Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.260
Filtrar
2.
Mol Plant Pathol ; 25(4): e13447, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561315

RESUMEN

Genetic engineering using negative regulators of plant immunity has the potential to provide a huge impetus in agricultural biotechnology to achieve a higher degree of disease resistance without reducing yield. Type 2C protein phosphatases (PP2Cs) represent the largest group of protein phosphatases in plants, with a high potential for negative regulatory functions by blocking the transmission of defence signals through dephosphorylation. Here, we established a PP2C functional protoplast screen using pFRK1::luciferase as a reporter and found that 14 of 56 PP2Cs significantly inhibited the immune response induced by flg22. To verify the reliability of the system, a previously reported MAPK3/4/6-interacting protein phosphatase, PP2C5, was used; it was confirmed to be a negative regulator of PAMP-triggered immunity (PTI). We further identified PP2C15 as an interacting partner of BRI1-associated receptor kinase 1 (BAK1), which is the most well-known co-receptor of plasma membrane-localized pattern recognition receptors (PRRs), and a central component of PTI. PP2C15 dephosphorylates BAK1 and negatively regulates BAK1-mediated PTI responses such as MAPK3/4/6 activation, defence gene expression, reactive oxygen species bursts, stomatal immunity, callose deposition, and pathogen resistance. Although plant growth and 1000-seed weight of pp2c15 mutants were reduced compared to those of wild-type plants, pp2c5 mutants did not show any adverse effects. Thus, our findings strengthen the understanding of the mechanism by which PP2C family members negatively regulate plant immunity at multiple levels and indicate a possible approach to enhance plant resistance by eliminating specific PP2Cs without affecting plant growth and yield.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Reproducibilidad de los Resultados , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/farmacología , Inmunidad de la Planta/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
3.
Am J Physiol Endocrinol Metab ; 326(6): E776-E790, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38568153

RESUMEN

Obesity has become a major risk of global public health. SMEK1 is also known as a regulatory subunit of protein phosphatase 4 (PP4). Both PP4 and SMEK1 have been clarified in many metabolic functions, including the regulation of hepatic gluconeogenesis and glucose transporter gene expression in yeast. Whether SMEK1 participates in obesity and the broader metabolic role in mammals is unknown. Thus, we investigated the function of SMEK1 in white adipose tissue and glucose uptake. GWAS/GEPIA/GEO database was used to analyze the correlation between SMEK1 and metabolic phenotypes/lipid metabolism-related genes/obesity. Smek1 KO mice were generated to identify the role of SMEK1 in obesity and glucose homeostasis. Cell culture and differentiation of stromal-vascular fractions (SVFs) and 3T3-L1 were used to determine the mechanism. 2-NBDG was used to measure the glucose uptake. Compound C was used to confirm the role of AMPK. We elucidated that SMEK1 was correlated with obesity and adipogenesis. Smek1 deletion enhanced adipogenesis in both SVFs and 3T3-L1. Smek1 KO protected mice from obesity and had protective effects on metabolic disorders, including insulin resistance and inflammation. Smek1 KO mice had lower levels of fasting serum glucose. We found that SMEK1 ablation promoted glucose uptake by increasing p-AMPKα(T172) and the transcription of Glut4 when the effect on AMPK-regulated glucose uptake was due to the PP4 catalytic subunits (PPP4C). Our findings reveal a novel role of SMEK1 in obesity and glucose homeostasis, providing a potential new therapeutic target for obesity and metabolic dysfunction.NEW & NOTEWORTHY Our study clarified the relationship between SMEK1 and obesity for the first time and validated the conclusion in multiple ways by combining available data from public databases, human samples, and animal models. In addition, we clarified the role of SMEK1 in glucose uptake, providing an in-depth interpretation for the study of its function in glucose metabolism.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Adipogénesis , Glucosa , Ratones Noqueados , Obesidad , Transducción de Señal , Animales , Obesidad/metabolismo , Obesidad/genética , Ratones , Glucosa/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Adipogénesis/genética , Células 3T3-L1 , Masculino , Ratones Endogámicos C57BL , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/etiología , Resistencia a la Insulina , Tejido Adiposo Blanco/metabolismo , Fosfoproteínas Fosfatasas
4.
Chemosphere ; 358: 142125, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670509

RESUMEN

Microcystin-LR (MC-LR) is a harmful cyanotoxin that inhibits 1 and 2A serine-threonine protein phosphatases. This study examines the influence of MC-LR on chloroplast division and the underlying mechanisms and consequences in Arabidopsis. MC-LR increased the frequency of dividing chloroplasts in hypocotyls in a time range of 1-96 h. At short-term exposures to MC-LR, small-sized chloroplasts (longitudinal diameters ≤6 µm) were more sensitive to these stimulatory effects, while both small and large chloroplasts showed stimulations at long-term exposure. After 48 h, the cyanotoxin increased the frequency of small-sized chloroplasts, indicating the stimulation of division. MC-LR inhibited protein phosphatases in whole hypocotyls and isolated chloroplasts, while it did not induce oxidative stress. We show for the first time that total cellular phosphatases play important roles in chloroplast division and that particular chloroplast phosphatases may be involved in these processes. Interestingly, MC-LR has a protective effect on cyanobacterial division during methyl-viologen (MV) treatments in Synechococcus PCC6301. MC-LR production has harmful effects on ecosystems and it may have an ancient cell division regulatory role in stressed cyanobacterial cells, the evolutionary ancestors of chloroplasts. We propose that cytoplasmic (eukaryotic) factors also contribute to the relevant effects of MC-LR in plants.


Asunto(s)
Arabidopsis , Cloroplastos , Toxinas Marinas , Microcistinas , Fosfoproteínas Fosfatasas , Microcistinas/toxicidad , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Arabidopsis/efectos de los fármacos , Cianobacterias/efectos de los fármacos , División Celular/efectos de los fármacos , Synechococcus/efectos de los fármacos
5.
Sci Rep ; 14(1): 7908, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575675

RESUMEN

Receptor tyrosine kinases (RTKs) initiate cellular signaling pathways, which are regulated through a delicate balance of phosphorylation and dephosphorylation events. While many studies of RTKs have focused on downstream-activated kinases catalyzing the site-specific phosphorylation, few studies have focused on the phosphatases carrying out the dephosphorylation. In this study, we analyzed six protein phosphatase networks using chemical inhibitors in context of epidermal growth factor receptor (EGFR) signaling by mass spectrometry-based phosphoproteomics. Specifically, we focused on protein phosphatase 2C (PP2C), involved in attenuating p38-dependent signaling pathways in various cellular responses, and confirmed its effect in regulating p38 activity in EGFR signaling. Furthermore, utilizing a p38 inhibitor, we classified phosphosites whose phosphorylation status depends on PP2C inhibition into p38-dependent and p38-independent sites. This study provides a large-scale dataset of phosphatase-regulation of EGF-responsive phosphorylation sites, which serves as a useful resource to deepen our understanding of EGFR signaling.


Asunto(s)
Receptores ErbB , Transducción de Señal , Receptores ErbB/metabolismo , Fosforilación , Fosfoproteínas Fosfatasas/metabolismo
6.
Clin Exp Med ; 24(1): 89, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683255

RESUMEN

The significance of Protein phosphatase 4 catalytic subunit (PPP4C) in diffuse large B-cell lymphoma (DLBCL) prognosis is not well understood. This work aimed to investigate the expression of PPP4C in DLBCL, investigate the correlation between PPP4C expression and clinicopathological parameters, and assess the prognostic significance of PPP4C. The mRNA expression of PPP4C was investigated using data from TCGA and GEO. To further analyze PPP4C expression, immunohistochemistry was performed on tissue microarray samples. Correlation analysis between clinicopathological parameters and PPP4C expression was conducted using Pearson's chi-square test or Fisher's exact test. Univariate and multivariate Cox hazard models were utilized to determine the prognostic significance of clinicopathological features and PPP4C expression. Additionally, survival analysis was performed using Kaplan-Meier survival curves. In both TCGA and GEO datasets, we identified higher mRNA levels of PPP4C in tumor tissues compared to normal tissues. Upon analysis of various clinicopathological features of DLBCL, we observed a correlation between high PPP4C expression and ECOG score (P = 0.003). Furthermore, according to a Kaplan-Meier survival analysis, patients with DLBCL who exhibit high levels of PPP4C had worse overall survival (P = 0.001) and progression-free survival (P = 0.002). PPP4C was shown to be an independent predictive factor for OS and PFS in DLBCL by univariate and multivariate analysis (P = 0.011 and P = 0.040). This study's findings indicate that high expression of PPP4C is linked to a poor prognosis for DLBCL and may function as an independent prognostic factors.


Asunto(s)
Biomarcadores de Tumor , Linfoma de Células B Grandes Difuso , Fosfoproteínas Fosfatasas , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Pronóstico , Anciano , Biomarcadores de Tumor/genética , Adulto , Estimación de Kaplan-Meier , Inmunohistoquímica , Análisis de Supervivencia , Regulación Neoplásica de la Expresión Génica , Anciano de 80 o más Años
7.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674016

RESUMEN

Organ transplantation is associated with various forms of programmed cell death which can accelerate transplant injury and rejection. Targeting cell death in donor organs may represent a novel strategy for preventing allograft injury. We have previously demonstrated that necroptosis plays a key role in promoting transplant injury. Recently, we have found that mitochondria function is linked to necroptosis. However, it remains unknown how necroptosis signaling pathways regulate mitochondrial function during necroptosis. In this study, we investigated the receptor-interacting protein kinase 3 (RIPK3) mediated mitochondrial dysfunction and necroptosis. We demonstrate that the calmodulin-dependent protein kinase (CaMK) family members CaMK1, 2, and 4 form a complex with RIPK3 in mouse cardiac endothelial cells, to promote trans-phosphorylation during necroptosis. CaMK1 and 4 directly activated the dynamin-related protein-1 (Drp1), while CaMK2 indirectly activated Drp1 via the phosphoglycerate mutase 5 (PGAM5). The inhibition of CaMKs restored mitochondrial function and effectively prevented endothelial cell death. CaMKs inhibition inhibited activation of CaMKs and Drp1, and cell death and heart tissue injury (n = 6/group, p < 0.01) in a murine model of cardiac transplantation. Importantly, the inhibition of CaMKs greatly prolonged heart graft survival (n = 8/group, p < 0.01). In conclusion, CaMK family members orchestrate cell death in two different pathways and may be potential therapeutic targets in preventing cell death and transplant injury.


Asunto(s)
Dinaminas , Rechazo de Injerto , Trasplante de Corazón , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Ratones , Rechazo de Injerto/metabolismo , Rechazo de Injerto/patología , Trasplante de Corazón/efectos adversos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Dinaminas/metabolismo , Dinaminas/genética , Mitocondrias/metabolismo , Células Endoteliales/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosforilación , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Transducción de Señal
8.
Appl Immunohistochem Mol Morphol ; 32(5): 249-253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38602289

RESUMEN

The pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) family has been found to have both tumor-suppressor and oncogenic properties across various types and locations of cancer. Given that PHLPP has not been previously studied in oral squamous cell carcinoma (SCC), we conducted an assessment of the expression of both its isoforms in oral SCC tissues and cell lines and compared these findings to their corresponding normal counterparts. In addition, we assessed the relationship between PHLPP and clinicopathological factors and patient survival. Quantitative real-time polymerase chain reaction was used to detect the mRNA levels of PHLPP1 and PHLPP2 in cancerous and normal cell lines in addition to 124 oral SCC and noncancerous adjacent epithelia (N = 62, each). Correlations between their expression rate and clinicopathological parameters were further evaluated in 57 patients. Data were statistically analyzed with t test and paired t test, analysis of variance, Mann-Whitney U , and Cox Regression tests ( P < 0.05). We found significantly lower levels of both PHLPP isoforms in oral SCC tissues compared with noncancerous epithelia ( P < 0.001, for both). However, in the cell lines, this difference was significant only for PHLPP1 ( P = 0.027). The correlation between the two isoforms was significant only in cancerous tissues ( P < 0.001). None of the clinicopathologic factors showed significant associations with either of the isoforms and there was no correlation with survival. We showed for the first time that PHLPP1 and PHLPP2 act as tumor suppressors in oral SCC at the mRNA level. The regulation of their mRNA appears to be different between normal and cancerous tissues.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Proteínas Nucleares , Fosfoproteínas Fosfatasas , Humanos , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Neoplasias de la Boca/patología , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Femenino , Masculino , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Persona de Mediana Edad , Línea Celular Tumoral , Anciano , Regulación Neoplásica de la Expresión Génica , Adulto , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Isoformas de Proteínas/metabolismo
9.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612548

RESUMEN

Protein phosphorylation is a prevalent translational modification, and its dysregulation has been implicated in various diseases, including cancer. Despite its significance, there is a lack of specific inhibitors of the FCP/SCP-type Ser/Thr protein phosphatase Scp1, characterized by high specificity and affinity. In this study, we focused on adnectin, an antibody-mimetic protein, aiming to identify Scp1-specific binding molecules with a broad binding surface that target the substrate-recognition site of Scp1. Biopanning of Scp1 was performed using an adnectin-presenting phage library with a randomized FG loop. We succeeded in identifying FG-1Adn, which showed high affinity and specificity for Scp1. Ala scanning analysis of the Scp1-binding sequence in relation to the FG-1 peptide revealed that hydrophobic residues, including aromatic amino acids, play important roles in Scp1 recognition. Furthermore, FG-1Adn was found to co-localize with Scp1 in cells, especially on the plasma membrane. In addition, Western blotting analysis showed that FG-1Adn increased the phosphorylation level of the target protein of Scp1 in cells, indicating that FG-1Adn can inhibit the function of Scp1. These results suggest that FG-1Adn can be used as a specific inhibitor of Scp1.


Asunto(s)
Anticuerpos , Dominio de Fibronectina del Tipo III , Proteínas Recombinantes , Aminoácidos Aromáticos , Fosfoproteínas Fosfatasas , Biblioteca de Péptidos
10.
Aging (Albany NY) ; 16(5): 4116-4137, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38441530

RESUMEN

Cellular senescence is a permanent cell cycle arrest that can be triggered by both internal and external genotoxic stressors, such as telomere dysfunction and DNA damage. The execution of senescence is mainly by two pathways, p16/RB and p53/p21, which lead to CDK4/6 inhibition and RB activation to block cell cycle progression. While the regulation of p53/p21 signaling in response to DNA damage and other insults is well-defined, the regulation of the p16/RB pathway in response to various stressors remains poorly understood. Here, we report a novel function of PR55α, a regulatory subunit of PP2A Ser/Thr phosphatase, as a potent inhibitor of p16 expression and senescence induction by ionizing radiation (IR), such as γ-rays. The results show that ectopic PR55α expression in normal pancreatic cells inhibits p16 transcription, increases RB phosphorylation, and blocks IR-induced senescence. Conversely, PR55α-knockdown by shRNA in pancreatic cancer cells elevates p16 transcription, reduces RB phosphorylation, and triggers senescence induction after IR. Furthermore, this PR55α function in the regulation of p16 and senescence is p53-independent because it was unaffected by the mutational status of p53. Moreover, PR55α only affects p16 expression but not p14 (ARF) expression, which is also transcribed from the same CDKN2A locus but from an alternative promoter. In normal human tissues, levels of p16 and PR55α proteins were inversely correlated and mutually exclusive. Collectively, these results describe a novel function of PR55α/PP2A in blocking p16/RB signaling and IR-induced cellular senescence.


Asunto(s)
Proteína Fosfatasa 2 , Proteína p53 Supresora de Tumor , Humanos , Senescencia Celular/fisiología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo
11.
Biomolecules ; 14(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38540761

RESUMEN

Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3's intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3's involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.


Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Proteínas Tirosina Fosfatasas/metabolismo , Procesamiento Proteico-Postraduccional , Fosfoproteínas Fosfatasas , Línea Celular Tumoral
12.
mSystems ; 9(4): e0089123, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38440990

RESUMEN

Mycoplasma species are able to produce and release secreted proteins, such as toxins, adhesins, and virulence-related enzymes, involved in bacteria adhesion, invasion, and immune evasion between the pathogen and host. Here, we investigated a novel secreted protein, MbovP0725, from Mycoplasma bovis encoding a putative haloacid dehalogenase (HAD) hydrolase function of a key serine/threonine phosphatase depending on Mg2+ for the dephosphorylation of its substrate pNPP, and it was most active at pH 8 to 9 and temperatures around 40°C. A transposon insertion mutant strain of M. bovis HB0801 that lacked the protein MbovP0725 induced a stronger inflammatory response but with a partial reduction of adhesion ability. Using transcriptome sequencing and quantitative reverse transcription polymerase chain reaction analysis, we found that the mutant was upregulated by the mRNA expression of genes from the glycolysis pathway, while downregulated by the genes enriched in ABC transporters and acetate kinase-phosphate acetyltransferase pathway. Untargeted metabolomics showed that the disruption of the Mbov_0725 gene caused the accumulation of 9-hydroxyoctadecadienoic acids and the consumption of cytidine 5'-monophosphate, uridine monophosphate, and adenosine monophosphate. Both the exogenous and endogenous MbvoP0725 protein created by purification and transfection inhibited lipopolysaccharide (LPS)-induced IL-1ß, IL-6, and TNF-α mRNA production and could also attenuate the activation of MAPK-associated pathways after LPS treatment. A pull-down assay identified MAPK p38 and ERK as potential substrates for MbovP0725. These findings define metabolism- and virulence-related roles for a HAD family phosphatase and reveal its ability to inhibit the host pro-inflammatory response. IMPORTANCE: Mycoplasma bovis (M. bovis) infection is characterized by chronic pneumonia, otitis, arthritis, and mastitis, among others, and tends to involve the suppression of the immune response via multiple strategies to avoid host cell immune clearance. This study found that MbovP0725, a haloacid dehalogenase (HAD) family phosphatase secreted by M. bovis, had the ability to inhibit the host pro-inflammatory response induced by lipopolysaccharide. Transcriptomic and metabolomic analyses were used to identify MbovP0725 as an important phosphatase involved in glycolysis and nucleotide metabolism. The M. bovis transposon mutant strain T8.66 lacking MbovP0725 induced a higher inflammatory response and exhibited weaker adhesion to host cells. Additionally, T8.66 attenuated the phosphorylation of MAPK P38 and ERK and interacted with the two targets. These results suggested that MbovP0725 had the virulence- and metabolism-related role of a HAD family phosphatase, performing an anti-inflammatory response during M. bovis infection.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma bovis , Femenino , Humanos , Mycoplasma bovis/genética , Lipopolisacáridos , Adhesión Bacteriana , Inmunidad , Fosfoproteínas Fosfatasas , ARN Mensajero , Serina
13.
Exp Hematol ; 133: 104205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490577

RESUMEN

Protein phosphatase 6 (PP6) is a serine/threonine (Ser/Thr) protein phosphatase, and its catalytic subunit is Ppp6c. PP6 forms the PP2A subfamily with PP2A and PP4. The diverse phenotypes observed following small interfering RNA (siRNA)-based knockdown of Ppp6c in cultured mammalian cells suggest that PP6 plays roles in cell growth and DNA repair. There is also evidence that PP6 regulates nuclear factor kappa B (NF-κB) signaling and mitogen-activated protein kinases and inactivates transforming growth factor-ß-activated kinase 1 (TAK1). Loss of Ppp6c causes several abnormalities, including those of T cell and regulatory T cell function, neurogenesis, oogenesis, and spermatogenesis. PP2A has been reported to play an important role in erythropoiesis. However, the roles of PP6 in other hematopoietic cells have not been investigated. We generated Ppp6cfl/fl;Tie2-Cre (Ppp6cTKO) mice, in which Ppp6c was specifically deleted in hematopoietic and vascular endothelial cells. Ppp6cTKO mice displayed embryonic lethality. Ppp6c deficiency increased the number of dead cells and decreased the percentages of erythroid and monocytic cells during fetal hematopoiesis. By contrast, the number of Lin-Sca-1+c-Kit+ cells, which give rise to all hematopoietic cells, was slightly increased, but their colony-forming cell activity was markedly decreased. Ppp6c deficiency also increased phosphorylation of extracellular signal-regulated kinase 1/2 and c-Jun amino (N)-terminal kinase in fetal liver hematopoietic cells.


Asunto(s)
Hematopoyesis , Ratones Noqueados , Fosfoproteínas Fosfatasas , Animales , Ratones , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/deficiencia , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Madre Hematopoyéticas/metabolismo , Pérdida del Embrión/genética , Pérdida del Embrión/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Femenino
14.
Exp Cell Res ; 437(1): 113998, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38513962

RESUMEN

Plasma saturated free fatty acid (FFA)-induced endothelial dysfunction (ED) contributes to the pathogenesis of atherosclerosis and cardiovascular diseases. However, the mechanism underlying saturated FFA-induced ED remains unclear. This study demonstrated that palmitic acid (PA) induced ED by activating the NADPH oxidase (NOX)/ROS signaling pathway to activate protein phosphatase 4 (PP4) and protein phosphatase 2A (PP2A), thereby reducing endothelial nitric oxide synthase (eNOS) phosphorylation at Ser633 and Ser1177, respectively. Okadaic acid (OA) and fostriecin (FST), which are inhibitors of PP2A, inhibited the PA-induced decreases in eNOS phosphorylation at Ser633 and Ser1177. The antioxidants N-acetylcysteine (NAC) and apocynin (APO) or knockdown of gp91phox or p67phox (NOX subunits) restored PA-mediated downregulation of PP4R2 protein expression and eNOS Ser633 phosphorylation. Knockdown of the PP4 catalytic subunit (PP4c) specifically increased eNOS Ser633 phosphorylation, while silencing the PP2A catalytic subunit (PP2Ac) restored only eNOS Ser1177 phosphorylation. Furthermore, PA dramatically decreased the protein expression of the PP4 regulatory subunit R2 (PP4R2) but not the other regulatory subunits. PP4R2 overexpression increased eNOS Ser633 phosphorylation, nitric oxide (NO) production, cell migration and tube formation but did not change eNOS Ser1177 phosphorylation levels. Coimmunoprecipitation (Co-IP) suggested that PP4R2 and PP4c interacted with the PP4R3α and eNOS proteins. In summary, PA decreases PP4R2 protein expression through the Nox/ROS pathway to activate PP4, which contributes to ED by dephosphorylating eNOS at Ser633. The results of this study suggest that PP4 is a novel therapeutic target for ED and ED-associated vascular diseases.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III , Fosfoproteínas Fosfatasas , Enfermedades Vasculares , Humanos , Fosforilación , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ácido Palmítico/farmacología , Serina/metabolismo , Especies Reactivas de Oxígeno , Células Cultivadas , Proteína Fosfatasa 2/metabolismo , Óxido Nítrico/metabolismo
15.
Bone Res ; 12(1): 15, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433252

RESUMEN

Osteoarthritis (OA) is a common degenerative disease worldwide and new therapeutics that target inflammation and the crosstalk between immunocytes and chondrocytes are being developed to prevent and treat OA. These attempts involve repolarizing pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype in synovium. In this study, we found that phosphoglycerate mutase 5 (PGAM5) significantly increased in macrophages in OA synovium compared to controls based on histology of human samples and single-cell RNA sequencing results of mice models. To address the role of PGAM5 in macrophages in OA, we found conditional knockout of PGAM5 in macrophages greatly alleviated OA symptoms and promoted anabolic metabolism of chondrocytes in vitro and in vivo. Mechanistically, we found that PGAM5 enhanced M1 polarization via AKT-mTOR/p38/ERK pathways, whereas inhibited M2 polarization via STAT6-PPARγ pathway in murine bone marrow-derived macrophages. Furthermore, we found that PGAM5 directly dephosphorylated Dishevelled Segment Polarity Protein 2 (DVL2) which resulted in the inhibition of ß-catenin and repolarization of M2 macrophages into M1 macrophages. Conditional knockout of both PGAM5 and ß-catenin in macrophages significantly exacerbated osteoarthritis compared to PGAM5-deficient mice. Motivated by these findings, we successfully designed mannose modified fluoropolymers combined with siPGAM5 to inhibit PGAM5 specifically in synovial macrophages via intra-articular injection, which possessed desired targeting abilities of synovial macrophages and greatly attenuated murine osteoarthritis. Collectively, these findings defined a key role for PGAM5 in orchestrating macrophage polarization and provides insights into novel macrophage-targeted strategy for treating OA.


Asunto(s)
Osteoartritis , Fosfoglicerato Mutasa , Humanos , Animales , Ratones , beta Catenina , Osteoartritis/genética , Inflamación , Macrófagos , Fosfoproteínas Fosfatasas , Proteínas Mitocondriales
16.
Nat Commun ; 15(1): 2039, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448420

RESUMEN

Reversible protein phosphorylation, regulated by protein phosphatases, fine-tunes target protein function and plays a vital role in biological processes. Dysregulation of this process leads to aberrant post-translational modifications (PTMs) and contributes to disease development. Despite the widespread use of artificial catalysts as enzyme mimetics, their direct modulation of proteins remains largely unexplored. To address this gap and enable the reversal of aberrant PTMs for disease therapy, we present the development of artificial protein modulators (APROMs). Through atomic-level engineering of heterogeneous catalysts with asymmetric catalytic centers, these modulators bear structural similarities to protein phosphatases and exhibit remarkable ability to destabilize the bridging µ3-hydroxide. This activation of catalytic centers enables spontaneous hydrolysis of phospho-substrates, providing precise control over PTMs. Notably, APROMs, with protein phosphatase-like characteristics, catalytically reprogram the biological function of α-synuclein by directly hydrolyzing hyperphosphorylated α-synuclein. Consequently, synaptic function is reinforced in Parkinson's disease. Our findings offer a promising avenue for reprogramming protein function through de novo PTMs strategy.


Asunto(s)
Ursidae , alfa-Sinucleína , Animales , alfa-Sinucleína/genética , Catálisis , Ingeniería , Hidrólisis , Fosfoproteínas Fosfatasas/genética
17.
Parasit Vectors ; 17(1): 142, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500196

RESUMEN

BACKGROUND: The protozoan parasite Toxoplasma gondii encodes dozens of phosphatases, among which a plant-like phosphatase absent from mammalian genomes named PPKL, which is involved in regulating brassinosteroid signaling in Arabidopsis, was identified in the genome. Among the Apicomplexa parasites, T. gondii is an important and representative pathogen in humans and animals. PPKL was previously identified to modulate the apical integrity and morphology of the ookinetes and parasite motility and transmission in another important parasite, Plasmodium falciparum. However, the exact function of PPKL in the asexual stages of T. gondii remains unknown. METHODS: The plant auxin-inducible degron (AID) system was applied to dissect the phenotypes of PPKL in T. gondii. We first analyzed the phenotypes of the AID parasites at an induction time of 24 h, by staining of different organelles using their corresponding markers. These analyses were further conducted for the parasites grown in auxin for 6 and 12 h using a quantitative approach and for the type II strain ME49 of AID parasites. To further understand the phenotypes, the potential protein interactions were analyzed using a proximity biotin labeling approach. The essential role of PPKL in parasite replication was revealed. RESULTS: PPKL is localized in the apical region and nucleus and partially distributed in the cytoplasm of the parasite. The phenotyping of PPKL showed its essentiality for parasite replication and morphology. Further dissections demonstrate that PPKL is required for the maturation of daughter parasites in the mother cells, resulting in multiple nuclei in a single parasite. The phenotype of the daughter parasites and parasite morphology were observed in another type of T. gondii strain ME49. The substantial defect in parasite replication and morphology could be rescued by genetic complementation, thus supporting its essential function for PPKL in the formation of parasites. The protein interaction analysis showed the potential interaction of PPKL with diverse proteins, thus explaining the importance of PPKL in the parasite. CONCLUSIONS: PPKL plays an important role in the formation of daughter parasites, revealing its subtle involvement in the proper maturation of the daughter parasites during division. Our detailed analysis also demonstrated that depletion of PPKL resulted in elongated tubulin fibers in the parasites. The important roles in the parasites are potentially attributed to the protein interaction mediated by kelch domains on the protein. Taken together, these findings contribute to our understanding of a key phosphatase involved in parasite replication, suggesting the potential of this phosphatase as a pharmaceutic target.


Asunto(s)
Parásitos , Toxoplasma , Humanos , Animales , Toxoplasma/fisiología , Proteínas de Plantas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Ácidos Indolacéticos/metabolismo , Mamíferos
18.
Phytopathology ; 114(3): 630-640, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38457135

RESUMEN

Bursaphelenchus xylophilus, the pine wood nematode (PWN), is the causal agent of pine wilt disease (PWD), which causes enormous economic loss annually. According to our previous research, fomepizole, as a selective inhibitor of PWN alcohol dehydrogenase (ADH), has the potential to be a preferable lead compound for developing novel nematicides. However, the underlying molecular mechanism is still unclear. The result of molecular docking showed that the stronger interactions between fomepizole and PWN ADH at the active site of ADH were attributed to hydrogen bonds. Low-dose fomepizole had a substantial negative impact on the egg hatchability, development, oviposition, and lifespan of PWN. Transcriptome analysis indicated that 2,124 upregulated genes and 490 downregulated genes in fomepizole-treated PWN were obtained. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of differentially expressed genes indicated that fomepizole could be involved in controlling PWN vitality mainly by regulating key signaling pathways, such as the ribosome, hippo signaling pathway, and lysosome. Remarkably, the results of RNA interference indicated that the downregulated serine/threonine-protein phosphatase gene (stpp) could reduce the egg hatchability, development, oviposition, and lifespan of PWN, which was closely similar to the consequences of nematodes with low-dose fomepizole treatment. In addition, the silencing of stpp resulted in weakness of PWN pathogenicity, which indicated that stpp could be a potential drug target to control PWN.


Asunto(s)
Pinus , Tylenchida , Animales , Virulencia , Transcriptoma , Fomepizol , Xylophilus , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas , Pinus/genética , Fosfoproteínas Fosfatasas/genética , Treonina/genética , Serina/genética , Tylenchida/genética
19.
Hum Genomics ; 18(1): 24, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475971

RESUMEN

BACKGROUND: Protein Phosphatase Enzymes (PPE) and protein kinases simultaneously control phosphorylation mechanisms that tightly regulate intracellular signalling pathways and stimulate cellular responses. In human malignancies, PPE and protein kinases are frequently mutated resulting in uncontrolled kinase activity and PPE suppression, leading to cell proliferation, migration and resistance to anti-cancer therapies. Cancer associated DNA hypermethylation at PPE promoters gives rise to transcriptional silencing (epimutations) and is a hallmark of cancer. Despite recent advances in sequencing technologies, data availability and computational capabilities, only a fraction of PPE have been reported as transcriptionally inactive as a consequence of epimutations. METHODS: In this study, we examined promoter-associated DNA methylation profiles in Protein Phosphatase Enzymes and their Interacting Proteins (PPEIP) in a cohort of 705 cancer patients in five tissues (Large intestine, Oesophagus, Lung, Pancreas and Stomach) in three cell models (primary tumours, cancer cell lines and 3D embedded cancer cell cultures). As a subset of PPEIP are known tumour suppressor genes, we analysed the impact of PPEIP promoter hypermethylation marks on gene expression, cellular networks and in a clinical setting. RESULTS: Here, we report epimutations in PPEIP are a frequent occurrence in the cancer genome and manifest independent of transcriptional activity. We observed that different tumours have varying susceptibility to epimutations and identify specific cellular signalling networks that are primarily affected by epimutations. Additionally, RNA-seq analysis showed the negative impact of epimutations on most (not all) Protein Tyrosine Phosphatase transcription. Finally, we detected novel clinical biomarkers that inform on patient mortality and anti-cancer treatment sensitivity. CONCLUSIONS: We propose that DNA hypermethylation marks at PPEIP frequently contribute to the pathogenesis of malignancies and within the precision medicine space, hold promise as biomarkers to inform on clinical features such as patient survival and therapeutic response.


Asunto(s)
Epigénesis Genética , Neoplasias , Humanos , Metilación de ADN , Fosfoproteínas Fosfatasas , Proteínas Quinasas , Biomarcadores , ADN , Regulación Neoplásica de la Expresión Génica
20.
Mol Plant Pathol ; 25(3): e13425, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38462784

RESUMEN

Phosphatases are important regulators of protein phosphorylation and various cellular processes, and they serve as counterparts to kinases. In this study, our comprehensive analysis of oomycete complete proteomes unveiled the presence of approximately 3833 phosphatases, with most species estimated to have between 100 and 300 putative phosphatases. Further investigation of these phosphatases revealed a significant increase in protein serine/threonine phosphatases (PSP) within oomycetes. In particular, we extensively studied the metallo-dependent protein phosphatase (PPM) within the PSP family in the model oomycete Phytophthora sojae. Our results showed notable differences in the expression patterns of PPMs throughout 10 life stages of P. sojae, indicating their vital roles in various stages of oomycete pathogens. Moreover, we identified 29 PPMs in P. sojae, and eight of them possessed accessory domains in addition to phosphate domains. We investigated the biological function of one PPM protein with an extra PH domain (PPM1); this protein exhibited high expression levels in both asexual developmental and infectious stages. Our analysis confirmed that PPM1 is indeed an active protein phosphatase, and its accessory domain does not affect its phosphatase activity. To delve further into its function, we generated knockout mutants of PPM1 and validated its essential roles in mycelial growth, sporangia and oospore production, as well as infectious stages. To the best of our knowledge, this study provides the first comprehensive inventory of phosphatases in oomycetes and identifies an important phosphatase within the expanded serine/threonine phosphatase group in oomycetes.


Asunto(s)
Oomicetos , Phytophthora , Proteoma/metabolismo , Phytophthora/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA