Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
Methods Mol Biol ; 2816: 129-138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38977594

RESUMEN

Phospholipase D (PLD) is an enzyme with many functions, one of which is the synthesis of phosphatidic acid (PA), a molecule with a myriad of effects on various organ systems and processes. These numerous roles make it hard to understand the true action of PA in cellular and bodily processes. Imaging PLD activity is one way to better understand the synthesis of PA and start to elucidate its function. However, many of the current imaging techniques for PLD come with limitations. This chapter presents a thorough methodology of a new imaging technique for PLD activity with clickable alcohols via transphosphatidylation (IMPACT) and Real-Time IMPACT (RT-IMPACT) that takes advantage of clickable chemistry to overcome current limitations. Using strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA), and the synthesis of various organic compounds, this chapter will explain a step-by-step procedure of how to perform the IMPACT and RT-IMPACT method(s).


Asunto(s)
Alcoholes , Química Clic , Fosfolipasa D , Fosfolipasa D/metabolismo , Fosfolipasa D/química , Química Clic/métodos , Alcoholes/química , Alcoholes/metabolismo , Reacción de Cicloadición , Humanos , Ácidos Fosfatidicos/metabolismo , Ácidos Fosfatidicos/química , Azidas/química , Imagen Molecular/métodos , Alquinos/química
2.
Structure ; 32(6): 645-647, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848679

RESUMEN

Phospholipase D (PLD) family proteins degrade phospholipids and nucleic acids. In the current issue of Structure, Yuan et al.1 report crystal structures of lysosomal PLD3 and PLD4 with and without a single-stranded DNA substrate. Their manuscript reveals a catalytic ping-pong mechanism and explains how disease-associated mutations compromise PLD3/4 function.


Asunto(s)
Lisosomas , Fosfolipasa D , Fosfolipasa D/metabolismo , Fosfolipasa D/química , Fosfolipasa D/genética , Lisosomas/metabolismo , Humanos
3.
Structure ; 32(6): 766-779.e7, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38537643

RESUMEN

Endolysosomal exonucleases PLD3 and PLD4 (phospholipases D3 and D4) are associated with autoinflammatory and autoimmune diseases. We report structures of these enzymes, and the molecular basis of their catalysis. The structures reveal an intra-chain dimer topology forming a basic active site at the interface. Like other PLD superfamily members, PLD3 and PLD4 carry HxKxxxxD/E motifs and participate in phosphodiester-bond cleavage. The enzymes digest ssDNA and ssRNA in a 5'-to-3' manner and are blocked by 5'-phosphorylation. We captured structures in apo, intermediate, and product states and revealed a "link-and-release" two-step catalysis. We also unexpectedly demonstrated phosphatase activity via a covalent 3-phosphohistidine intermediate. PLD4 contains an extra hydrophobic clamp that stabilizes substrate and could affect oligonucleotide substrate preference and product release. Biochemical and structural analysis of disease-associated mutants of PLD3/4 demonstrated reduced enzyme activity or thermostability and the possible basis for disease association. Furthermore, these findings provide insight into therapeutic design.


Asunto(s)
Dominio Catalítico , Modelos Moleculares , Fosfolipasa D , Fosfolipasa D/metabolismo , Fosfolipasa D/química , Fosfolipasa D/genética , Humanos , Especificidad por Sustrato , Cristalografía por Rayos X , Mutación , Lisosomas/metabolismo , Lisosomas/enzimología , Fosforilación , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/química , Multimerización de Proteína , Unión Proteica , Exodesoxirribonucleasas
4.
Anal Cell Pathol (Amst) ; 2024: 6681911, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487684

RESUMEN

Phospholipase D (PLD) is an enzyme that consists of six isoforms (PLD1-PLD6) and has been discovered in different organisms including bacteria, viruses, plants, and mammals. PLD is involved in regulating a wide range of nerve cells' physiological processes, such as cytoskeleton modulation, proliferation/growth, vesicle trafficking, morphogenesis, and development. Simultaneously, PLD, which also plays an essential role in the pathogenesis of neurodegenerative and neuroimmune diseases. In this review, family members, characterizations, structure, functions and related signaling pathways, and therapeutic values of PLD was summarized, then five representative diseases including Alzheimer disease (AD), Parkinson's disease (PD), etc. were selected as examples to tell the involvement of PLD in these neurological diseases. Notably, recent advances in the development of tools for studying PLD therapy envisaged novel therapeutic interventions. Furthermore, the limitations of PLD based therapy were also analyzed and discussed. The content of this review provided a thorough and reasonable basis for further studies to exploit the potential of PLD in the treatment of neurodegenerative and neuroimmune diseases.


Asunto(s)
Fosfolipasa D , Animales , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Isoformas de Proteínas/metabolismo , Citoesqueleto/metabolismo , Transducción de Señal , Mamíferos/metabolismo
5.
Mol Pharmacol ; 105(3): 144-154, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37739813

RESUMEN

A special category of phospholipase D (PLD) in the venom of the brown recluse spider (Loxosceles reclusa) and several other sicariid spiders accounts for the dermonecrosis and many of the other clinical symptoms of envenomation. Related proteins are produced by other organisms, including fungi and bacteria. These PLDs are often referred to as sphingomyelinase Ds (SMase Ds) because they cleave sphingomyelin (SM) to choline and "ceramide phosphate." The lipid product has actually been found to be a novel sphingolipid: ceramide 1,3-cyclic phosphate (Cer1,3P). Since there are no effective treatments for the injury induced by the bites of these spiders, SMase D/PLDs are attractive targets for therapeutic intervention, and some of their features will be described in this minireview. In addition, two simple methods are described for detecting the characteristic SMase D activity using a fluorescent SM analog, (N-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-SM (C12-NBD-SM), that is cleaved to C12-NBD-Cer1,3P, which is easily separated from other potential metabolites by thin-layer chromatography and visualized under UV light. Besides confirming that C12-NBD-Cer1,3P is the only product detected upon incubation of C12-NBD-SM with brown recluse spider venom, the method was also able to detect for the first time very low levels of activity in venom from another spider, Kukulcania hibernalis The simplicity of the methods makes it relatively easy to determine this signature activity of SMase D/PLD. SIGNIFICANCE STATEMENT: The sphingomyelinase D/phospholipase D that are present in the venom of the brown recluse spider and other sources cause considerable human injury, but detection of the novel sphingolipid product, ceramide 1,3-cyclic phosphate, is not easy by previously published methods. This minireview describes simple methods for detection of this activity that will be useful for studies of its occurrence in spider venoms and other biological samples, perhaps including lesions from suspected spider bites and infections.


Asunto(s)
Fosfolipasa D , Venenos de Araña , Arañas , Humanos , Animales , Esfingomielina Fosfodiesterasa , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Ceramidas , Fosfatos , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Venenos de Araña/química , Venenos de Araña/farmacología , Arañas/metabolismo
6.
ChemSusChem ; 17(3): e202300803, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37801034

RESUMEN

Lignin nanoparticles (LNPs) are promising components for various materials, given their controllable particle size and spherical shape. However, their origin from supramolecular aggregation has limited the applicability of LNPs as recoverable templates for immobilization of enzymes. In this study, we show that stabilized LNPs are highly promising for the immobilization of phospholipase D (PLD), the enzyme involved in the biocatalytic production of high-value polar head modified phospholipids of commercial interest, phosphatidylglycerol, phosphatidylserine and phosphatidylethanolamine. Starting from hydroxymethylated lignin, LNPs were prepared and successively hydrothermally treated to obtain c-HLNPs with high resistance to organic solvents and a wide range of pH values, covering the conditions for enzymatic reactions and enzyme recovery. The immobilization of PLD on c-HLNPs (PLD-c-HLNPs) was achieved through direct adsorption. We then successfully exploited this new enzymatic preparation in the preparation of pure polar head modified phospholipids with high yields (60-90 %). Furthermore, the high stability of PLD-c-HLNPs allows recycling for a number of reactions with appreciable maintenance of its catalytic activity. Thus, PLD-c-HLNPs can be regarded as a new, chemically stable, recyclable and user-friendly biocatalyst, based on a biobased inexpensive scaffold, to be employed in sustainable chemical processes for synthesis of value-added phospholipids.


Asunto(s)
Nanopartículas , Fosfolipasa D , Fosfolípidos/química , Lignina , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Biocatálisis
7.
Nucleic Acids Res ; 52(1): 370-384, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37994783

RESUMEN

The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors. While the mechanism of PLD phospholipase activity has been extensively characterized, not much is known about how PLDs bind and hydrolyze nucleic acids. Here, we determined the high-resolution crystal structure of the luminal N-glycosylated domain of human PLD3 in its apo- and single-stranded DNA-bound forms. PLD3 has a typical phospholipase fold and forms homodimers with two independent catalytic centers via a newly identified dimerization interface. The structure of PLD3 in complex with an ssDNA-derived thymidine product in the catalytic center provides insights into the substrate binding mode of nucleic acids in the PLD family. Our structural data suggest a mechanism for substrate binding and nuclease activity in the PLD family and provide the structural basis to design immunomodulatory drugs targeting PLD3.


Asunto(s)
Exodesoxirribonucleasas , Fosfolipasa D , Humanos , Lisosomas/metabolismo , Fosfolipasa D/química , Fosfolipasas , Exodesoxirribonucleasas/química
8.
Int J Biol Macromol ; 246: 125588, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37399872

RESUMEN

In the Americas and specially in Brazil, the Loxosceles intermedia, Loxosceles gaucho and Loxosceles laeta are the three most medically relevant brown spider species, and whose bites can lead to the condition known as loxoscelism. Here, we report the development of a tool capable of identifying a common epitope amongst Loxosceles sp. venom's toxins. A murine monoclonal antibody (LmAb12) and its recombinant fragments (scFv12P and diabody12P) have been produced and characterized. This antibody and its recombinant constructs were able to recognize proteins of Loxosceles spider venoms with specificity. The scFv12P variant was also able to detect low concentrations of Loxosceles venom in a competitive ELISA assay, displaying potential as a venom identification tool. The primary antigenic target of LmAb12 is a knottin, a venom neurotoxin, that has a shared identity of 100 % between the L. intermedia and L. gaucho species and high similarity to L. laeta. Furthermore, we observed LmAb12 was able to partially inhibit in vitro hemolysis, a cellular event typically induced by the Loxosceles sp. venoms. Such behavior might be due to LmAb12 cross-reactivity between the antigenic target of LmAb12 and the venom's dermonecrotic toxins, the PLDs, or even the existence of synergism between these two toxins.


Asunto(s)
Venenos de Araña , Arañas , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Antígenos/química , Antivenenos/química , Reacciones Cruzadas , Miniproteínas Nodales de Cistina/química , Fosfolipasa D/química , Venenos de Araña/química , Arañas/química , Epítopos/química
9.
Protein Sci ; 32(7): e4701, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37313620

RESUMEN

The glycerophosphodiester phosphodiesterase (GDPD)-like SMaseD/PLD domain family, which includes phospholipase D (PLD) toxins in recluse spiders and actinobacteria, evolved anciently in bacteria from the GDPD. The PLD enzymes retained the core (ß/α)8 barrel fold of GDPD, while gaining a signature C-terminal expansion motif and losing a small insertion domain. Using sequence alignments and phylogenetic analysis, we infer that the C-terminal motif derives from a segment of an ancient bacterial PLAT domain. Formally, part of a protein containing a PLAT domain repeat underwent fusion to the C terminus of a GDPD barrel, leading to attachment of a segment of a PLAT domain, followed by a second complete PLAT domain. The complete domain was retained only in some basal homologs, but the PLAT segment was conserved and repurposed as the expansion motif. The PLAT segment corresponds to strands ß7-ß8 of a ß-sandwich, while the expansion motif as represented in spider PLD toxins has been remodeled as an α-helix, a ß-strand, and an ordered loop. The GDPD-PLAT fusion led to two acquisitions in founding the GDPD-like SMaseD/PLD family: (1) a PLAT domain that presumably supported early lipase activity by mediating membrane association, and (2) an expansion motif that putatively stabilized the catalytic domain, possibly compensating for, or permitting, loss of the insertion domain. Of wider significance, messy domain shuffling events can leave behind scraps of domains that can be salvaged, remodeled, and repurposed.


Asunto(s)
Fosfolipasa D , Fosfolipasa D/genética , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Secuencia de Aminoácidos , Filogenia , Alineación de Secuencia , Dominio Catalítico , Bacterias/metabolismo
10.
J Pharm Biomed Anal ; 229: 115354, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37003086

RESUMEN

N-Acyl phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) is the major enzyme for the biosynthesis of the endocannabinoid anandamide. The role of NAPE-PLD in various physiological and pathophysiological conditions is currently under investigation. For example, the enzyme might be involved in the control of neuronal activity, embryonic development and pregnancy, and prostate cancer. We synthesized a novel NAPE-PLD substrate with a fluorogenic pyrene substituent at the N-acyl residue as tool compound for studying this enzyme. As shown by HPLC with fluorescence detection, in rat brain microsomes the substrate was transformed into the expected pyrene-labeled N-acylethanolamine (NAE), but minor amounts of three by-products could also be detected. In the presence of pan-serine hydrolase and secretory phospholipase A2 inhibitors, the generation of these compounds, whose identity was verified using reference substances, was abolished. Based on these results, a method for determining the activity of NAPE-PLD was developed, validated, and applied to evaluate the action of known inhibitors of this enzyme. With human sperm, it was shown that the fluorescent substrate can also be used to study NAPE metabolism in intact cells.


Asunto(s)
Fosfolipasa D , Ratas , Animales , Masculino , Humanos , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Cromatografía Líquida de Alta Presión , Semen/metabolismo , Endocannabinoides
11.
Lett Appl Microbiol ; 76(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37073086

RESUMEN

Plasmalogens are a subclass of glycerophospholipids that have a vinyl-ether bond at the sn-1 position and are thought to have several physiological functions. The creation of non-natural plasmalogens with functional groups is desired for the establishment of the prevention of diseases caused by the depletion of plasmalogens. Phospholipase D (PLD) has both hydrolysis and transphosphatidylation activities. In particular, PLD from Streptomyces antibioticus has been investigated extensively due to its high transphosphatidylation activity. However, it has been difficult to stably express recombinant PLD in Escherichia coli and to express it as a soluble protein. In this study, we used the E. coli strain, SoluBL21™, and achieved stable PLD expression from the T7 promoter and increased soluble fraction in the cell. We also improved the purification method of PLD using His-tag at the C terminus. We obtained PLD with ∼730 mU mg-1 protein of specific activity, and the yield was ∼420 mU l-1 culture, corresponding to 76 mU per gram of wet cells. Finally, we synthesized a non-natural plasmalogen with 1,4-cyclohexanediol bound to the phosphate group at the sn-3 position by transphosphatidylation of the purified PLD. This method will contribute to the expansion of the chemical structure library of non-natural plasmalogens.


Asunto(s)
Fosfolipasa D , Streptomyces antibioticus , Plasmalógenos/metabolismo , Streptomyces antibioticus/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/química , Escherichia coli/genética , Escherichia coli/metabolismo , Solubilidad
12.
Appl Biochem Biotechnol ; 195(12): 7808-7820, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37093529

RESUMEN

Phospholipase D (PLD) with the higher transphosphatidylation activity was screened from Streptomyces sp. LD0501 basing on the protoplast mutagenesis technology. Then, it was successfully bio-imprinted to form a hyperactivated structure and rigidified by the intramolecular cross-linking, which was immobilized on the nonporous nanoscale silica. Characterization techniques were employed to investigate the structure and physicochemical properties of the catalysts, including Fourier transform infrared (FTIR) spectra and scanning electron microscopy (SEM) analysis. Transphosphatidylation activity and selectivity were improved significantly when immobilized PLD was used. The maximum yield for the production of phosphatidylserine (PS) reached 97% and the side reaction, the hydrolysis, was minimized. These results were further confirmed by the nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. The imprint-induced characteristics of PLD was successfully "remembered" even in the present of much water. In addition, this immobilized hyperactivated PLD showed the excellent operational stabilities and environmental tolerances.


Asunto(s)
Fosfolipasa D , Fosfolipasa D/genética , Fosfolipasa D/química , Catálisis , Agua/química , Espectroscopía de Resonancia Magnética , Fosfatidilserinas/química
13.
Biochimie ; 211: 122-130, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36963559

RESUMEN

Loxosceles spider envenomation results in dermonecrosis, principally due to phospholipases D (PLDs) present in the venom. These enzymes have a strongly conserved sequence, 273ATXXDNPW280, in the C-terminal region (SMD-tail) that make contact with ß-sheets of the TIM barrel, in which the amino acids Asp277 and Trp280 establish the energetically strongest contacts. The SMD-tail is conserved in PLDs from different species but absent in the non-toxic PLD ancestral glycerophosphodiester phosphodiesterases (GDPDs). This work aims to understand the role of the C-terminal region in the structural stability and/or function of phospholipases D. Through site-directed mutagenesis of the rLiD1 protein (recombinant Loxosceles intermedia dermonecrotic protein 1), we produced two mutants: rLiD1D277A and rLiD1W280A (both with sphingomyelinase activity), in which Asp277 and Trp280 were replaced by alanine. rLiD1D277A showed similar sphingomyelinase activity but at least 2 times more dermonecrotic activity than rLiD1 (wild-type protein). Conversely, while the rLiD1W280A displayed a slight increase in sphingomyelinase activity, its biological activity was similar or lower compared to rLiD1, potentially due to its decreased thermostability and formation of amyloid aggregates. In conclusion, these new findings provide evidence that SMD-tail mutants impact the structure and function of these proteins and point out that residues outside the active site can even increase the function of these enzymes.


Asunto(s)
Fosfolipasa D , Venenos de Araña , Arañas , Animales , Fosfolipasa D/genética , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Dominio Catalítico , Esfingomielina Fosfodiesterasa , Hidrolasas Diéster Fosfóricas/genética , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Arañas/genética , Venenos de Araña/genética , Venenos de Araña/química
14.
FEBS Lett ; 596(23): 3024-3036, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36266963

RESUMEN

Glycosylinositol phosphoceramide (GIPC) is a major sphingolipid in the plasma membranes of plants. Previously, we found an enzyme activity that produces phytoceramide 1-phosphate (PC1P) by hydrolysis of the D position of GIPC in cabbage and named this activity as GIPC-phospholipase D (PLD). Here, we purified GIPC-PLD by sequential chromatography from radish roots. Peptide mass fingerprinting analysis revealed that the potential candidate for GIPC-PLD protein was nonspecific phospholipase C3 (NPC3), which has not been characterized as a PLD. The recombinant NPC3 protein obtained by heterologous expression system in Escherichia coli produced PC1P from GIPC and showed essentially the same enzymatic properties as those we characterized as GIPC-PLD in cabbage, radish and Arabidopsis thaliana. From these results, we conclude that NPC3 is one of the enzymes that degrade GIPC.


Asunto(s)
Arabidopsis , Brassica , Fosfolipasa D , Raphanus , Fosfolipasa D/genética , Fosfolipasa D/química , Raphanus/metabolismo , Fosfolipasas/metabolismo , Esfingolípidos/metabolismo , Brassica/genética , Brassica/química , Arabidopsis/genética , Arabidopsis/metabolismo
15.
Acc Chem Res ; 55(21): 3088-3098, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36278840

RESUMEN

Membranes are multifunctional supramolecular assemblies that encapsulate our cells and the organelles within them. Glycerophospholipids are the most abundant component of membranes. They make up the majority of the lipid bilayer and play both structural and functional roles. Each organelle has a different phospholipid composition critical for its function that results from dynamic interplay and regulation of numerous lipid-metabolizing enzymes and lipid transporters. Because lipid structures and localizations are not directly genetically encoded, chemistry has much to offer to the world of lipid biology in the form of precision tools for visualizing lipid localization and abundance, manipulating lipid composition, and in general decoding the functions of lipids in cells.In this Account, we provide an overview of our recent efforts in this space focused on two overarching and complementary goals: imaging and editing the phospholipidome. On the imaging front, we have harnessed the power of bioorthogonal chemistry to develop fluorescent reporters of specific lipid pathways. Substantial efforts have centered on phospholipase D (PLD) signaling, which generates the humble lipid phosphatidic acid (PA) that acts variably as a biosynthetic intermediate and signaling agent. Though PLD is a hydrolase that generates PA from abundant phosphatidylcholine (PC) lipids, we have exploited its transphosphatidylation activity with exogenous clickable alcohols followed by bioorthogonal tagging to generate fluorescent lipid reporters of PLD signaling in a set of methods termed IMPACT.IMPACT and its variants have facilitated many biological discoveries. Using the rapid and fluorogenic tetrazine ligation, it has revealed the spatiotemporal dynamics of disease-relevant G protein-coupled receptor signaling and interorganelle lipid transport. IMPACT using diazirine photo-cross-linkers has enabled identification of lipid-protein interactions relevant to alcohol-related diseases. Varying the alcohol reporter can allow for organelle-selective labeling, and varying the bioorthogonal detection reagent can afford super-resolution lipid imaging via expansion microscopy. Combination of IMPACT with genome-wide CRISPR screening has revealed genes that regulate physiological PLD signaling.PLD enzymes themselves can also act as tools for precision editing of the phospholipid content of membranes. An optogenetic PLD for conditional blue-light-stimulated synthesis of PA on defined organelle compartments led to the discovery of the role of organelle-specific pools of PA in regulating oncogenic Hippo signaling. Directed enzyme evolution of PLD, enabled by IMPACT, has yielded highly active superPLDs with broad substrate tolerance and an ability to edit membrane phospholipid content and synthesize designer phospholipids in vitro. Finally, azobenzene-containing PA analogues represent an alternative, all-chemical strategy for light-mediated control of PA signaling.Collectively, the strategies described here summarize our progress to date in tackling the challenge of assigning precise functions to defined pools of phospholipids in cells. They also point to new challenges and directions for future study, including extension of imaging and membrane editing tools to other classes of lipids. We envision that continued application of bioorthogonal chemistry, optogenetics, and directed evolution will yield new tools and discoveries to interrogate the phospholipidome and reveal new mechanisms regulating phospholipid homeostasis and roles for phospholipids in cell signaling.


Asunto(s)
Ácidos Fosfatidicos , Fosfolipasa D , Optogenética , Ácidos Fosfatidicos/química , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Transducción de Señal
16.
EMBO J ; 41(17): e110698, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35844135

RESUMEN

The Arf GTPase family is involved in a wide range of cellular regulation including membrane trafficking and organelle-structure assembly. Here, we have generated a proximity interaction network for the Arf family using the miniTurboID approach combined with TMT-based quantitative mass spectrometry. Our interactome confirmed known interactions and identified many novel interactors that provide leads for defining Arf pathway cell biological functions. We explored the unexpected finding that phospholipase D1 (PLD1) preferentially interacts with two closely related but poorly studied Arf family GTPases, ARL11 and ARL14, showing that PLD1 is activated by ARL11/14 and may recruit these GTPases to membrane vesicles, and that PLD1 and ARL11 collaborate to promote macrophage phagocytosis. Moreover, ARL5A and ARL5B were found to interact with and recruit phosphatidylinositol 4-kinase beta (PI4KB) at trans-Golgi, thus promoting PI4KB's function in PI4P synthesis and protein secretion.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa , Fosfolipasa D , GTP Fosfohidrolasas/metabolismo , Aparato de Golgi/metabolismo , Fosfolipasa D/química , Fosfolipasa D/genética , Fosfolipasa D/metabolismo
17.
Biotechnol Appl Biochem ; 69(5): 1917-1928, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34585426

RESUMEN

A phospholipase D high producing strain with transphosphatidylation activity that is suitable for phosphatidylserine synthesis was screened by our laboratory and named as Streptomyces cinnamoneum SK43.003. The enzyme structural and biochemical properties were investigated using the molecular biology method. A 1521-bp fragment of the phospholipase D gene from Streptomyces cinnamoneum SK43.003 was amplified by PCR and encoded for 506 amino acids. The primary structure contained two conserved HKD and GG/S motifs. The pld gene was cloned and expressed in Escherichia coli. The purified enzyme exhibited the highest activity at a pH value of 6.0 andtemperature of 60°C. The enzyme was stable within a pH range of 4-7 for 24 h or at temperatures below 50°C. In addition, Triton X-100, Fe2+ , and Al3+ were beneficial to the enzyme activity, whereas Zn2+ and Cu2+ dramatically inhibited its activity. In a two-phase system, the enzyme could convert phosphatidylcholine to phosphatidylserine with a 92% transformation rate.


Asunto(s)
Fosfolipasa D , Streptomyces , Streptomyces/genética , Fosfolipasa D/genética , Fosfolipasa D/química , Fosfolipasa D/metabolismo , Fosfatidilserinas , Escherichia coli/genética
18.
Toxins (Basel) ; 15(1)2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36668837

RESUMEN

Bites of Loxosceles spiders can lead to a set of clinical manifestations called loxoscelism, and are considered a public health problem in many regions. The signs and symptoms of loxoscelism are divided into cutaneous and systemic forms. The former is more frequent and includes signs of envenoming at the bite site or neighboring regions. Systemic loxoscelism, although much less frequent, is associated with complications, and can even lead to death. It may include intravascular hemolysis, acute renal failure, and thrombocytopenia. Loxosceles venoms are enriched with phospholipases D (PLDs), which are a family of isoforms found at intra-species and inter-species levels. Under experimental conditions, these enzymes reproduce the main clinical signs of loxoscelism, including an exacerbated inflammatory response at the bite site and dermonecrosis, as well as thrombocytopenia, intravascular hemolysis, and acute renal failure. The role of PLDs in cutaneous loxoscelism was described over forty years ago, when studies identified and purified toxins featured as sphingomyelinase D. More recently, the production of recombinant PLDs and discoveries about their structure and mechanism has enabled a deeper characterization of these enzymes. In this review, we describe these biochemical and functional features of Loxosceles PLDs that determine their involvement in systemic loxoscelism.


Asunto(s)
Fosfolipasa D , Picaduras de Arañas , Venenos de Araña , Arañas , Trombocitopenia , Animales , Hemólisis , Hidrolasas Diéster Fosfóricas/toxicidad , Fosfolipasa D/química , Venenos de Araña/toxicidad , Venenos de Araña/química , Isoformas de Proteínas , Arañas/química , Picaduras de Arañas/complicaciones
19.
ACS Chem Biol ; 16(12): 2798-2807, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34825823

RESUMEN

The overexpression of PED/PEA15, the phosphoprotein enriched in diabetes/phosphoprotein enriched in the astrocytes 15 protein (here referred simply to as PED), observed in some forms of type II diabetes, reduces the transport of insulin-stimulated glucose by binding to the phospholipase D1 (PLD1). The inhibition of the PED/PLD1 interaction was shown to restore basal glucose transport, indicating PED as a pharmacological target for the development of drugs capable of improving insulin sensitivity and glucose tolerance. We here report the identification and selection of PED ligands by means of NMR screening of a library of small organic molecules, NMR characterization of the PED/PLD1 interaction in lysates of cells expressing PLD1, and modulation of such interactions using BPH03, the best selected ligand. Overall, we complement the available literature data by providing detailed information on the structural determinants of the PED/PLD1 interaction in a cellular lysate environment and indicate BPH03 as a precious scaffold for the development of novel compounds that are able to modulate such interactions with possible therapeutic applications in type II diabetes.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Astrocitos/química , Diabetes Mellitus Tipo 2/metabolismo , Fragmentos de Péptidos/química , Fosfolipasa D/química , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Transporte Biológico , Microambiente Celular , Glucosa , Humanos , Resistencia a la Insulina , Ligandos , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Termodinámica
20.
Int J Biol Macromol ; 192: 757-770, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634338

RESUMEN

Accidents involving Brown spiders are reported throughout the world. In the venom, the major toxins involved in the deleterious effects are phospholipases D (PLDs). In this work, recombinant mutated phospholipases D from three endemic species medically relevant in South America (Loxosceles intermedia, L. laeta and L. gaucho) were tested as antigens in a vaccination protocol. In such isoforms, key amino acid residues involved in catalysis, magnesium-ion coordination, and binding to substrates were replaced by Alanine (H12A-H47A, E32A-D34A and W230A). These mutations eliminated the phospholipase activity and reduced the generation of skin necrosis and edema to residual levels. Molecular modeling of mutated isoforms indicated that the three-dimensional structures, topologies, and surface charges did not undergo significant changes. Mutated isoforms were recognized by sera against the crude venoms. Vaccination protocols in rabbits using mutated isoforms generated a serum that recognized the native PLDs of crude venoms and neutralized dermonecrosis and edema induced by L. intermedia venom. Vaccination of mice prevented the lethal effects of L. intermedia crude venom. Furthermore, vaccination of rabbits prevented the cutaneous lesion triggered by the three venoms. These results indicate a great potential for mutated recombinant PLDs to be employed as antigens in developing protective vaccines for Loxoscelism.


Asunto(s)
Araña Reclusa Parda , Proteínas Mutantes/inmunología , Fosfolipasa D/inmunología , Picaduras de Arañas/inmunología , Picaduras de Arañas/terapia , Vacunas/inmunología , Accidentes , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Antivenenos/sangre , Antivenenos/inmunología , Biomarcadores , Modelos Animales de Enfermedad , Inmunogenicidad Vacunal , Recuento de Leucocitos , Ratones , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Pruebas de Neutralización , Fosfolipasa D/química , Fosfolipasa D/genética , Conejos , Picaduras de Arañas/diagnóstico , Picaduras de Arañas/prevención & control , Venenos de Araña/inmunología , Relación Estructura-Actividad , Resultado del Tratamiento , Vacunación , Vacunas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...