Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Pharm Bull ; 47(6): 1148-1153, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880622

RESUMEN

Transcriptional activation, based on Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) and known as CRISPR activation (CRISPRa), is a specific and safe tool to upregulate endogenous genes. Therefore, CRISPRa is valuable not only for analysis of molecular mechanisms of cellular events, but also for treatment of various diseases. Regulating autophagy has been proposed to enhance effects of some therapies. In this study, we upregulated genes for phosphoinositide phosphatases, SACM1L, PIP4P1, and PIP4P2, using CRISPRa, and their effects on autophagy were examined. Our results suggested that TMEM55A/PIP4P2, a phosphatidylinositol-4,5-bisphosphate 4-phosphatase, positively regulates basal autophagy in 293A cells. Furthermore, it was also suggested that SAC1, a phosphatidylinositol 4-phosphatase, negatively regulates basal autophagic degradation.


Asunto(s)
Autofagia , Fosfoinosítido Fosfatasas , Humanos , Sistemas CRISPR-Cas , Células HEK293 , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Fosfoinosítido Fosfatasas/metabolismo , Fosfoinosítido Fosfatasas/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
J Biol Chem ; 299(9): 105092, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507017

RESUMEN

In budding yeast cells, much of the inner surface of the plasma membrane (PM) is covered with the endoplasmic reticulum (ER). This association is mediated by seven ER membrane proteins that confer cortical ER-PM association at membrane contact sites (MCSs). Several of these membrane "tether" proteins are known to physically interact with the phosphoinositide phosphatase Sac1p. However, it is unclear how or if these interactions are necessary for their interdependent functions. We find that SAC1 inactivation in cells lacking the homologous synaptojanin-like genes INP52 and INP53 results in a significant increase in cortical ER-PM MCSs. We show in sac1Δ, sac1tsinp52Δ inp53Δ, or Δ-super-tether (Δ-s-tether) cells lacking all seven ER-PM tethering genes that phospholipid biosynthesis is disrupted and phosphoinositide distribution is altered. Furthermore, SAC1 deletion in Δ-s-tether cells results in lethality, indicating a functional overlap between SAC1 and ER-PM tethering genes. Transcriptomic profiling indicates that SAC1 inactivation in either Δ-s-tether or inp52Δ inp53Δ cells induces an ER membrane stress response and elicits phosphoinositide-dependent changes in expression of autophagy genes. In addition, by isolating high-copy suppressors that rescue sac1Δ Δ-s-tether lethality, we find that key phospholipid biosynthesis genes bypass the overlapping function of SAC1 and ER-PM tethers and that overexpression of the phosphatidylserine/phosphatidylinositol-4-phosphate transfer protein Osh6 also provides limited suppression. Combined with lipidomic analysis and determinations of intracellular phospholipid distributions, these results suggest that Sac1p and ER phospholipid flux controls lipid distribution to drive Osh6p-dependent phosphatidylserine/phosphatidylinositol-4-phosphate counter-exchange at ER-PM MCSs.


Asunto(s)
Membrana Celular , Fosfoinosítido Fosfatasas , Proteínas de Saccharomyces cerevisiae , Membrana Celular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidilinositoles/metabolismo , Fosfatidilserinas/metabolismo , Fosfoinosítido Fosfatasas/genética , Fosfoinosítido Fosfatasas/metabolismo , Fosfolípidos/genética , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Silenciador del Gen , Autofagia/genética , Transcriptoma , Regulación Fúngica de la Expresión Génica/genética , Membranas Intracelulares/metabolismo
3.
PLoS Genet ; 19(6): e1010800, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37363915

RESUMEN

The phosphatase FIG4 and the scaffold protein VAC14 function in the biosynthesis of PI(3,5)P2, a signaling lipid that inhibits the lysosomal chloride transporter ClC-7. Loss-of-function mutations of FIG4 and VAC14 reduce PI(3,5)P2 and result in lysosomal disorders characterized by accumulation of enlarged lysosomes and neurodegeneration. Similarly, a gain of function mutation of CLCN7 encoding ClC-7 also results in enlarged lysosomes. We therefore tested the ability of reduced CLCN7 expression to compensate for loss of FIG4 or VAC14. Knock-out of CLCN7 corrected lysosomal swelling and partially corrected lysosomal hyperacidification in FIG4 null cell cultures. Knockout of the related transporter CLCN6 (ClC-6) in FIG4 null cells did not affect the lysosome phenotype. In the Fig4 null mouse, reduction of ClC-7 by expression of the dominant negative CLCN7 variant p.Gly215Arg improved growth and neurological function and increased lifespan by 20%. These observations demonstrate a role for the CLCN7 chloride transporter in pathogenesis of FIG4 and VAC14 disorders. Reduction of CLCN7 provides a new target for treatment of FIG4 and VAC14 deficiencies that lack specific therapies, such as Charcot-Marie-Tooth Type 4J and Yunis-Varón syndrome.


Asunto(s)
Antiportadores , Cloruros , Animales , Ratones , Antiportadores/metabolismo , Cloruros/metabolismo , Flavoproteínas/genética , Flavoproteínas/metabolismo , Lisosomas/metabolismo , Ratones Noqueados , Fosfoinosítido Fosfatasas/genética , Fosfoinosítido Fosfatasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética
4.
Cell Rep ; 36(4): 109434, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34320354

RESUMEN

Phosphoinositides are important molecules in lipid signaling, membrane identity, and trafficking that are spatiotemporally controlled by factors from both mammalian cells and intracellular pathogens. Here, using small interfering RNA (siRNA) directed against phosphoinositide kinases and phosphatases, we screen for regulators of the host innate defense response to intracellular bacterial replication. We identify SAC1, a transmembrane phosphoinositide phosphatase, as an essential regulator of xenophagy. Depletion or inactivation of SAC1 compromises fusion between Salmonella-containing autophagosomes and lysosomes, leading to increased bacterial replication. Mechanistically, the loss of SAC1 results in aberrant accumulation of phosphatidylinositol-4-phosphate [PI(4)P] on Salmonella-containing autophagosomes, thus facilitating recruitment of SteA, a PI(4)P-binding Salmonella effector protein, which impedes lysosomal fusion. Replication of Salmonella lacking SteA is suppressed by SAC-1-deficient cells, however, demonstrating bacterial adaptation to xenophagy. Our findings uncover a paradigm in which a host protein regulates the level of its substrate and impairs the function of a bacterial effector during xenophagy.


Asunto(s)
Autofagosomas , Macroautofagia , Fosfatos de Fosfatidilinositol , Fosfoinosítido Fosfatasas , Salmonella , Humanos , Autofagosomas/metabolismo , Proteínas Bacterianas/metabolismo , Citosol/microbiología , Células HEK293 , Células HeLa , Lípidos/química , Lisosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinosítido Fosfatasas/metabolismo , Salmonella/crecimiento & desarrollo , Salmonella/metabolismo
5.
J Biochem ; 169(5): 507-509, 2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-33537719

RESUMEN

Lysosomes are dynamic organelles that are transported along microtubules bidirectionally via kinesin and dynein motor proteins. Lysosomal positioning, which is determined by the balance of the bidirectional lysosomal movement, changes under various conditions and affects lysosomal functions such as autophagy and antigen presentation. A recent study by Takemasu et al. (Phosphorylation of TMEM55B by Erk/MAPK regulates lysosomal positioning. J. Biochem. 2019; 166:175-185) has shown that phosphorylation of the transmembrane protein TMEM55B is involved in the retrograde lysosomal trafficking towards the perinuclear region. They found that TMEM55B is phosphorylated upon stimulation with various ligands and that Erk/MAPK mediates the TMEM55B phosphorylation. They have also revealed that a phosphorylation mimic mutant of TMEM55B enhances perinuclear lysosomal clustering compared to the wild-type TMEM55B. These findings suggest that TMEM55B phosphorylation by Erk/MAPK is responsible for regulating lysosomal positioning in response to external stimuli.


Asunto(s)
Lisosomas/metabolismo , Sistema de Señalización de MAP Quinasas , Fosfoinosítido Fosfatasas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Humanos , Lisosomas/genética , Fosfoinosítido Fosfatasas/genética , Fosforilación , Proteínas de Transporte Vesicular/genética
6.
Mol Biol Cell ; 31(17): 1835-1845, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32583743

RESUMEN

Fig4 is a phosphoinositide phosphatase that converts PI3,5P2 to PI3P. Paradoxically, mutation of Fig4 results in lower PI3,5P2, indicating that Fig4 is also required for PI3,5P2 production. Fig4 promotes elevation of PI3,5P2, in part, through stabilization of a protein complex that includes its opposing lipid kinase, Fab1, and the scaffold protein Vac14. Here we show that multiple regions of Fig4 contribute to its roles in the elevation of PI3,5P2: its catalytic site, an N-terminal disease-related surface, and a C-terminal region. We show that mutation of the Fig4 catalytic site enhances the formation of the Fab1-Vac14-Fig4 complex, and reduces the ability to elevate PI3,5P2. This suggests that independent of its lipid phosphatase function, the active site plays a role in the Fab1-Vac14-Fig4 complex. We also show that the N-terminal disease-related surface contributes to the elevation of PI3,5P2 and promotes Fig4 association with Vac14 in a manner that requires the Fig4 C-terminus. We find that the Fig4 C-terminus alone interacts with Vac14 in vivo and retains some functions of full-length Fig4. Thus, a subset of Fig4 functions are independent of its phosphatase domain and at least three regions of Fig4 play roles in the function of the Fab1-Vac14-Fig4 complex.


Asunto(s)
Flavoproteínas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Flavoproteínas/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lípidos/fisiología , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinosítido Fosfatasas/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
7.
Arterioscler Thromb Vasc Biol ; 40(5): 1311-1324, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32188273

RESUMEN

OBJECTIVE: TMEM55B (transmembrane protein 55B) is a phosphatidylinositol-(4,5)-bisphosphate (PI[4,5]P2) phosphatase that regulates cellular cholesterol, modulates LDLR (low-density lipoprotein receptor) decay, and lysosome function. We tested the effects of Tmem55b knockdown on plasma lipids in mice and assessed the roles of LDLR lysosomal degradation and change in (PI[4,5]P2) in mediating these effects. Approach and Results: Western diet-fed C57BL/6J mice were treated with antisense oligonucleotides against Tmem55b or a nontargeting control for 3 to 4 weeks. Hepatic Tmem55b transcript and protein levels were reduced by ≈70%, and plasma non-HDL (high-density lipoprotein) cholesterol was increased ≈1.8-fold (P<0.0001). Immunoblot analysis of fast protein liquid chromatography (FPLC) fractions revealed enrichment of ApoE-containing particles in the LDL size range. In contrast, Tmem55b knockdown had no effect on plasma cholesterol in Ldlr-/- mice. In primary hepatocytes and liver tissues from Tmem55b knockdown mice, there was decreased LDLR protein. In the hepatocytes, there was increased lysosome staining and increased LDLR-lysosome colocalization. Impairment of lysosome function (incubation with NH4Cl or knockdown of the lysosomal proteins LAMP1 or RAB7) abolished the effect of TMEM55B knockdown on LDLR in HepG2 (human hepatoma) cells. Colocalization of the recycling endosome marker RAB11 (Ras-related protein 11) with LDLR in HepG2 cells was reduced by 50% upon TMEM55B knockdown. Finally, knockdown increased hepatic PI(4,5)P2 levels in vivo and in HepG2 cells, while TMEM55B overexpression in vitro decreased PI(4,5)P2. TMEM55B knockdown decreased, whereas overexpression increased, LDL uptake in HepG2 cells. Notably, the TMEM55B overexpression effect was reversed by incubation with PI(4,5)P2. Conclusions: These findings indicate a role for TMEM55B in regulating plasma cholesterol levels by affecting PI(4,5)P2-mediated LDLR lysosomal degradation.


Asunto(s)
Colesterol/sangre , Hepatocitos/metabolismo , Hígado/metabolismo , Lisosomas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoinosítido Fosfatasas/metabolismo , Receptores de LDL/metabolismo , Animales , Dieta Alta en Grasa , Regulación hacia Abajo , Femenino , Células Hep G2 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoinosítido Fosfatasas/genética , Transporte de Proteínas , Proteolisis , Receptores de LDL/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
8.
Mol Biol Cell ; 31(11): 1183-1199, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32186963

RESUMEN

The complex functions of cellular membranes, and thus overall cell physiology, depend on the distribution of crucial lipid species. Sac1 is an essential, conserved, ER-localized phosphatase whose substrate, phosphatidylinositol 4-phosphate (PI4P), coordinates secretory trafficking and plasma membrane function. PI4P from multiple pools is delivered to Sac1 by oxysterol-binding protein and related proteins in exchange for other lipids and sterols, which places Sac1 at the intersection of multiple lipid distribution pathways. However, much remains unknown about the roles of Sac1 in subcellular homeostasis and organismal development. Using a temperature-sensitive allele (Sac1ts), we show that Sac1 is required for structural integrity of the Drosophila retinal floor. The ßps-integrin Myospheroid, which is necessary for basal cell adhesion, is mislocalized in Sac1ts retinas. In addition, the adhesion proteins Roughest and Kirre, which coordinate apical retinal cell patterning at an earlier stage, accumulate within Sac1ts retinal cells due to impaired endo-lysosomal degradation. Moreover, Sac1 is required for ER homeostasis in Drosophila retinal cells. Together, our data illustrate the importance of Sac1 in regulating multiple aspects of cellular homeostasis during tissue development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Homeostasis/fisiología , Fosfoinosítido Fosfatasas/metabolismo , Retina/fisiología , Animales , Transporte Biológico , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinosítido Fosfatasas/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte de Proteínas/fisiología , Receptores de Esteroides/metabolismo , Retina/metabolismo , Esteroles/metabolismo
9.
Cell Cycle ; 19(3): 268-289, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31902273

RESUMEN

Accumulating evidence reveals that nuclear phosphoinositides (PIs) serve as central signaling hubs that control a multitude of nuclear processes by regulating the activity of nuclear proteins. In response to cellular stressors, PIs accumulate in the nucleus and multiple PI isomers are synthesized by the actions of PI-metabolizing enzymes, kinases, phosphatases and phospholipases. By directly interacting with effector proteins, phosphoinositide signals transduce changes in cellular functions. Here we describe nuclear phosphoinositide signaling in multiple sub-nuclear compartments and summarize the literature that demonstrates roles for specific kinases, phosphatases, and phospholipases in the orchestration of nuclear phosphoinositide signaling in response to cellular stress. Additionally, we discuss the specific PI-protein complexes through which these lipids execute their functions by regulating the configuration, stability, and transcription activity of their effector proteins. Overall, our review provides a detailed landscape of the current understanding of the nuclear PI-protein interactome and its role in shaping the coordinated response to cellular stress.


Asunto(s)
Núcleo Celular/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/metabolismo , Fosfoinosítido Fosfatasas/metabolismo , Estrés Fisiológico/genética , Animales , Núcleo Celular/enzimología , Humanos , Proteínas Nucleares/metabolismo , Transducción de Señal/genética
10.
Plant Physiol ; 182(3): 1346-1358, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31882455

RESUMEN

Phosphoinositides (PIs) as regulatory membrane lipids play essential roles in multiple cellular processes. Although the exact molecular targets of PI-dependent modulation remain largely elusive, the effects of disturbed PI metabolism could be employed to identify regulatory modules associated with particular downstream targets of PIs. Here, we identified the role of GRAIN NUMBER AND PLANT HEIGHT1 (GH1), which encodes a suppressor of actin (SAC) domain-containing phosphatase with unknown function in rice (Oryza sativa). Endoplasmic reticulum-localized GH1 specifically dephosphorylated and hydrolyzed phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Inactivation of GH1 resulted in massive accumulation of both PI4P and PI(4,5)P2, while excessive GH1 caused their depletion. Notably, superabundant PI4P and PI(4,5)P2 could both disrupt actin cytoskeleton organization and suppress cell elongation. Interestingly, both PI4P and PI(4,5)P2 inhibited actin-related protein2 and -3 (Arp2/3) complex-nucleated actin-branching networks in vitro, whereas PI(4,5)P2 showed more dramatic effects in a dose-dependent manner. Overall, the overaccumulation of PI(4,5)P2 resulting from dysfunction of SAC phosphatase possibly perturbs Arp2/3 complex-mediated actin polymerization, thereby disordering cell development. These findings imply that the Arp2/3 complex might be the potential molecular target of PI(4,5)P2-dependent modulation in eukaryotes, thereby providing insights into the relationship between PI homeostasis and plant growth and development.


Asunto(s)
Oryza/enzimología , Oryza/crecimiento & desarrollo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinosítido Fosfatasas/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Oryza/genética , Fosfoinosítido Fosfatasas/genética , Proteínas de Plantas/metabolismo
11.
J Biochem ; 166(2): 175-185, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31329883

RESUMEN

TMEM55B is first identified as phosphatidylinositol-4,5-P24-phosphatases (PtdIns-4,5-P24-phosphatases) that catalyse dephosphorylation of PtdIns-4,5-P2 to PtdIns-5-P. We demonstrate for the first time that TMEM55B is phosphorylated by Erk/MAPK and that this mechanism participates in regulation of lysosomal clustering. Exposure of RAW264.7 macrophages to various stimuli induces phosphorylation of TMEM55B on Ser76 and Ser169, sites corresponding to consensus sequences (PX(S/T)P) for phosphorylation by MAPK. Of these stimuli, Toll-like receptor ligands most strongly induce TMEM55B phosphorylation, and this is blocked by the MEK1/2 inhibitor U0126. However, phosphorylation does not impact intrinsic phosphatase activity of TMEM55B. TMEM55B has recently been implicated in starvation induced lysosomal translocation. Amino acid starvation induces perinuclear lamp1 clustering in RAW264.7 macrophages, which was attenuated by shRNA-mediated knock-down or CRISPR/Cas9-mediated knock-out of TMEM55B. Cells exposed to U0126 also exhibit attenuated lamp1 clustering. Overexpression of TMEM55B but not TMEM55A notably enhances lamp1 clustering, with TMEM55B mutants (lacking phosphorylation sites or mimicking the phosphorylated state) exhibiting lower and higher efficacies (respectively) than wild-type TMEM55B. Collectively, results suggest that phosphorylation of TMEM55B by Erk/MAPK impacts lysosomal dynamics.


Asunto(s)
Lisosomas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoinosítido Fosfatasas/química , Fosfoinosítido Fosfatasas/metabolismo , Animales , Ratones , Fosforilación , Células RAW 264.7
12.
Biol Pharm Bull ; 42(6): 923-928, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31155588

RESUMEN

Macrophages endocytose modified low-density lipoproteins (LDL) vigorously via scavenger receptor A (SR-A) to become foam cells. In the present study, we found that Sac1, a member of the Sac family of phosphoinositide phosphatases, increases the protein level of SR-A and upregulates foam cell formation. Mouse macrophages (RAW264.7) were transfected with short hairpin RNAs (shRNAs) against Sac1. Sac1 knockdown decreased cell surface SR-A levels and impaired acetylated LDL-induced foam cell formation. Transfection of Sac1-knockdown cells with shRNA-resistant flag-Sac1 effectively rescued the expression of SR-A. Glycosylation of SR-A was largely attenuated by Sac1 knockdown, but neither mRNA expression nor protein degradation of SR-A were affected. These results suggest that Sac1 maintains SR-A protein levels by modulating SR-A glycosylation.


Asunto(s)
Células Espumosas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoinosítido Fosfatasas/metabolismo , Receptores Depuradores de Clase A/metabolismo , Animales , Lipoproteínas LDL/metabolismo , Proteínas de la Membrana/genética , Ratones , Fosfoinosítido Fosfatasas/genética , Células RAW 264.7 , ARN Mensajero , ARN Interferente Pequeño , Receptores Depuradores de Clase A/genética
13.
Semin Cancer Biol ; 59: 50-65, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30922959

RESUMEN

Phosphoinositides are a group of lipids that regulate intracellular signaling and subcellular biological events. The signaling by phosphatidylinositol-3,4,5-trisphosphate and Akt mediates the action of growth factors that are essential for cell proliferation, gene transcription, cell migration, and polarity. The hyperactivation of this signaling has been identified in different cancer cells; and, it has been implicated in oncogenic transformation and cancer cell malignancy. Recent studies have argued the role of phosphoinositides in cancer cell dynamics, including actin cytoskeletal rearrangement at the plasma membrane and the organization of intracellular compartments. The focus of this review is to summarize the impact of the activities of phosphoinositide phosphatases on intracellular signaling related to cancer cell dynamics and to discuss how the abnormalities in the activities of the enzymes alter the levels of phosphoinositides in cancer cells.


Asunto(s)
Neoplasias/etiología , Neoplasias/metabolismo , Fosfoinosítido Fosfatasas/metabolismo , Animales , Biomarcadores , Metabolismo Energético , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fosfohidrolasa PTEN , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoinosítido Fosfatasas/genética , Transducción de Señal
14.
J Cell Sci ; 132(5)2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30709920

RESUMEN

The metabolism of PI(3,5)P2 is regulated by the PIKfyve, VAC14 and FIG4 complex, mutations in which are associated with hypopigmentation in mice. These pigmentation defects indicate a key, but as yet unexplored, physiological relevance of this complex in the biogenesis of melanosomes. Here, we show that PIKfyve activity regulates formation of amyloid matrix composed of PMEL protein within the early endosomes in melanocytes, called stage I melanosomes. PIKfyve activity controls the membrane remodeling of stage I melanosomes, which regulates PMEL abundance, sorting and processing. PIKfyve activity also affects stage I melanosome kiss-and-run interactions with lysosomes, which are required for PMEL amyloidogenesis and the establishment of melanosome identity. Mechanistically, PIKfyve activity promotes both the formation of membrane tubules from stage I melanosomes and their release by modulating endosomal actin branching. Taken together, our data indicate that PIKfyve activity is a key regulator of the melanosomal import-export machinery that fine tunes the formation of functional amyloid fibrils in melanosomes and the maintenance of melanosome identity.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Flavoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Melanocitos/metabolismo , Melanosomas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoinosítido Fosfatasas/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Amiloide/metabolismo , Animales , Células Cultivadas , Flavoproteínas/genética , Homeostasis , Péptidos y Proteínas de Señalización Intracelular/genética , Melanocitos/patología , Melanosomas/ultraestructura , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfoinosítido Fosfatasas/genética , Transporte de Proteínas , Epitelio Pigmentado de la Retina/patología , Antígeno gp100 del Melanoma/metabolismo
15.
Development ; 145(11)2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29752385

RESUMEN

Epithelial patterning in the developing Drosophila melanogaster eye requires the Neph1 homolog Roughest (Rst), an immunoglobulin family cell surface adhesion molecule expressed in interommatidial cells (IOCs). Here, using a novel temperature-sensitive (ts) allele, we show that the phosphoinositide phosphatase Sac1 is also required for IOC patterning. Sac1ts mutants have rough eyes and retinal patterning defects that resemble rst mutants. Sac1ts retinas exhibit elevated levels of phosphatidylinositol 4-phosphate (PI4P), consistent with the role of Sac1 as a PI4P phosphatase. Indeed, genetic rescue and interaction experiments reveal that restriction of PI4P levels by Sac1 is crucial for normal eye development. Rst is delivered to the cell surface in Sac1ts mutants. However, Sac1ts mutant IOCs exhibit severe defects in microtubule organization, associated with accumulation of Rst and the exocyst subunit Sec8 in enlarged intracellular vesicles upon cold fixation ex vivo Together, our data reveal a novel requirement for Sac1 in promoting microtubule stability and suggest that Rst trafficking occurs in a microtubule- and exocyst-dependent manner.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Forma de la Célula/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Proteínas del Ojo/genética , Microtúbulos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinosítido Fosfatasas/genética , Animales , Diferenciación Celular/fisiología , Proteínas de Drosophila/metabolismo , Ojo/embriología , Fosfoinosítido Fosfatasas/metabolismo , Transporte de Proteínas/fisiología , Temperatura , Proteínas de Transporte Vesicular/metabolismo
16.
Genes Cells ; 23(6): 418-434, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29644770

RESUMEN

Mammalian/mechanistic target of rapamycin complex 1 (mTORC1) responds to growth factors and nutrient availability. Amino acids induce the recruitment of mTORC1 to the lysosomal membrane and its consequent activation, but the molecular mechanism of such activation has remained unclear. We have now examined the role of TMEM55B, a lysosomal protein of unknown molecular function, in this process on the basis of the results of proteomics and immunofluorescence analyses showing that TMEM55B interacts with many proteins that participate in mTORC1 activation including components of the vacuolar-type proton ATPase (V-ATPase) and Ragulator complexes at the lysosomal membrane. The amino acid-induced phosphorylation of the mTORC1 substrates S6K and 4E-BP was attenuated in TMEM55B-depleted cells compared with control cells. Depletion of TMEM55B was also found to evoke lysosomal stress as showed by translocation of the transcription factor TFEB to the nucleus. Furthermore, recruitment of the V1 domain subcomplex of V-ATPase to lipid rafts was abrogated in TMEM55B-depleted cells. Collectively, our results suggest that TMEM55B contributes to assembly of the V-ATPase complex in lipid rafts of the lysosomal membrane and to subsequent activation of mTORC1.


Asunto(s)
Aminoácidos/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfoinosítido Fosfatasas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Activación Enzimática , Femenino , Células HEK293 , Células HeLa , Homeostasis , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoinosítido Fosfatasas/química , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Proteínas de Transporte Vesicular/química
17.
PLoS Genet ; 14(3): e1007290, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29584722

RESUMEN

PIKfyve, VAC14, and FIG4 form a complex that catalyzes the production of PI(3,5)P2, a signaling lipid implicated in process ranging from lysosome maturation to neurodegeneration. While previous studies have identified VAC14 and FIG4 mutations that lead to both neurodegeneration and coat color defects, how PIKfyve regulates melanogenesis is unknown. In this study, we sought to better understand the role of PIKfyve in melanosome biogenesis. Melanocyte-specific PIKfyve knockout mice exhibit greying of the mouse coat and the accumulation of single membrane vesicle structures in melanocytes resembling multivesicular endosomes. PIKfyve inhibition blocks melanosome maturation, the processing of the melanosome protein PMEL, and the trafficking of the melanosome protein TYRP1. Taken together, these studies identify a novel role for PIKfyve in controlling the delivery of proteins from the endosomal compartment to the melanosome, a role that is distinct from the role of PIKfyve in the reformation of lysosomes from endolysosomes.


Asunto(s)
Melanosomas/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Animales , Flavoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melaninas/metabolismo , Proteínas de la Membrana , Ratones , Ratones Noqueados , Orgánulos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoinosítido Fosfatasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Transporte de Proteínas
18.
J Cell Sci ; 131(5)2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29378918

RESUMEN

TMEM55a (also known as PIP4P2) is an enzyme that dephosphorylates the phosphatidylinositol (PtdIns) PtdIns(4,5)P2 to form PtdIns(5)P in vitro However, the in vivo conversion of the polyphosphoinositide into PtdIns(5)P by the phosphatase has not yet been demonstrated, and the role of TMEM55a remains poorly understood. Here, we found that mouse macrophages (Raw264.7) deficient in TMEM55a showed an increased engulfment of large particles without affecting the phagocytosis of Escherichia coli Transfection of a bacterial phosphatase with similar substrate specificity to TMEM55a, namely IpgD, into Raw264.7 cells inhibited the engulfment of IgG-erythrocytes in a manner dependent on its phosphatase activity. In contrast, cells transfected with PIP4K2a, which catalyzes PtdIns(4,5)P2 production from PtdIns(5)P, increased phagocytosis. Fluorescent TMEM55a transfected into Raw264.7 cells was found to mostly localize to the phagosome. The accumulation of PtdIns(4,5)P2, PtdIns(3,4,5)P3 and F-actin on the phagocytic cup was increased in TMEM55a-deficient cells, as monitored by live-cell imaging. Phagosomal PtdIns(5)P was decreased in the knockdown cells, but the augmentation of phagocytosis in these cells was unaffected by the exogenous addition of PtdIns(5)P. Taken together, these results suggest that TMEM55a negatively regulates the phagocytosis of large particles by reducing phagosomal PtdIns(4,5)P2 accumulation during cup formation.


Asunto(s)
Fagocitosis/genética , Fagosomas/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoinosítido Fosfatasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas de Transporte Vesicular/metabolismo , Animales , Membrana Celular/metabolismo , Macrófagos/metabolismo , Ratones , Fagosomas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositoles/metabolismo , Unión Proteica , Células RAW 264.7
19.
Nat Commun ; 8(1): 1580, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29146937

RESUMEN

Lysosomal distribution is linked to the role of lysosomes in many cellular functions, including autophagosome degradation, cholesterol homeostasis, antigen presentation, and cell invasion. Alterations in lysosomal positioning contribute to different human pathologies, such as cancer, neurodegeneration, and lysosomal storage diseases. Here we report the identification of a novel mechanism of lysosomal trafficking regulation. We found that the lysosomal transmembrane protein TMEM55B recruits JIP4 to the lysosomal surface, inducing dynein-dependent transport of lysosomes toward the microtubules minus-end. TMEM55B overexpression causes lysosomes to collapse into the cell center, whereas depletion of either TMEM55B or JIP4 results in dispersion toward the cell periphery. TMEM55B levels are transcriptionally upregulated following TFEB and TFE3 activation by starvation or cholesterol-induced lysosomal stress. TMEM55B or JIP4 depletion abolishes starvation-induced retrograde lysosomal transport and prevents autophagosome-lysosome fusion. Overall our data suggest that the TFEB/TMEM55B/JIP4 pathway coordinates lysosome movement in response to a variety of stress conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Lisosomas/metabolismo , Fosfoinosítido Fosfatasas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Regulación de la Expresión Génica , Células HeLa , Humanos , Proteínas de Membrana de los Lisosomas/metabolismo , Microtúbulos/fisiología , Fosfoinosítido Fosfatasas/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas de Transporte Vesicular/genética
20.
Bioessays ; 39(12)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28977683

RESUMEN

Phosphoinositides (PtdInsPs) modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely achieved through kinase-phosphatase enzyme complexes that coordinate their activities and channel substrates without affecting bulk substrate population. Additionally, we contend that despite hundreds of PtdInsP effectors, our attention is biased toward few proteins. Lastly, we recognize that PtdInsPs can act to nucleate coincidence detection at the effector level, as in PDK1 and Akt. Overall, better integrated models of PtdInsP regulation and function are not only possible but needed.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/genética , Células Eucariotas/metabolismo , Membranas Intracelulares/metabolismo , Fosfatidilinositoles/metabolismo , Fosfoinosítido Fosfatasas/genética , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/metabolismo , Acilación , Animales , Compartimento Celular , Células Eucariotas/citología , Regulación de la Expresión Génica , Fosfatidilinositoles/química , Fosfatidilinositoles/clasificación , Fosfoinosítido Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...