RESUMEN
Obesity has a multifactorial etiology and is known to be a state of chronic low-grade inflammation, known as meta-inflammation. This state is associated with the development of metabolic disorders such as glucose intolerance and nonalcoholic fatty liver disease. Pyruvate is a glycolytic metabolite and a crucial node in various metabolic pathways. However, its role and molecular mechanism in obesity and associated complications are obscure. In this study, we reported that pyruvate substantially inhibited adipogenic differentiation in vitro and its administration significantly prevented HFD-induced weight gain, white adipose tissue inflammation, and metabolic dysregulation. To identify the target proteins of pyruvate, drug affinity responsive target stability was employed with proteomics, cellular thermal shift assay, and isothermal drug response to detect the interactions between pyruvate and its molecular targets. Consequently, we identified cytosolic phospholipase A2 (cPLA2) as a novel molecular target of pyruvate and demonstrated that pyruvate restrained diet-induced obesity, white adipose tissue inflammation, and hepatic steatosis in a cPLA2-dependent manner. Studies with global ablation of cPLA2 in mice showed that the protective effects of pyruvate were largely abrogated, confirming the importance of pyruvate/cPLA2 interaction in pyruvate attenuation of inflammation and obesity. Overall, our study not only establishes pyruvate as an antagonist of cPLA2 signaling and a potential therapeutic option for obesity but it also sheds light on the mechanism of its action. Pyruvate's prior clinical use indicates that it can be considered a safe and viable alternative for obesity, whether consumed as a dietary supplement or as part of a regular diet.
Asunto(s)
Inflamación , Ratones Endogámicos C57BL , Obesidad , Ácido Pirúvico , Animales , Obesidad/metabolismo , Obesidad/patología , Ratones , Ácido Pirúvico/metabolismo , Inflamación/metabolismo , Inflamación/patología , Fosfolipasas A2 Citosólicas/metabolismo , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Masculino , Dieta Alta en Grasa/efectos adversos , Células 3T3-L1 , HumanosRESUMEN
BACKGROUND: Molecular mechanisms underlying inflammation-associated breast tumor growth are poorly studied. S100A7, a pro-inflammatory molecule has been shown to enhance breast cancer growth and metastasis. However, the S100A7-mediated molecular mechanisms in enhancing tumor growth and metastasis are unclear. METHODS: Human breast cancer tissue and plasma samples were used to analyze the expression of S100A7, cPLA2, and PGE2. S100A7-overexpressing or downregulated human metastatic breast cancer cells were used to evaluate the S100A7-mediated downstream signaling mechanisms. Bi-transgenic mS100a7a15 overexpression, TNBC C3 (1)/Tag transgenic, and humanized patient-derived xenograft mouse models and cPLA2 inhibitor (AACOCF3) were used to investigate the role of S100A7/cPLA2/PGE2 signaling in tumor growth and metastasis. Additionally, CODEX, a highly advanced multiplexed imaging was employed to delineate the effects of S100A7/cPLA2 inhibition on the recruitment of various immune cells. RESULTS: In this study, we found that S100A7 and cPLA2 are highly expressed and correlate with decreased overall survival in breast cancer patients. Further mechanistic studies revealed that S100A7/RAGE signaling promotes the expression of cPLA2 to mediate its oncogenic effects. Pharmacological inhibition of cPLA2 suppressed S100A7-mediated tumor growth and metastasis in multiple pre-clinical models including transgenic and humanized patient-derived xenograft (PDX) mouse models. The attenuation of cPLA2 signaling reduced S100A7-mediated recruitment of immune-suppressive myeloid cells in the tumor microenvironment (TME). Interestingly, we discovered that the S100A7/cPLA2 axis enhances the immunosuppressive microenvironment by increasing prostaglandin E2 (PGE2). Furthermore, CO-Detection by indEXing (CODEX) imaging-based analyses revealed that cPLA2 inhibition increased the infiltration of activated and proliferating CD4+ and CD8+ T cells in the TME. In addition, CD163+ tumor associated-macrophages were positively associated with S100A7 and cPLA2 expression in malignant breast cancer patients. CONCLUSIONS: Our study provides new mechanistic insights on the cross-talk between S100A7/cPLA2 in enhancing breast tumor growth and metastasis by generating an immunosuppressive TME that inhibits the infiltration of cytotoxic T cells. Furthermore, our studies indicate that S100A7/cPLA2 could be used as novel prognostic marker and cPLA2 inhibitors as promising drugs against S100A7-overexpressing aggressive breast cancer.
Asunto(s)
Neoplasias de la Mama/genética , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Proteína A7 de Unión a Calcio de la Familia S100/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Microambiente TumoralRESUMEN
BACKGROUND: The interaction of small molecules with direct targets constitutes the molecular initiation events of drug efficacy and toxicity. Aconitine, an active compound of the Aconitum species, has various pharmacological effects but is strongly toxic to the heart. The direct targets of aconitine-induced cardiotoxicity remain unclear. METHODS: We predicted the toxic targets of aconitine based on network pharmacology and followed a novel proteomic approach based on the "drug affinity responsive target stability" technology combined with LC-MS/MS to identify the direct targets of aconitine. The identified targets were analysed from the perspective of multilevel and multidimensional bioinformatics through a network integration method. The binding sites were investigated via molecular docking to explore the toxicity mechanism and predict the direct targets of aconitine. Finally, atomic force microscopy (AFM) imaging was performed to verify the affinity of aconitine to the direct targets. RESULTS: PTGS2, predicted by network pharmacology as a toxic target, encodes cyclooxygenase 2 (COX-2), which is closely related to myocardial injury. Furthermore, cytosolic phospholipase A2 (cPLA2) is the upstream signal protein of PTGS2, and it is a key enzyme in the metabolism of arachidonic acid during an inflammatory response. We determined cPLA2 as a direct target, and AFM imaging verified that aconitine could bind to cPLA2 well; thus, aconitine may cause the expression of PTGS2/COX-2 and release inflammatory factors, thereby promoting myocardial injury and dysfunction. CONCLUSION: We developed a complete set of methods to predict and verify the direct targets of aconitine, and cPLA2 was identified as one. Overall, the novel strategy provides new insights into the discovery of direct targets and the molecular mechanism of toxic components that are found in traditional Chinese medicine.
Asunto(s)
Aconitina/efectos adversos , Medicamentos Herbarios Chinos/efectos adversos , Inhibidores Enzimáticos/efectos adversos , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Aconitina/química , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/química , Inhibidores Enzimáticos/química , Medicina Tradicional China , Conformación Molecular , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfolipasas A2 Citosólicas/análisis , Fosfolipasas A2 Citosólicas/metabolismo , Ratas , Relación Estructura-ActividadRESUMEN
The hypothalamus plays a central role in monitoring and regulating systemic glucose metabolism. The brain is enriched with phospholipids containing poly-unsaturated fatty acids, which are biologically active in physiological regulation. Here, we show that intraperitoneal glucose injection induces changes in hypothalamic distribution and amounts of phospholipids, especially arachidonic-acid-containing phospholipids, that are then metabolized to produce prostaglandins. Knockdown of cytosolic phospholipase A2 (cPLA2), a key enzyme for generating arachidonic acid from phospholipids, in the hypothalamic ventromedial nucleus (VMH), lowers insulin sensitivity in muscles during regular chow diet (RCD) feeding. Conversely, the down-regulation of glucose metabolism by high fat diet (HFD) feeding is improved by knockdown of cPLA2 in the VMH through changing hepatic insulin sensitivity and hypothalamic inflammation. Our data suggest that cPLA2-mediated hypothalamic phospholipid metabolism is critical for controlling systemic glucose metabolism during RCD, while continuous activation of the same pathway to produce prostaglandins during HFD deteriorates glucose metabolism.
Asunto(s)
Glucosa/metabolismo , Fosfolipasas A2 Citosólicas/metabolismo , Prostaglandinas/biosíntesis , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Ácido Araquidónico/metabolismo , Vías Biosintéticas , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Fosfolipasas A2 Grupo IV/antagonistas & inhibidores , Fosfolipasas A2 Grupo IV/genética , Fosfolipasas A2 Grupo IV/metabolismo , Hiperglucemia/metabolismo , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Fosfolipasas A2 Citosólicas/genética , Fosfolípidos/metabolismoRESUMEN
Spinal cord injury (SCI) produces chronic, pro-inflammatory macrophage activation that impairs recovery. The mechanisms driving this chronic inflammation are not well understood. Here, we detail the effects of myelin debris on macrophage physiology and demonstrate a novel, activation state-dependent role for cytosolic phospholipase-A2 (cPLA2) in myelin-mediated potentiation of pro-inflammatory macrophage activation. We hypothesized that cPLA2 and myelin debris are key mediators of persistent pro-inflammatory macrophage responses after SCI. To test this, we examined spinal cord tissue 28-days after thoracic contusion SCI in 3-month-old female mice and observed both cPLA2 activation and intracellular accumulation of lipid-rich myelin debris in macrophages. In vitro, we utilized bone marrow-derived macrophages to determine myelin's effects across a spectrum of activation states. We observed phenotype-specific responses with myelin potentiating only pro-inflammatory (LPS + INF-γ; M1) macrophage activation, whereas myelin did not induce pro-inflammatory responses in unstimulated or anti-inflammatory (IL-4; M2) macrophages. Specifically, myelin increased levels of pro-inflammatory cytokines, reactive oxygen species, and nitric oxide production in M1 macrophages as well as M1-mediated neurotoxicity. PACOCF3 (cPLA2 inhibitor) blocked myelin's detrimental effects. Collectively, we provide novel spatiotemporal evidence that myelin and cPLA2 play an important role in the pathophysiology of SCI inflammation and the phenotype-specific response to myelin implicate diverse roles of myelin in neuroinflammatory conditions.
Asunto(s)
Inflamación/genética , Vaina de Mielina/genética , Fosfolipasas A2 Citosólicas/genética , Traumatismos de la Médula Espinal/genética , Animales , Citocinas/biosíntesis , Citocinas/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/patología , Interleucina-4/biosíntesis , Cetonas/farmacología , Lípidos/biosíntesis , Lípidos/genética , Activación de Macrófagos/genética , Ratones , Microglía/metabolismo , Microglía/patología , Óxido Nítrico/biosíntesis , Fagocitosis/genética , Fenotipo , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Traumatismos de la Médula Espinal/patologíaRESUMEN
Surviving motoneurons undergo dendritic atrophy after spinal cord injury (SCI), suggesting an important therapeutic target for neuroprotective strategies to improve recovery of function after SCI. Our previous studies showed that cytosolic phospholipase A2 (PLA2) may play an important role in the pathogenesis of SCI. In the present study, we investigated whether blocking cytosolic PLA2 (cPLA2) pharmacologically with arachidonyl trifluoromethyl ketone (ATK) or genetically using cPLA2 knockout (KO) mice attenuates motoneuron atrophy after SCI. C57BL/6 mice received either sham or contusive SCI at the T10 level. At 30 min after SCI, mice were treated with ATK or vehicle. Four weeks later, motoneurons innervating the vastus lateralis muscle of the quadriceps were labeled with cholera toxin-conjugated horseradish peroxidase, and dendritic arbors were reconstructed in three dimensions. Soma volume, motoneuron number, lesion volume, and tissue sparing were also assessed, as were muscle weight, fiber cross-sectional area, and motor endplate size and density. ATK administration reduced percent lesion volume and increased percent volume of spared white matter, compared to the vehicle-treated control animals. SCI with or without ATK treatment had no effect on the number or soma volume of quadriceps motoneurons. However, SCI resulted in a decrease in dendritic length of quadriceps motoneurons in untreated animals, and this decrease was completely prevented by treatment with ATK. Similarly, vastus lateralis muscle weights of untreated SCI animals were smaller than those of sham surgery controls, and these reductions were prevented by ATK treatment. No effects on fiber cross-sectional areas, motor endplate area, or density were observed across treatment groups. Remarkably, genetically deleting cPLA2 in cPLA2 KO mice attenuated dendritic atrophy after SCI. These findings suggest that, after SCI, cord tissue damage and regressive changes in motoneuron and muscle morphology can be reduced by inhibition of cPLA2, further supporting a role for cPLA2 as a neurotherapeutic target for SCI treatment.
Asunto(s)
Neuronas Motoras/enzimología , Atrofia Muscular/enzimología , Fármacos Neuroprotectores/uso terapéutico , Inhibidores de Fosfolipasa A2/uso terapéutico , Fosfolipasas A2 Citosólicas/metabolismo , Traumatismos de la Médula Espinal/epidemiología , Animales , Ácidos Araquidónicos/farmacología , Ácidos Araquidónicos/uso terapéutico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/efectos de los fármacos , Atrofia Muscular/prevención & control , Fármacos Neuroprotectores/farmacología , Inhibidores de Fosfolipasa A2/farmacología , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Traumatismos de la Médula Espinal/tratamiento farmacológicoRESUMEN
2-Oxoesters constitute an important class of potent and selective inhibitors of human cytosolic phospholipase A2 (GIVA cPLA2) combining an aromatic scaffold or a long aliphatic chain with a short aliphatic chain containing a free carboxylic acid. Although highly potent 2-oxoester inhibitors of GIVA cPLA2 have been developed, their rapid degradation in human plasma limits their pharmaceutical utility. In an effort to address this problem, we designed and synthesized two new 2-oxoesters introducing a methyl group either on the α-carbon to the oxoester functionality or on the carbon carrying the ester oxygen. We studied the in vitro plasma stability of both derivatives and their in vitro inhibitory activity on GIVA cPLA2. Both derivatives exhibited higher plasma stability in comparison with the unsubstituted compound and both derivatives inhibited GIVA cPLA2, however to different degrees. The 2-oxoester containing a methyl group on the α-carbon atom to the oxoester functionality exhibits enhancement of the metabolic stability and retains considerable inhibitory potency.
Asunto(s)
Inhibidores de Fosfolipasa A2/química , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Fosfolipasas A2 Citosólicas/química , Estabilidad de Enzimas , Ésteres/química , HumanosRESUMEN
The autophagy-lysosomal pathway plays an essential role in cellular homeostasis as well as a protective function against a variety of diseases including neurodegeneration. Conversely, inhibition of autophagy, for example due to lysosomal dysfunction, can lead to pathological accumulation of dysfunctional autophagosomes and consequent neuronal cell death. We previously reported that autophagy is inhibited and contributes to neuronal cell death following spinal cord injury (SCI). In this study, we examined lysosomal function and explored the mechanism of lysosomal defects following SCI. Our data demonstrated that expression levels and processing of the lysosomal enzyme cathepsin D (CTSD) are decreased by 2 h after SCI. Enzymatic activity levels of CTSD and another lysosomal enzyme, N-acetyl-alpha-glucosaminidase, are both decreased 24 h post injury, indicating general lysosomal dysfunction. Subcellular fractionation and immunohistochemistry analysis demonstrated that this dysfunction is due to lysosomal membrane permeabilization and leakage of lysosomal contents into the cytosol. To directly assess extent and mechanisms of damage to lysosomal membranes, we performed mass spectrometry-based lipidomic analysis of lysosomes purified from SCI and control spinal cord. At 2 h post injury our data demonstrated increase in several classes of lysosophospholipids, the products of phospholipases (PLAs), as well as accumulation of PLA activators, ceramides. Phospholipase cPLA2, the main PLA species expressed in the CNS, has been previously implicated in mediation of secondary injury after SCI, but the mechanisms of its involvement remain unclear. Our data demonstrate that cPLA2 is activated within 2 h after SCI preferentially in the lysosomal fraction, where it colocalizes with lysosomal-associated membrane protein 2 in neurons. Inhibition of cPLA2 in vivo decreased lysosomal damage, restored autophagy flux, and reduced neuronal cell damage. Taken together our data implicate lysosomal defects in pathophysiology of SCI and for the first time indicate that cPLA2 activation leads to lysosomal damage causing neuronal autophagosome accumulation associated with neuronal cell death.
Asunto(s)
Autofagia , Lisosomas/metabolismo , Fosfolipasas A2 Citosólicas/metabolismo , Fosfolípidos/química , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Autofagia/genética , Catepsina D/genética , Catepsina D/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/enzimología , Lisosomas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/metabolismo , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Fosfolipasas A2 Citosólicas/genética , Fosfolípidos/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , alfa-N-Acetilgalactosaminidasa/metabolismoRESUMEN
Both sphingosine-1-phosphate receptor-2 (S1PR2) and cytosolic phospholipase A2 (cPLA2) are implicated in the disruption of cerebrovascular integrity in experimental stroke. However, the role of S1PR2 in induction of cPLA2 phosphorylation during cerebral ischemia-induced endothelial dysfunction remains unknown. This study investigated the effect of S1PR2 blockade on oxidative stress-induced cerebrovascular endothelial barrier impairment and explored the possible mechanisms. In bEnd3 cells, cPLA2 inhibitor CAY10502 as well as S1PR2 antagonist JTE013 profoundly suppressed hydrogen peroxide (H2O2)-induced changes of paracellular permeability and ZO-1 localization. Besides p38, extracellular signal-regulated kinase (Erk) 1/2 is required for H2O2-increased cPLA2 phosphorylation and endothelial permeability. Pharmacological and genetic inhibition of S1PR2 significantly suppressed their phosphorylation in response to H2O2. Especially lentivirus-mediated knockdown of S1PR2 inhibited H2O2-induced ZO-1 redistribution and paracellular hyperpermeability. Using the permanent middle cerebral artery occlusion (pMCAO) mouse model, we found JTE013 pretreatment markedly reduced Evans blue dye (EBD) extravasation and reversed the decrease in VE-cadherin, occludin, claudin-5 and CD31 expression in infarcted hemisphere. Lentivirus-mediated S1PR2 knockdown also attenuated EBD extravasation. Furthermore, JTE013 pretreatment attenuated neurological deficit, brain edema and infarction volume. Therefore, our findings suggest the protective effect of JTE013 on brain endothelial barrier integrity is likely mediated by suppressing p38 and Erk1/2-dependent cPLA2 phosphorylation under oxidative stress.
Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pirazoles/farmacología , Piridinas/farmacología , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Tiazolidinedionas/farmacología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/efectos de los fármacos , Línea Celular , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Fosfolipasas A2 Citosólicas/metabolismo , Fosforilación/efectos de los fármacos , Receptores de Esfingosina-1-Fosfato/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Cytosolic phospholipase A2 (cPLA2) mediates oligomeric amyloid-ß peptide (oAß)-induced oxidative and inflammatory responses in glial cells. Increased activity of cPLA2 has been implicated in the neuropathology of Alzheimer's disease (AD), suggesting that cPLA2 regulation of oAß-induced microglial activation may play a role in the AD pathology. We demonstrate that LPS, IFNγ, and oAß increased phosphorylated cPLA2 (p-cPLA2) in immortalized mouse microglia (BV2). Aß association with primary rat microglia and BV2 cells, possibly via membrane-binding and/or intracellular deposition, presumably indicative of microglia-mediated clearance of the peptide, was reduced by inhibition of cPLA2. However, cPLA2 inhibition did not affect the depletion of this associated Aß when cells were washed and incubated in a fresh medium after oAß treatment. Since the depletion was abrogated by NH4Cl, a lysosomal inhibitor, these results suggested that cPLA2 was not involved in the degradation of the associated Aß. To further dissect the effects of cPLA2 on microglia cell membranes, atomic force microscopy (AFM) was used to determine endocytic activity. The force for membrane tether formation (Fmtf) is a measure of membrane-cytoskeleton connectivity and represents a mechanical barrier to endocytic vesicle formation. Inhibition of cPLA2 increased Fmtf in both unstimulated BV2 cells and cells stimulated with LPS + IFNγ. Thus, increasing p-cPLA2 would decrease Fmtf, thereby increasing endocytosis. These results suggest a role of cPLA2 activation in facilitating oAß endocytosis by microglial cells through regulation of the membrane-cytoskeleton connectivity.
Asunto(s)
Péptidos beta-Amiloides/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Microglía/metabolismo , Fosfolipasas A2 Citosólicas/metabolismo , Multimerización de Proteína , Animales , Membrana Celular/efectos de los fármacos , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Interferón gamma/farmacología , Cinética , Lipopolisacáridos/farmacología , Ratones , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , RatasRESUMEN
Snake venom is a complex cocktail of toxins which induces a series of clinical and pathophysiological manifestations in victims, including severe local tissue damage and systemic alterations. Deinagkistrodon acutus (D. acutus) ranks among the "big four" life-threatening venomous species in China, whose venom possesses strong myotoxicity and hematotoxicity that often lead to permanent disability or muscle atrophy. Varespladib, an inhibitor of mammalian phospholipase A2 (PLA2), has been recently reproposed as an effective antidote against snakebite envenomation. The present study aimed at evaluating the protective role of varespladib on muscle regeneration in envenomed mice. Mice were grouped and subjected to inoculation with D. acutus venom or a mixture of venom and varespladib or control vehicle in the gastrocnemius muscle. Local injuries including hemorrhage, myonecrosis, ulceration, and systemic damages including general dysfunction, visceral failure, and inflammatory responses were observed at 1, 3, 7, 14, and 21 days. The results indicated that most of the muscle myonecrosis and hemorrhage were alleviated by varespladib. Besides, the pretreated mice recovered rapidly with lesser atrophy and muscle fibrosis. In conclusion, the findings of the present study suggested that varespladib is an effective antidote that could neutralize D. acutus venom and allow for earlier and improved rehabilitation outcome.
Asunto(s)
Acetatos/farmacología , Antídotos/farmacología , Venenos de Crotálidos/antagonistas & inhibidores , Indoles/farmacología , Necrosis/tratamiento farmacológico , Mordeduras de Serpientes/tratamiento farmacológico , Úlcera/tratamiento farmacológico , Angiopoyetinas/genética , Angiopoyetinas/metabolismo , Animales , Venenos de Crotálidos/aislamiento & purificación , Venenos de Crotálidos/toxicidad , Crotalinae/fisiología , Regulación de la Expresión Génica , Hemorragia/fisiopatología , Hemorragia/prevención & control , Cetoácidos , Masculino , Ratones , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/lesiones , Músculo Esquelético/inervación , Proteína MioD/genética , Proteína MioD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Necrosis/patología , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Fosfolipasas A2 Citosólicas/metabolismo , Recuperación de la Función/efectos de los fármacos , Mordeduras de Serpientes/patología , Úlcera/patologíaRESUMEN
Drug resistance and toxicity are major limitations of cancer treatment and frequently occurs during melanoma therapy. Nanotechnology can decrease drug resistance by improving drug delivery, with limited toxicity. This study details the development of nanoparticles containing arachidonyl trifluoromethyl ketone (ATK), a cytosolic phospholipase A2 inhibitor, which can inhibit multiple key pathways responsible for the development of recurrent resistant disease. Free ATK is toxic, limiting its efficacy as a therapeutic agent. Hence, a novel nanoliposomal delivery system called NanoATK was developed, which loads 61.7% of the compound and was stable at 4oC for 12 weeks. The formulation decreased toxicity-enabling administration of higher doses, which was more effective at inhibiting melanoma cell growth compared to free-ATK. Mechanistically, NanoATK decreased cellular proliferation and triggered apoptosis to inhibit melanoma xenograft tumor growth without affecting animal weight. Functionally, it inhibited the cPLA2, AKT, and STAT3 pathways. Our results suggest the successful preclinical development of a unique nanoliposomal formulation containing ATK for the treatment of melanoma.
Asunto(s)
Ácidos Araquidónicos/farmacología , Sistemas de Liberación de Medicamentos , Liposomas/administración & dosificación , Melanoma/tratamiento farmacológico , Nanopartículas/administración & dosificación , Inhibidores de Fosfolipasa A2/farmacología , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Animales , Ácidos Araquidónicos/administración & dosificación , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Liposomas/química , Melanoma/enzimología , Melanoma/patología , Ratones , Ratones Desnudos , Nanopartículas/química , Inhibidores de Fosfolipasa A2/administración & dosificación , Células Tumorales CultivadasRESUMEN
BACKGROUND: Cytosolic Phospholipase A2 (cPLA2), an important isoform of PLA2 that mediates the release of arachidonic acid, plays a role in the pathogenesis of Spinal Cord Injury (SCI). The expression and activation of Cpla2 are significantly higher in SCI, leading to neuronal death in spinal cord tissue. Novel strategies are needed to substantially reverse the effect of cPLA2 activation; one such strategy is inhibiting cPLA2 by jamming its lipid binding C2 domain. OBJECTIVE: To develop a much needed strategy to treat SCI, we used a Computer Aided Drug Design (CADD) method to discover novel cPLA2 inhibitors. METHODS: we used a natural chemiome database for virtual screening, from which we selected the compounds exhibiting the greatest drug-likeliness properties for molecular docking simulation analysis. RESULTS: We studied the interaction of lead compounds at the atomic level; the results yielded a cPLA2 inhibitor of natural origin with the potential for ameliorating secondary tissue damage and promoting recovery of function after SCI. The top compound, lead 4exibited a binding energy of -10.02 Kcal/mol and formed three hydrogen bonds with the lipid binding C2 domain of the cPLA2 protein. An evaluation of cell cytotoxicity revealed an IC50 for lead4 of 134.2 ± 6.8 µM. An in-vitro analysis of lead4 is indicated anti-apoptotic activity via a decrease in caspase-3 expression. CONCLUSION: We used the CADD method to make a novel lead discovery for the treatment of SCI using compounds of natural origin. The selected natural compounds are non-toxic promising drugs against cPLA2 protein, allowing us to limits our focus on single compound for future in-vitro and invivo testing.
Asunto(s)
Diseño Asistido por Computadora , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Traumatismos de la Médula Espinal/tratamiento farmacológico , Línea Celular , Humanos , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida/métodos , Fosfolipasas A2 Citosólicas/química , Fosfolipasas A2 Citosólicas/metabolismo , Traumatismos de la Médula Espinal/enzimologíaRESUMEN
Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR) or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis.
Asunto(s)
Apoptosis/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Fosfolipasas A2 Citosólicas/metabolismo , Piruvaldehído/toxicidad , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Inhibidores de Fosfodiesterasa/farmacología , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Fosfolipasas A2 Citosólicas/genética , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Defective autophagy and deranged metabolic pathways are common in cancer; pharmacologic targeting of these two pathways could provide a viable therapeutic option. However, how these pathways are regulated by limited availability of growth factors is still unknown. Our study shows that HSulf-1 (endosulfatase), a known tumor suppressor which attenuates heparin sulfate binding growth factor signaling, also regulates interplay between autophagy and lipogenesis. Silencing of HSulf-1 in OV202 and TOV2223 cells (ovarian cancer cell lines) resulted in increased lipid droplets (LDs), reduced autophagic vacuoles (AVs) and less LC3B puncta. In contrast, HSulf-1 proficient cells exhibit more AVs and reduced LDs. Increased LDs in HSulf-1 depleted cells was associated with increased ERK mediated cPLA2S505 phosphorylation. Conversely, HSulf-1 expression in SKOV3 cells reduced the number of LDs and increased the number of AVs compared to vector controls. Furthermore, pharmacological (AACOCF3) and ShRNA mediated downregulation of cPLA2 resulted in reduced LDs, and increased autophagy. Finally, in vivo experiment using OV202 Sh1 derived xenograft show that AACOCF3 treatment effectively attenuated tumor growth and LD biogenesis. Collectively, these results show a reciprocal regulation of autophagy and lipid biogenesis by HSulf-1 in ovarian cancer.
Asunto(s)
Autofagia , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Gotas Lipídicas/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Sulfotransferasas/metabolismo , Animales , Antineoplásicos/farmacología , Ácidos Araquidónicos/farmacología , Carboplatino/farmacología , Combinación de Medicamentos , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Gotas Lipídicas/efectos de los fármacos , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , ARN Interferente Pequeño/genética , Transducción de Señal , Sulfotransferasas/antagonistas & inhibidores , Sulfotransferasas/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The role of inflammation and oxidative stress is critical during onset of metabolic disorders and this has been sufficiently established in literature. In the present study, we evaluated the effects of sesamol and sesamin, two important bioactive molecules present in sesame oil, on the generation of inflammatory and oxidative stress factors in LPS injected rats. Sesamol and sesamin lowered LPS induced expression of cPLA2 (61 and 56%), 5-LOX (44 and 51%), BLT-1(32 and 35%) and LTC4 synthase (49 and 50%), respectively, in liver homogenate. The diminished serum LTB4 (53 and 64%) and LTC4 (67 and 44%) levels in sesamol and sesamin administered groups, respectively, were found to be concurrent with the observed decrease in the expression of cPLA2 and 5-LOX. The serum levels of TNF-α (29 and 19%), MCP-1 (44 and 57%) and IL-1ß (43 and 42%) were found to be reduced in sesamol and sesamin group, respectively, as given in parentheses, compared to LPS group. Sesamol and sesamin offered protection against LPS induced lipid peroxidation in both serum and liver. Sesamol, but not sesamin, significantly restored the loss of catalase and glutathione reductase activity due to LPS (P<.05). However, both sesamol and sesamin reverted SOD activities by 92 and 98%, respectively. Thus, oral supplementation of sesamol and sesamin beneficially modulated the inflammatory and oxidative stress markers, as observed in the present study, in LPS injected rats. Our report further advocates the potential use of sesamol and sesamin as an adjunct therapy wherein, inflammatory and oxidative stress is of major concern.
Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Benzodioxoles/uso terapéutico , Suplementos Dietéticos , Dioxoles/uso terapéutico , Hepatitis/prevención & control , Leucotrienos/metabolismo , Lignanos/uso terapéutico , Hígado/metabolismo , Fenoles/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antiinflamatorios no Esteroideos/metabolismo , Antioxidantes/aislamiento & purificación , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Araquidonato 5-Lipooxigenasa/química , Araquidonato 5-Lipooxigenasa/metabolismo , Benzodioxoles/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Dioxoles/aislamiento & purificación , Dioxoles/metabolismo , Glutatión Transferasa/antagonistas & inhibidores , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Hepatitis/etiología , Hepatitis/inmunología , Hepatitis/metabolismo , Mediadores de Inflamación/sangre , Mediadores de Inflamación/metabolismo , Antagonistas de Leucotrieno/aislamiento & purificación , Antagonistas de Leucotrieno/metabolismo , Antagonistas de Leucotrieno/uso terapéutico , Leucotrienos/agonistas , Leucotrienos/sangre , Lignanos/aislamiento & purificación , Lignanos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Lipopolisacáridos/toxicidad , Hígado/efectos de los fármacos , Hígado/inmunología , Masculino , Estrés Oxidativo/efectos de los fármacos , Fenoles/metabolismo , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Fosfolipasas A2 Citosólicas/química , Fosfolipasas A2 Citosólicas/metabolismo , Ratas Wistar , Receptores de Leucotrieno B4/agonistas , Receptores de Leucotrieno B4/antagonistas & inhibidores , Receptores de Leucotrieno B4/metabolismo , Aceite de Sésamo/química , Aceite de Sésamo/aislamiento & purificaciónRESUMEN
BACKGROUND: The role of calcium-independent phospholipase A2 (iPLA2), a component of the three major PLA2 families, in acute/chronic inflammatory processes remains elusive. Previous investigations have documented iPLA2-mediated respiratory burst of neutrophils (PMNs); however, the causative isoform of iPLA2 is unidentified. We also demonstrated that the iPLA2γ-specific inhibitor attenuates trauma/hemorrhagic shock-induced lung injury. Therefore, iPLA2γ may be implicated in acute inflammation. In addition, arachidonic acid (AA), which is primarily produced by cytosolic PLA2 (cPLA2), is known to display PMN cytotoxicity, although the relationship between AA and the cytotoxic function is still being debated on. We therefore hypothesized that iPLA2γ regulates PMN cytotoxicity via AA-independent signaling pathways. The study aim was to distinguish the role of intracellular phospholipases A2, iPLA2, and cPLA2, in human PMN cytotoxicity and explore the possibility of the presence of signaling molecule(s) other than AA. METHODS: Isolated human PMNs were incubated with the PLA2 inhibitor selective for iPLA2ß, iPLA2γ, or cPLA2 and then activated with formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol 12-myristate 13-acetate (PMA). Superoxide production was assayed according to the superoxide dismutase-inhibitable cytochrome c reduction method, and the degree of elastase release was measured using a p-nitroanilide-conjugated elastase-specific substrate. In addition, chemotaxis toward platelet activating factor/fMLP was determined with a modified Boyden chamber system. RESULTS: The iPLA2γ-specific inhibitor reduced the fMLP/PMA-stimulated superoxide generation by 90% and 30%, respectively; in addition, the inhibitor completely blocked the fMLP/PMA-activated elastase release. However, the cPLA2-specific inhibitor did not abrogate these effects to any degree at all concentrations. Likewise, the inhibitor for iPLA2γ, but not iPLA2ß or cPLA2, completely inhibited the platelet activating factor/fMLP-induced chemotaxis. CONCLUSION: iPLA2 is involved in extracellular reactive oxygen species production, elastase release, and chemotaxis in response to well-defined stimuli. In addition, the ineffectiveness of the cPLA2 inhibitor suggests that AA may not be relevant to these cytotoxic functions.
Asunto(s)
Citotoxicidad Inmunológica/inmunología , Fosfolipasas A2 Grupo VI/inmunología , Neutrófilos/inmunología , Fosfolipasas A2/inmunología , Células Cultivadas , Quimiotaxis/inmunología , Fosfolipasas A2 Grupo VI/antagonistas & inhibidores , Humanos , Espacio Intracelular/inmunología , Elastasa Pancreática/metabolismo , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Fosfolipasas A2 Citosólicas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de SeñalRESUMEN
The accumulation of aggregated forms of the α-synuclein (αSN) is associated with the pathogenesis of Parkinson's disease (PD) and Dementia with Lewy Bodies. The loss of synapses is an important event in the pathogenesis of these diseases. Here we show that aggregated recombinant human αSN, but not ßSN, triggered synapse damage in cultured neurons as measured by the loss of synaptic proteins. Pre-treatment with the selective cytoplasmic phospholipase A2 (cPLA2) inhibitors AACOCF3 and MAFP protected neurons against αSN-induced synapse damage. Synapse damage was associated with the αSN-induced activation of synaptic cPLA2 and the production of prostaglandin E2. The activation of cPLA2 is the first step in the generation of platelet-activating factor (PAF) and PAF receptor antagonists (ginkgolide B or Hexa-PAF) also protect neurons against αSN-induced synapse damage. αSN-induced synapse damage was also reduced in neurons pre-treated with the cholesterol synthesis inhibitor (squalestatin). These results are consistent with the hypothesis that αSN triggered synapse damage via hyperactivation of cPLA2. They also indicate that αSN-induced activation of cPLA2 is influenced by the cholesterol content of membranes. Inhibitors of this pathway that can cross the blood brain barrier may protect against the synapse damage seen during PD.
Asunto(s)
Colesterol/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfolipasas A2 Citosólicas/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/patología , alfa-Sinucleína/farmacología , Animales , Células Cultivadas , Inhibidores de la Ciclooxigenasa/farmacología , Activación Enzimática/efectos de los fármacos , Humanos , Ratones , Neuronas/enzimología , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Factor de Activación Plaquetaria/antagonistas & inhibidores , Agregado de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Sinapsis/enzimología , Sinapsis/metabolismo , alfa-Sinucleína/químicaRESUMEN
Non-essential amino acid L-glutamine (Gln) possesses anti-inflammatory activity via deactivating cytosolic phospholipase A2 (cPLA2 ). We showed previously that Gln deactivated cPLA2 indirectly via dephosphorylating p38 mitogen-activated protein kinase (MAPK), the major kinase for cPLA2 phosphorylation, through inducing MAPK phosphatase-1 (MKP-1). In this study, we investigated the precise mechanism underlying Gln deactivation of cPLA2 . In lipopolysaccharide (LPS)-treated mice, Gln injection resulted in dephosphorylation of phosphorylated cPLA2 (p-cPLA2 ), which coincided with rapid Gln induction of MKP-1. MKP-1 small interfering RNA (siRNA) abrogated the ability of Gln to induce MKP-1 as well as the dephosphorylation of cPLA2 . Co-immunoprecipitation and in-situ proximity ligation assay revealed a physical interaction between MKP-1 and p-cPLA2 . In a murine model of allergic asthma, we also demonstrated the physical interaction between MKP-1 and p-cPLA2 . Furthermore, Gln suppressed various allergic asthma phenotypes, such as neutrophil and eosinophil recruitments into the airway, airway levels of T helper type 2 (Th2) cytokines [interleukin (IL)-4, IL-5 and IL-13], airway hyperresponsiveness, mucin production and metabolites (leukotriene B4 and platelet-activating factor) through inhibiting cPLA2 in a MKP-1-dependent manner. These data suggest that MKP-1 uses cPLA2 , in addition to p38, as a substrate, which further potentiates the anti-inflammatory action of Gln.
Asunto(s)
Glutamina/farmacología , Fosfolipasas A2 Citosólicas/antagonistas & inhibidores , Animales , Asma/inmunología , Asma/metabolismo , Asma/patología , Células Cultivadas , Fosfatasa 1 de Especificidad Dual/metabolismo , Activación Enzimática/efectos de los fármacos , Femenino , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/enzimología , Ratones , Fosfolipasas A2 Citosólicas/metabolismo , Fosforilación/efectos de los fármacos , Unión ProteicaRESUMEN
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.