-2 , Humanos , Glucólisis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neoplasias/metabolismo , Neovascularización Patológica , Fosfofructoquinasa-2/antagonistas & inhibidores , Fosfofructoquinasa-2/metabolismo
4.
Oxid Med Cell Longev ; 2022: 7548145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187335

RESUMEN

Intervertebral disc (IVD) degeneration (IVDD) is a characteristic of the dominating pathological processes of nucleus pulposus (NP) cell senescence, abnormal synthesis and irregular distribution of extracellular matrix (ECM), and tumor necrosis factor-α (TNF-α) induced inflammation. Nowadays, IVD acid environment variation which accelerates the pathological processes mentioned above arouses researchers' attention. KAN0438757 (KAN) is an effective inhibitor of selective metabolic kinase phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) that has both energy metabolism reprogramming and anti-inflammatory effects. Therefore, a potential therapeutic benefit of KAN lies in its ability to inhibit the development of IVDD. This study examined in vitro KAN toxicity in NP primary cells (NPPs). Moreover, KAN influenced tumor necrosis factor-α (TNF-α) induced ECM anabolism and catabolism; the inflammatory signaling pathway activation and the energy metabolism phenotype were also examined in NPPs. Furthermore, KAN's therapeutic effect was investigated in vivo using the rat tail disc puncture model. Phenotypically speaking, the KAN treatment partially rescued the ECM degradation and glycolysis energy metabolism phenotypes of NPPs induced by TNF-α. In terms of mechanism, KAN inhibited the activation of MAPK and NF-κB inflammatory signaling pathways induced by TNF-α and reprogramed the energy metabolism. For the therapeutic aspect, the rat tail disc puncture model demonstrated that KAN has a significant ameliorated effect on the progression of IVDD. To sum up, our research successfully authenticated the potential therapeutic effect of KAN on IVDD and declaimed its mechanisms of both novel energy metabolism reprogramming and conventional anti-inflammation effect.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Fosfofructoquinasa-2/antagonistas & inhibidores , Animales , Antiinflamatorios/farmacología , Metabolismo Energético , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , FN-kappa B/metabolismo , Núcleo Pulposo/patología , Fosfofructoquinasa-2/metabolismo , Fosfofructoquinasa-2/farmacología , Ratas , Transducción de Señal , Succinimidas , Factor de Necrosis Tumoral alfa/metabolismo
5.
Br J Cancer ; 127(5): 811-823, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35637411

RESUMEN

BACKGROUND: Multiple mechanisms have been proposed that lead to reduced effectiveness of trastuzumab in HER2-positive gastric cancer (GC), yet resistance to trastuzumab remains a challenge in clinics. METHODS: We established trastuzumab-resistant cells and patient-derived xenografts models to measure metabolic levels and vascular density and shape. The HER2-positive GC patient samples were used to determine clinical significance. We also measured protein expression and phosphorylation modifications to determine those alterations related to resistance. In vivo studies combining inhibitor of PFKFB3 with trastuzumab corroborated the in vitro findings. RESULTS: The 6-phosphofructo-2-kinase (PFKFB3)-mediated trastuzumab resistance pathways in HER2-positive GC by activating the glycolytic pathway. We also found vessels are chaotic and destabilised in the tumour during the trastuzumab resistance process. Inhibition of PFKFB3 significantly diminished tumour proliferation and promoted vessel normalisation in the patient-derived xenograft model. Mechanistically, PFKFB3 promoted the secretion of CXCL8 into the tumour microenvironment, and phosphorylated Ser1151 of ERBB2, enhancing the transcription of CXCL8 by activating the PI3K/AKT/NFκB p65 pathway. CONCLUSIONS: Our current findings discover that PFKFB3 inhibitors might be effective tools to overcome adjuvant therapy resistance in HER2-positive GC and reshaping the microenvironment by normalising tumour vessels is a novel strategy to overcome trastuzumab resistance.


Asunto(s)
Fosfofructoquinasa-2 , Neoplasias Gástricas , Trastuzumab , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfofructoquinasa-2/antagonistas & inhibidores , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/farmacología , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Microambiente Tumoral
6.
Cell Immunol ; 371: 104468, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34968772

RESUMEN

Dendritic cells (DCs) play central role in innate as well as adaptive immune responses regulated by diverse DC subtypes that vary in terms of surface markers, transcriptional profile and functional responses. Generation of DC diversity from progenitor stage is tightly regulated by complex molecular inter-play between transcription factors. We earlier demonstrated that Batf3 and Id2 expression have a synergistic effect on the Irf8 directed classical cDC1 development. In present study, Bi-molecular fluorescence complementation assay suggested that IRF8 interacts with BATF3, and ID2 may aid cDC1 development independently. Genome wide recruitment analysis of IRF8 and BATF3 from different DC subtypes led to identification of the overlapping regions of occupancy by these two transcription factors. Further analysis of overlapping peaks of IRF8 and BATF3 occupancy in promoter region within the cDC1 subtype specific transcriptional pattern identified a metabolically important Pfkfb3 gene. Among various immune cell types; splenic cDC1 subtype displayed enhanced expression of Pfkfb3. Analysis of Irf8-/-, Irf8R294C and Batf3DCKO DC confirmed direct regulation of Pfkfb3 enhanced expression specifically in cDC1 subtype. Further we show that inhibition of PFKFB3 enzymatic activity by a chemical agent PFK15 led to reduction in cDC1 subtype in both in vitro FLDC cultures as well as in vivo mouse spleens. Together, our study identified the direct regulation of cDC1 specific enhanced expression of Pfkfb3 in glycolysis and cDC1 biology.


Asunto(s)
Células Dendríticas/inmunología , Factores Reguladores del Interferón/metabolismo , Fosfofructoquinasa-2/biosíntesis , Proteínas Represoras/metabolismo , Animales , Línea Celular , Femenino , Regulación de la Expresión Génica/genética , Glucólisis/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Fosfofructoquinasa-2/antagonistas & inhibidores , Fosfofructoquinasa-2/genética , Regiones Promotoras Genéticas/genética , Piridinas/farmacología , Quinolinas/farmacología
7.
Front Immunol ; 12: 779787, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899740

RESUMEN

Rheumatoid arthritis (RA) is a classic autoimmune disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. The specific pathogenesis of RA, a chronic inflammatory disease, remains unclear. However, both key glycolysis rate-limiting enzymes, hexokinase-II (HK-II), phosphofructokinase-1 (PFK-1), and pyruvate kinase M2 (PKM2), as well as indirect rate-limiting enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), are thought to participate in the pathogenesis of RA. In here, we review the latest literature on the pathogenesis of RA, introduce the pathophysiological characteristics of HK-II, PFK-1/PFKFB3, and PKM2 and their expression characteristics in this autoimmune disease, and systematically assess the association between the glycolytic rate-limiting enzymes and RA from a molecular level. Moreover, we highlight HK-II, PFK-1/PFKFB3, and PKM2 as potential targets for the clinical treatment of RA. There is great potential to develop new anti-rheumatic therapies through safe inhibition or overexpression of glycolysis rate-limiting enzymes.


Asunto(s)
Artritis Reumatoide/enzimología , Enzimas/metabolismo , Glucosa/metabolismo , Glucólisis , Articulaciones/enzimología , Animales , Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Glucólisis/efectos de los fármacos , Hexoquinasa/antagonistas & inhibidores , Hexoquinasa/metabolismo , Humanos , Articulaciones/efectos de los fármacos , Articulaciones/inmunología , Cinética , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Fosfofructoquinasa-1/antagonistas & inhibidores , Fosfofructoquinasa-1/metabolismo , Fosfofructoquinasa-2/antagonistas & inhibidores , Fosfofructoquinasa-2/metabolismo , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
8.
Med Oncol ; 39(1): 10, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34761330

RESUMEN

Numerous studies have shown that 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3), a pivotal enzyme in modulating glycolysis, plays vital roles in various physiological processes. PFKFB3 activity could be regulated by several factors, such as hypoxia and AMPK signaling; however, it could also function as upstream of AMPK signaling. Here, we showed that PFKFB3 inhibitor PFK-15 induced cell viability loss and apoptosis. Deprivation of PFKFB3 inhibited autophagy, while enhanced the ubiquitin-proteasome degradation pathway. Furthermore, PFK-15 reduced both the AMPK and AKT-mTORC1 signaling pathways, as the attenuated phosphorylation level of kinases themselves and their substrates. The addition of AICAR rescued the AMPK activity and autophagy, but enhanced PFK-15-induced cell viability loss. In fact, AICAR promoted the cytotoxicity of PFK-15 even in the AMPKα1/2-silenced cells, indicating AICAR might function in an AMPK-independent manner. Nevertheless, AICAR further reduced the AKT-mTORC1 activity down-regulated by PFK-15. Moreover, it failed to enhance PFK-15's cytotoxicity in the AKT1/2-silenced cells, indicating AKT-mTORC1 participated during these processes. Collectively, the presented data demonstrated that PFK-15 inhibited cell viability, AMPK, and AKT-mTORC1 signaling, and AICAR probably enhanced the cell viability loss aroused by PFK-15 in an AKT-dependent and AMPK-independent manner, thereby revealing a more intimate relationship among PFKFB3, AMPK, and AKT-mTORC1 signaling pathways.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Supervivencia Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Fosfofructoquinasa-2/antagonistas & inhibidores , Ribonucleótidos/farmacología , Aminoimidazol Carboxamida/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Transducción de Señal/efectos de los fármacos
9.
Cells ; 10(7)2021 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-34359849

RESUMEN

Tyrosine kinase inhibitors (TKIs) targeting the kinase domain of the epidermal growth factor receptor (EGFR), such as erlotinib, have dramatically improved clinical outcomes of patients with EGFR-driven non-small cell lung carcinomas (NSCLCs). However, intrinsic or acquired resistance remains a clinical barrier to the success of FDA-approved EGFR TKIs. Multiple mechanisms of resistance have been identified, including the activation of prosurvival autophagy. We have previously shown that the expression and activity of PFKFB3-a known driver of glycolysis-is associated with resistance to erlotinib and that PFKFB3 inhibition improves the response of NSCLC cells to erlotinib. This study focuses on investigating the role of PFKFB3 in regulating erlotinib-driven autophagy to escape resistance to erlotinib. We evaluated the consequence of pharmacological inhibition of PFKFB3 on erlotinib-driven autophagy in NSCLC cells with different mutation statuses. Here, we identify PFKFB3 as a mediator of erlotinib-induced autophagy in NSCLCs. We demonstrate that PFKFB3 inhibition sensitizes NCSLCs to erlotinib via impairing autophagy flux. In summary, our studies uncovered a novel crosstalk between PFKFB3 and EGFR that regulates erlotinib-induced autophagy, thus contributing to erlotinib sensitivity in NSCLCs.


Asunto(s)
Autofagia , Carcinoma de Pulmón de Células no Pequeñas/patología , Clorhidrato de Erlotinib/farmacología , Neoplasias Pulmonares/patología , Fosfofructoquinasa-2/antagonistas & inhibidores , Adenilato Quinasa/metabolismo , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cloroquina/farmacología , Activación Enzimática/efectos de los fármacos , Receptores ErbB/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mutantes/metabolismo , Fosfofructoquinasa-2/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteína Sequestosoma-1/metabolismo
10.
Clin Transl Gastroenterol ; 12(7): e00377, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34193800

RESUMEN

OBJECTIVES: PFKFB3 regulates glycolysis in tumor cells, might function as an oncogene, and is associated with cancer metastasis. However, its role in gastric cancer (GC) remains largely unknown. METHODS: PFKFB3 expression was assessed by immunohistochemistry (IHC) in GC tissues and paired paracancerous histological normal tissues (PCHNTs). The associations of PFKFB3 expression with clinical features and HIF-1α, Ki-67, E-cadherin, Snail, and Vimentin expression levels were assessed. A series of in vivo and in vitro experiments were performed to investigate the effects of PFKFB3 on the growth, migration, and invasion of GC cells. RESULTS: We found that PFKFB3 expression was significantly higher in GC tissues compared with PCHNTs (P = 0.000). PFKFB3 expression was positively correlated with tumor size (P = 0.000), differentiation (P = 0.025), venous invasion (P = 0.084), nerve invasion (P = 0.014), lymphatic invasion (P = 0.000), local invasion (P = 0.000), invasive depth (P = 0.000), nodal metastasis (P = 0.000), tumor-node-metastasis stage (P = 0.000), and patient survival (P = 0.000). Notably, PFKFB3 upregulation was highly correlated with increased epithelial-mesenchymal transition (EMT) in GC samples. PFKFB3 overexpression positively modulated cell proliferation, migration, and EMT in GC cells in vitro, with concomitant activation of NF-κB signaling. Administration of an NF-κB inhibitor attenuated PFKFB3-induced EMT in GC cells. PFKFB3 overexpression promoted tumor development and EMT in nude mice, which were attenuated by PFK-15, a PFKFB3 inhibitor. DISCUSSION: PFKFB3 could potentiate malignancy in GC cells through NF-κB pathway-mediated EMT, suggesting PFKFB3 represents a potential target for GC therapy.


Asunto(s)
Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Regulación hacia Arriba , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Glucólisis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Ratones Desnudos , Persona de Mediana Edad , FN-kappa B/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Fosfofructoquinasa-2/antagonistas & inhibidores , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Carga Tumoral , Vimentina/genética , Vimentina/metabolismo
11.
Biochem Biophys Res Commun ; 571: 118-124, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34325126

RESUMEN

Activating mutations of the oncogenic KRAS in pancreatic ductal adenocarcinoma (PDAC) are associated with an aberrant metabolic phenotype that may be therapeutically exploited. Increased glutamine utilization via glutaminase-1 (GLS1) is one such feature of the activated KRAS signaling that is essential to cell survival and proliferation; however, metabolic plasticity of PDAC cells allow them to adapt to GLS1 inhibition via various mechanisms including activation of glycolysis, suggesting a requirement for combinatorial anti-metabolic approaches to combat PDAC. We investigated whether targeting the glycolytic regulator 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) in combination with GLS1 can selectively prevent the growth of KRAS-transformed cells. We show that KRAS-transformation of pancreatic duct cells robustly sensitizes them to the dual targeting of GLS1 and PFKFB3. We also report that this sensitivity is preserved in the PDAC cell line PANC-1 which harbors an activating KRAS mutation. We then demonstrate that GLS1 inhibition reduced fructose-2,6-bisphosphate levels, the product of PFKFB3, whereas PFKFB3 inhibition increased glutamine consumption, and these effects were augmented by the co-inhibition of GLS1 and PFKFB3, suggesting a reciprocal regulation between PFKFB3 and GLS1. In conclusion, this study identifies a novel mutant KRAS-induced metabolic vulnerability that may be targeted via combinatorial inhibition of GLS1 and PFKFB3 to suppress PDAC cell growth.


Asunto(s)
Antineoplásicos/farmacología , Bencenoacetamidas/farmacología , Glutaminasa/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Fosfofructoquinasa-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Tiadiazoles/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ensayos de Selección de Medicamentos Antitumorales , Glutaminasa/genética , Glutaminasa/metabolismo , Humanos , Mutación , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
12.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073144

RESUMEN

Angiogenesis is the process of new blood vessel formation. In this complex orchestrated growth, many factors are included. Lately, focus has shifted to endothelial cell metabolism, particularly to the PFKFB3 protein, a key regulatory enzyme of the glycolytic pathway. A variety of inhibitors of this important target have been studied, and a plethora of biological effects related to the process of angiogenesis have been reported. However, recent studies have disputed their mechanism of action, questioning whether all the effects are indeed due to PFKFB3 inhibition. Remarkably, the most well-studied inhibitor, 3PO, does not bind to PFKFB3, raising questions about this target. In our study, we aimed to elucidate the effects of PFKFB3 inhibition in angiogenesis by using the small molecule AZ67. We used isothermal titration calorimetry and confirmed binding to PFKFB3. In vitro, AZ67 did not decrease lactate production in endothelial cells (ECs), nor ATP levels, but exhibited good inhibitory efficacy in the tube-formation assay. Surprisingly, this was independent of EC migratory and proliferative abilities, as this was not diminished upon treatment. Strikingly however, even the lowest dose of AZ67 demonstrated significant inhibition of angiogenesis in vivo. To our knowledge, this is the first study to demonstrate that the process of angiogenesis can be disrupted by targeting PFKFB3 independently of glycolysis inhibition.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos , Glucólisis/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Fosfofructoquinasa-2 , Animales , Línea Celular , Células Endoteliales , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Ratones , Ratones Endogámicos C57BL , Fosfofructoquinasa-2/antagonistas & inhibidores , Fosfofructoquinasa-2/metabolismo , Unión Proteica
13.
Front Immunol ; 12: 669456, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163475

RESUMEN

In Type 1 Diabetes (T1D), CD4+ T cells initiate autoimmune attack of pancreatic islet ß cells. Importantly, bioenergetic programs dictate T cell function, with specific pathways required for progression through the T cell lifecycle. During activation, CD4+ T cells undergo metabolic reprogramming to the less efficient aerobic glycolysis, similarly to highly proliferative cancer cells. In an effort to limit tumor growth in cancer, use of glycolytic inhibitors have been successfully employed in preclinical and clinical studies. This strategy has also been utilized to suppress T cell responses in autoimmune diseases like Systemic Lupus Erythematosus (SLE), Multiple Sclerosis (MS), and Rheumatoid Arthritis (RA). However, modulating T cell metabolism in the context of T1D has remained an understudied therapeutic opportunity. In this study, we utilized the small molecule PFK15, a competitive inhibitor of the rate limiting glycolysis enzyme 6-phosphofructo-2-kinase/fructose-2,6- biphosphatase 3 (PFKFB3). Our results confirmed PFK15 inhibited glycolysis utilization by diabetogenic CD4+ T cells and reduced T cell responses to ß cell antigen in vitro. In an adoptive transfer model of T1D, PFK15 treatment delayed diabetes onset, with 57% of animals remaining euglycemic at the end of the study period. Protection was due to induction of a hyporesponsive T cell phenotype, characterized by increased and sustained expression of the checkpoint molecules PD-1 and LAG-3 and downstream functional and metabolic exhaustion. Glycolysis inhibition terminally exhausted diabetogenic CD4+ T cells, which was irreversible through restimulation or checkpoint blockade in vitro and in vivo. In sum, our results demonstrate a novel therapeutic strategy to control aberrant T cell responses by exploiting the metabolic reprogramming of these cells during T1D. Moreover, the data presented here highlight a key role for nutrient availability in fueling T cell function and has implications in our understanding of T cell biology in chronic infection, cancer, and autoimmunity.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Glucólisis/efectos de los fármacos , Fosfofructoquinasa-2/antagonistas & inhibidores , Piridinas/farmacología , Quinolinas/farmacología , Traslado Adoptivo , Animales , Antígenos CD/metabolismo , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/trasplante , Células Cultivadas , Reprogramación Celular/efectos de los fármacos , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones Endogámicos NOD , Ratones SCID , Fosfofructoquinasa-2/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Factores de Tiempo , Proteína del Gen 3 de Activación de Linfocitos
14.
Pharmacol Res ; 168: 105592, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33813027

RESUMEN

Abnormal glycolytic metabolism contributes to angiogenic sprouting involved in atherogenesis. We investigated the potential anti-angiogenic properties of specific 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) inhibitors in endothelial cells (ECs). ECs were treated with PFKFB3 inhibitors (named PA-1 and PA-2) and their effects on metabolic and functional characteristics of ECs were investigated. The anti-glycolytic compound 3-(pyridinyl)- 1-(4-pyridinyl)- 2-propen-1-one (3PO) was used as reference compound. PFKFB3 expression and activity (IC50 about 3-21 nM) was inhibited upon treatment with both compounds. Glucose uptake and lactate export were measured using commercial assays and showed a partial reduction up to 40%. PFKFB3 inhibition increased intracellular lactate accumulation, and reduced expression of monocarboxylate transporters-1 (MCT1) and MCT4. Furthermore, endothelial cell migration and proliferation assays demonstrated significant reduction upon treatment with both compounds. Matrix- metalloproteinase (MMP) activity, measured by gelatin zymography, and expression was significantly reduced (up to 25%). In addition, PA compounds downregulated the expression of VCAM-1, VE-cadherin, VEGFa, VEGFR2, TGF-ß, and IL-1ß, in inflamed ECs. Finally, PA-1 and PA-2 treatment impaired the formation of angiogenic sprouts measured by both morphogenesis and spheroid-based angiogenesis assays. Our data demonstrate that the anti-glycolytic PA compounds may affect several steps involved in angiogenesis. Targeting the key glycolytic enzyme PFKFB3 might represent an attractive therapeutic strategy to improve the efficacy of cancer treatments, or to be applied in other pathologies where angiogenesis is a detrimental factor.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Fosfofructoquinasa-2/antagonistas & inhibidores , Células Cultivadas , Humanos , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/fisiología , Proteínas Musculares/fisiología , NAD/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Simportadores/fisiología
15.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922320

RESUMEN

A high rate of glycolysis is considered a hallmark of tumor progression and is caused by overexpression of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). Therefore, we analyzed the possibility of inhibiting tumor and endothelial cell metabolism through the inhibition of PFKFB3 by a small molecule, (E)-1-(pyridin-4-yl)-3-(quinolin-2-yl)prop-2-en-1-one (PFK15), as a promising therapy. The effects of PFK15 on cell proliferation and apoptosis were analyzed on human umbilical vein endothelial cells (HUVEC) and the human colorectal adenocarcinoma cell line DLD1 through cytotoxicity and proliferation assays, flow cytometry, and western blotting. The results showed that PFK15 inhibited the proliferation of both cell types and induced apoptosis with decreasing the Bcl-2/Bax ratio. On the basis of the results obtained from in vitro experiments, we performed a study on immunodeficient mice implanted with DLD1 cells. We found a reduced tumor mass after morning PFK15 treatment but not after evening treatment, suggesting circadian control of underlying processes. The reduction in tumor size was related to decreased expression of Ki-67, a marker of cell proliferation. We conclude that inhibition of glycolysis can represent a promising therapeutic strategy for cancer treatment and its efficiency is circadian dependent.


Asunto(s)
Cronoterapia/métodos , Neoplasias del Colon/tratamiento farmacológico , Glucosa/metabolismo , Glucólisis , Fosfofructoquinasa-2/antagonistas & inhibidores , Piridinas/farmacología , Quinolinas/farmacología , Animales , Apoptosis , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Humanos , Masculino , Ratones , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Oncogene ; 40(8): 1409-1424, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33420377

RESUMEN

The advanced or recurrent endometrial cancer (EC) has a poor prognosis because of chemoresistance. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a glycolytic enzyme, is overexpressed in a variety of human cancers and plays important roles in promoting tumor cell growth. Here, we showed that high expression of PFKFB3 in EC cell lines is associated with chemoresistance. Pharmacological inhibition of PFKFB3 with PFK158 and or genetic downregulation of PFKFB3 dramatically suppressed cell proliferation and enhanced the sensitivity of EC cells to carboplatin (CBPt) and cisplatin (Cis). Moreover, PFKFB3 inhibition resulted in reduced glucose uptake, ATP production, and lactate release. Notably, we found that PFK158 with CBPt or Cis exerted strong synergistic antitumor activity in chemoresistant EC cell lines, HEC-1B and ARK-2 cells. We also found that the combination of PFK158 and CBPt/Cis induced apoptosis- and autophagy-mediated cell death through inhibition of the Akt/mTOR signaling pathway. Mechanistically, we found that PFK158 downregulated the CBPt/Cis-induced upregulation of RAD51 expression and enhanced CBPt/Cis-induced DNA damage as demonstrated by an increase in γ-H2AX levels in HEC-1B and ARK-2 cells, potentially revealing a means to enhance PFK158-induced chemosensitivity. More importantly, PFK158 treatment, either as monotherapy or in combination with CBPt, led to a marked reduction in tumor growth in two chemoresistant EC mouse xenograft models. These data suggest that PFKFB3 inhibition alone or in combination with standard chemotherapy may be used as a novel therapeutic strategy for improved therapeutic efficacy and outcomes of advanced and recurrent EC patients.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Endometriales/tratamiento farmacológico , Fosfofructoquinasa-2/genética , Apoptosis/efectos de los fármacos , Carboplatino/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Neoplasias Endometriales/patología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Fosfofructoquinasa-2/antagonistas & inhibidores , Piridinas/farmacología , Quinolinas/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cancer Lett ; 500: 29-40, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33307155

RESUMEN

Glycolysis emerges as a new therapeutic target for malignancies. The inhibition of glycolytic activator, PFKFB3, repairs tumor endothelial cell function, and normalizing the tumor microenvironment. We aimed to investigate the significance of PFKFB3 in HCC, and the effects of the PFKFB3 inhibitor, PFK15, in HCC tumor cells and tumor endothelial cells. Double immunofluorescent staining of PFKFB3 and CD31 in HCC tissues revealed that high PFKFB3 expression in both tumor cells and tumor endothelial cells was significantly correlated with poor prognosis. Multivariate analysis identified PFKFB3 expression as an independent prognostic factor. PFK15 suppressed proliferation of HCC cell line and tumor endothelial cells in vitro. In a subcutaneous tumor model of the HCC cell line with tumor endothelial cells, PFK15 suppressed tumor growth and induced apoptosis. Moreover, PFK15 treatment induced tumor vessel normalization, decreasing vessel diameter with pericyte attachment and improving vessel perfusion. High PFKFB3 expression in both tumor cells and tumor endothelial cells was identified as a novel prognostic marker in HCC. Targeting PFKFB3 via PFK15 might be a promising strategy for suppressing tumor growth and inducing tumor vessel normalization.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Fosfofructoquinasa-2/genética , Piridinas/farmacología , Quinolinas/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/genética , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Fosfofructoquinasa-2/antagonistas & inhibidores , Pronóstico , Microambiente Tumoral/efectos de los fármacos
18.
Eur J Med Chem ; 203: 112612, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32679452

RESUMEN

Cancer cells adopt aerobic glycolysis as the major source of energy and biomass production for fast cell proliferation. The bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), plays a crucial role in the regulation of glycolysis by controlling the steady-state cytoplasmic levels of fructose-2,6-bisphosphate (F2,6BP), which is the most potent allosteric activator of 6-phosphofructo-1-kinase (PFK-1), a key rate-limiting enzyme of glycolysis. Therefore, selective inhibition of PFKFB3 has gained substantial interest as an attractive strategy for cancer therapy. In recent years, numerous class PFKFB3 inhibitors have been disclosed, and emerging trends such as the availability of PFKFB3 crystal structures, structure-based screening strategies and diverse functional assays are improving optimization and development of original leads. Herein, we review the structure and function of PFKFB3 as well as the representative small-molecule inhibitors, in particular emphasis on their chemical structures, pharmacological properties, selectivity, binding modes and structure-activity relationships (SARs).


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Fosfofructoquinasa-2/antagonistas & inhibidores , Animales , Humanos , Relación Estructura-Actividad
19.
Theranostics ; 10(16): 7245-7259, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32641990

RESUMEN

Rationale: Tumor vascular normalization (TVN) is emerging to enhance the efficacy of anticancer treatment in many cancers including glioblastoma (GBM). However, a common and severe challenge being currently faced is the transient TVN effect, hampering the sustained administration of anticancer therapy during TVN window. Additionally, the lack of non-contrast agent-based imaging biomarkers to monitor TVN process postpones the clinical translation of TVN strategy. In this study, we investigated whether dual inhibition of VEGF and the glycolytic activator PFKFB3 could reinforce the TVN effect in GBM. Dynamic contrast-enhanced-magnetic resonance imaging (DCE-MRI) and intravoxel incoherent motion (IVIM)-MRI were performed to monitor TVN process and to identify whether IVIM-MRI is a candidate or complementary imaging biomarker for monitoring TVN window without exogenous contrast agent administration. Methods: Patient-derived orthotopic GBM xenografts in mice were established and treated with bevacizumab (BEV), 3PO (PFKFB3 inhibitor), BEV+3PO dual therapy, or saline. The vascular morphology, tumor hypoxia, and lactate level were evaluated before and at different time points after treatments. Doxorubicin was used to evaluate chemotherapeutic efficacy and drug delivery. Microarray of angiogenesis cytokines and western blotting were conducted to characterize post-treatment molecular profiling. TVN process was monitored by DCE- and IVIM-MRI. Correlation analysis of pathological indicators and MRI parameters was further analyzed. Results: Dual therapy extended survival and delayed tumor growth over each therapy alone, concomitant with a decrease of cell proliferation and an increase of cell apoptosis. The dual therapy reinforces TVN effect, thereby alleviating tumor hypoxia, reducing lactate production, and improving the efficacy and delivery of doxorubicin. Mechanistically, several angiogenic cytokines and pathways were downregulated after dual therapy. Notably, dual therapy inhibited Tie1 expression, the key regulator of TVN, in both endothelial cells and tumor cells. DCE- and IVIM-MRI data showed that dual therapy induced a more homogenous and prominent TVN effect characterized by improved vascular function in tumor core and tumor rim. Correlation analysis revealed that IVIM-MRI parameter D* had better correlations with TVN pathological indicators compared with the DCE-MRI parameter Ktrans. Conclusions: Our results propose a rationale to overcome the current limitation of BEV monotherapy by integrating the synergistic effects of VEGF and PFKFB3 blockade to enhance chemotherapy efficacy through a sustained TVN effect. Moreover, we unveil IVIM-MRI parameter D* has much potential as a complementary imaging biomarker to monitor TVN window more precisely without exogenous contrast agent injection.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Neovascularización Patológica/diagnóstico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/patología , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Glioblastoma/irrigación sanguínea , Glioblastoma/diagnóstico , Glioblastoma/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ácido Láctico/análisis , Ácido Láctico/metabolismo , Masculino , Ratones , Imágenes de Resonancia Magnética Multiparamétrica , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Fosfofructoquinasa-2/antagonistas & inhibidores , Fosfofructoquinasa-2/metabolismo , Piridinas/farmacología , Piridinas/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cancer Res ; 80(16): 3251-3264, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32580961

RESUMEN

KRAS is mutated in most pancreatic ductal adenocarcinomas (PDAC) and yet remains undruggable. Here, we report that p38γ MAPK, which promotes PDAC tumorigenesis by linking KRAS signaling and aerobic glycolysis (also called the Warburg effect), is a novel therapeutic target. p38γ interacted with a glycolytic activator PFKFB3 that was dependent on mutated KRAS. KRAS transformation and overexpression of p38γ increased expression of PFKFB3 and glucose transporter GLUT2, conversely, silencing mutant KRAS, and p38γ decreased PFKFB3 and GLUT2 expression. p38γ phosphorylated PFKFB3 at S467, stabilized PFKFB3, and promoted their interaction with GLUT2. Pancreatic knockout of p38γ decreased p-PFKFB3/PFKFB3/GLUT2 protein levels, reduced aerobic glycolysis, and inhibited PDAC tumorigenesis in KPC mice. PFKFB3 and GLUT2 depended on p38γ to stimulate glycolysis and PDAC growth and p38γ required PFKFB3/S467 to promote these activities. A p38γ inhibitor cooperated with a PFKFB3 inhibitor to blunt aerobic glycolysis and PDAC growth, which was dependent on p38γ. Moreover, overexpression of p38γ, p-PFKFB3, PFKFB3, and GLUT2 in PDAC predicted poor clinical prognosis. These results indicate that p38γ links KRAS oncogene signaling and aerobic glycolysis to promote pancreatic tumorigenesis through PFKFB3 and GLUT2, and that p38γ and PFKFB3 may be targeted for therapeutic intervention in PDAC. SIGNIFICANCE: These findings show that p38γ links KRAS oncogene signaling and the Warburg effect through PFKBF3 and Glut2 to promote pancreatic tumorigenesis, which can be disrupted via inhibition of p38γ and PFKFB3.


Asunto(s)
Carcinoma Ductal Pancreático/etiología , Transportador de Glucosa de Tipo 2/metabolismo , Glucólisis , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Neoplasias Pancreáticas/etiología , Fosfofructoquinasa-2/antagonistas & inhibidores , Fosfofructoquinasa-2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Aerobiosis , Animales , Carcinoma Ductal Pancreático/prevención & control , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Colágeno , Combinación de Medicamentos , Femenino , Técnicas de Inactivación de Genes , Silenciador del Gen , Genes ras , Técnicas de Genotipaje , Humanos , Laminina , Masculino , Ratones , Proteína Quinasa 12 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 12 Activada por Mitógenos/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/prevención & control , Fosforilación , Pronóstico , Proteoglicanos , Proteínas Proto-Oncogénicas p21(ras)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...