Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.306
Filtrar
1.
J Virol ; 97(4): e0014423, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37039676

RESUMEN

2019 coronavirus disease (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to respiratory illness, COVID-19 patients exhibit neurological symptoms lasting from weeks to months (long COVID). It is unclear whether these neurological manifestations are due to an infection of brain cells. We found that a small fraction of human induced pluripotent stem cell (iPSC)-derived neurons, but not astrocytes, were naturally susceptible to SARS-CoV-2. Based on the inhibitory effect of blocking antibodies, the infection seemed to depend on the receptor angiotensin-converting enzyme 2 (ACE2), despite very low levels of its expression in neurons. The presence of double-stranded RNA in the cytoplasm (the hallmark of viral replication), abundant synthesis of viral late genes localized throughout infected cells, and an increase in the level of viral RNA in the culture medium (viral release) within the first 48 h of infection suggested that the infection was productive. Productive entry of SARS-CoV-2 requires the fusion of the viral and cellular membranes, which results in the delivery of the viral genome into the cytoplasm of the target cell. The fusion is triggered by proteolytic cleavage of the viral surface spike protein, which can occur at the plasma membrane or from endosomes or lysosomes. We found that SARS-CoV-2 infection of human neurons was insensitive to nafamostat and camostat, which inhibit cellular serine proteases, including transmembrane serine protease 2 (TMPRSS2). Inhibition of cathepsin L also did not significantly block infection. In contrast, the neuronal infection was blocked by apilimod, an inhibitor of phosphatidyl-inositol 5 kinase (PIK5K), which regulates early to late endosome maturation. IMPORTANCE COVID-19 is a disease caused by the coronavirus SARS-CoV-2. Millions of patients display neurological symptoms, including headache, impairment of memory, seizures, and encephalopathy, as well as anatomical abnormalities, such as changes in brain morphology. SARS-CoV-2 infection of the human brain has been documented, but it is unclear whether the observed neurological symptoms are linked to direct brain infection. The mechanism of virus entry into neurons has also not been characterized. Here, we investigated SARS-CoV-2 infection by using a human iPSC-derived neural cell model and found that a small fraction of cortical-like neurons was naturally susceptible to infection. The productive infection was ACE2 dependent and TMPRSS2 independent. We also found that the virus used the late endosomal and lysosomal pathway for cell entry and that the infection could be blocked by apilimod, an inhibitor of cellular PIK5K.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/fisiopatología , Endosomas/metabolismo , Endosomas/virología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Neuronas/virología , Síndrome Post Agudo de COVID-19/fisiopatología , Síndrome Post Agudo de COVID-19/virología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Fosfotransferasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Astrocitos/virología , Células Cultivadas
2.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948077

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disorder of motor neurons in adults, with a median survival of 3-5 years after appearance of symptoms, and with no curative treatment currently available. Frontotemporal dementia (FTD) is also an adult-onset neurodegenerative disease, displaying not only clinical overlap with ALS, but also significant similarities at genetic and pathologic levels. Apart from the progressive loss of neurons and the accumulation of protein inclusions in certain cells and tissues, both disorders are characterized by chronic inflammation mediated by activated microglia and astrocytes, with an early and critical impact of neurodegeneration along the disease course. Despite the progress made in the last two decades in our knowledge around these disorders, the underlying molecular mechanisms of such non-cell autonomous neuronal loss still need to be clarified. In particular, immune signaling kinases are currently thought to have a key role in determining the neuroprotective or neurodegenerative nature of the central and peripheral immune states in health and disease. This review provides a comprehensive and updated view of the proposed mechanisms, therapeutic potential, and ongoing clinical trials of immune-related kinases that have been linked to ALS and/or FTD, by covering the more established TBK1, RIPK1/3, RACK I, and EPHA4 kinases, as well as other emerging players in ALS and FTD immune signaling.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Demencia Frontotemporal/enzimología , Sistema Inmunológico/enzimología , Inflamación , Fosfotransferasas/metabolismo , Transducción de Señal , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/tratamiento farmacológico , Demencia Frontotemporal/inmunología , Demencia Frontotemporal/metabolismo , Humanos , Sistema Inmunológico/metabolismo , Fosfotransferasas/antagonistas & inhibidores
3.
Cell Death Dis ; 12(12): 1119, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845199

RESUMEN

Nicotinamide, the amide form of Vitamin B3, is a common nutrient supplement that plays important role in human fetal development. Nicotinamide has been widely used in clinical treatments, including the treatment of diseases during pregnancy. However, its impacts during embryogenesis have not been fully understood. In this study, we show that nicotinamide plays multiplex roles in mesoderm differentiation of human embryonic stem cells (hESCs). Nicotinamide promotes cardiomyocyte fate from mesoderm progenitor cells, and suppresses the emergence of other cell types. Independent of its functions in PARP and Sirtuin pathways, nicotinamide modulates differentiation through kinase inhibition. A KINOMEscan assay identifies 14 novel nicotinamide targets among 468 kinase candidates. We demonstrate that nicotinamide promotes cardiomyocyte differentiation through p38 MAP kinase inhibition. Furthermore, we show that nicotinamide enhances cardiomyocyte survival as a Rho-associated protein kinase (ROCK) inhibitor. This study reveals nicotinamide as a pleiotropic molecule that promotes the derivation and survival of cardiomyocytes, and it could become a useful tool for cardiomyocyte production for regenerative medicine. It also provides a theoretical foundation for physicians when nicotinamide is considered for treatments for pregnant women.


Asunto(s)
Miocitos Cardíacos/efectos de los fármacos , Niacinamida/uso terapéutico , Fosfotransferasas/antagonistas & inhibidores , Células Madre Pluripotentes/metabolismo , Medicina Regenerativa/métodos , Complejo Vitamínico B/uso terapéutico , Animales , Diferenciación Celular , Femenino , Humanos , Niacinamida/farmacología , Complejo Vitamínico B/farmacología , Pez Cebra
4.
Bioorg Chem ; 117: 105421, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34666258

RESUMEN

Series of novel sulfonamide-based 3-indolinones 3a-m and 4a-f were designed, synthesized and then their cytotoxic activity was evaluated against a panel of sixty cancer cell lines. This screening indicated that 4-(2-(5-fluoro-2-oxoindolin-3-ylidene)acetyl)phenyl benzenesulfonate (4f) possessed promising cytotoxicity against CCRF-CEM and SR leukemia cell lines with IC50 values 6.84 and 2.97 µM, respectively. Further investigation of the leukemic cytotoxicity of compound 4f was carried out by performing PDGFRα, VEGFR2, Aurora A/B and FLT3 enzyme assays and CCRF-CEM and SR cell cycle analysis. These investigations showed that compound 4f exhibited pronounced dual inhibition of both kinases PDGFRα and Aurora A with potency of 24.15 and 11.83 nM, respectively. The in vitro results were supported by molecular docking studies in order to explore its binding affinity and its key amino acids interactions. This work represents compound 4f as a promising anticancer agent against leukemia.


Asunto(s)
Antineoplásicos/farmacología , Simulación del Acoplamiento Molecular , Oxindoles/farmacología , Fosfotransferasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Sulfonamidas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Oxindoles/síntesis química , Oxindoles/química , Fosfotransferasas/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
5.
ACS Chem Biol ; 16(11): 2202-2211, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34672515

RESUMEN

Mitochondrial proteases are interesting but challenging drug targets for multifactorial diseases, such as neurodegeneration and cancer. The mitochondrial inner membrane protease OMA1 is a bona fide drug target for heart failure supported by data from human linkage analysis and animal disease models, but presumably relevant for more indications. OMA1 acts at the intersection of energy metabolism and stress signaling. The protease cleaves the structural protein OPA1, which organizes the cristae, as well as the signaling peptide DELE1, which can stimulate the integrated stress response. OMA1 shows little activity under physiological conditions but hydrolyzes OPA1 in mitochondria destined for mitophagy and during apoptosis. Little is known about OMA1, its structure has not been solved, let alone its context-dependent regulation. Autocatalytic processing and the lack of OMA1 inhibitors are thereby creating the biggest roadblocks. This study introduces a scalable, cellular OMA1 protease assay suitable for high-throughput drug screening. The assay utilizes an engineered luciferase targeted to the inner membrane as artificial OMA1 substrate, whereby the reporter signal inversely correlates to OMA1 activity. Testing different screening protocols and sampling different compound collections validated the reporter and demonstrated that both OMA1 activators as well as OMA1 inhibitors can be identified with the assay. Ten kinase-targeted cancer drugs triggered OMA1 in the assays, which suggests─considering cardiotoxicity as a rather common side-effect of this class of drugs─cross-reactivity with the OMA1 pathway.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Metaloendopeptidasas/metabolismo , Fosfotransferasas/antagonistas & inhibidores , Descubrimiento de Drogas , Activación Enzimática/efectos de los fármacos , Silenciador del Gen , Células HEK293 , Humanos , Metaloendopeptidasas/antagonistas & inhibidores , Metaloendopeptidasas/genética
6.
Bioorg Med Chem ; 46: 116348, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34479064

RESUMEN

Twenty eight new N2,N4-diphenylpyrimidine-2,4-diamines have been prepared in order to expand our understanding of the anti-malarial SAR of the scaffold. The aim of the study was to make structural modifications to improve the overall potency, selectivity and solubility of the series by varying the anilino groups attached to the 2- and 4-position. We evaluated the activity of the compounds against Plasmodium falciparum (Pf) 3D7, cytotoxicity against HepG2, % inhibition at a panel of 10 human kinases, solubility, permeability and lipophilicity, and human and rat in vitro clearance. 11 was identified as a potent anti-malarial with an IC50 of 0.66 µM at the 3D7 strain and a selectivity (SI) of ~ 40 in terms of cytotoxicity against the HepG2 cell line. It also displayed low experimental logD7.4 (2.27), reasonable solubility (124 µg/ml), good metabolic stability, but low permeability. A proteo-chemometric workflow was employed to identify putative Pf targets of the most promising compounds. Ligand-based similarity searching of the ChEMBL database led to the identification of most probable human targets. These were then used as input for sequence-based searching of the Pf proteome. Homology modelling and molecular docking were used to evaluate whether compounds could indeed bind to these targets with valid binding modes. In vitro biological testing against close human analogs of these targets was subsequently undertaken. This allowed us to identify potential Pf targets and human anti-targets that could be exploited in future development.


Asunto(s)
Antimaláricos/farmacología , Quimioinformática , Diaminas/farmacología , Inhibidores Enzimáticos/farmacología , Fosfotransferasas/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Pirimidinas/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Diaminas/síntesis química , Diaminas/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Células Hep G2 , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Fosfotransferasas/metabolismo , Pirimidinas/síntesis química , Pirimidinas/química , Relación Estructura-Actividad
7.
Mol Divers ; 25(3): 1617-1641, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34272637

RESUMEN

CYP27B1, a cytochrome P450-containing hydroxylase enzyme, converts vitamin D precursor calcidiol (25-hydroxycholecalciferol) to its active form calcitriol (1α,25(OH)2D3). Tyrosine kinase inhibitor such as imatinib is reported to interfere with the activation of vitamin D3 by inhibiting CYP27B1 enzyme. Consequently, there is a decrease in the serum levels of active vitamin D that in turn may increase the relapse risk among the cancer patients treated with imatinib. Within this framework, the current study focuses on identifying other possible kinase inhibitors that may affect the calcitriol level in the body by inhibiting CYP27B1. To achieve this, we explored multiple machine learning approaches including support vector machine (SVM), random forest (RF), and artificial neural network (ANN) to identify possible CYP27B1 inhibitors from a pool of kinase inhibitors database. The most reliable classification model was obtained from the SVM approach with Matthews correlation coefficient of 0.82 for the external test set. This model was further employed for the virtual screening of kinase inhibitors from the binding database (DB), which tend to interfere with the CYP27B1-mediated activation of vitamin D. This screening yielded around 4646 kinase inhibitors that were further subjected to structure-based analyses using the homology model of CYP27B1, as the 3D structure of CYP27B1 complexed with heme was not available. Overall, five kinase inhibitors including two well-known drugs, i.e., AT7867 (Compound-2) and amitriptyline N-oxide (Compound-3), were found to interact with CYP27B1 in such a way that may preclude the conversion of vitamin D to its active form and hence testify the impairment of vitamin D activation pathway.


Asunto(s)
25-Hidroxivitamina D3 1-alfa-Hidroxilasa/química , Diseño de Fármacos/métodos , Inhibidores Enzimáticos/química , Aprendizaje Automático , Modelos Moleculares , Fosfotransferasas/química , Vitamina D/química , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Algoritmos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Bases de Datos Farmacéuticas , Inhibidores Enzimáticos/farmacología , Humanos , Redes y Vías Metabólicas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Redes Neurales de la Computación , Fosfotransferasas/antagonistas & inhibidores , Unión Proteica , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Máquina de Vectores de Soporte , Vitamina D/metabolismo
8.
Cell Chem Biol ; 28(12): 1679-1692.e4, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34216546

RESUMEN

Kinase inhibitors are promising drugs to stabilize the endothelial barrier following inflammatory damage. However, our limited knowledge of how kinase signaling activates barrier-restorative pathways and the complexity of multi-target drugs have hindered drug discovery and repurposing efforts. Here, we apply a kinase regression approach that exploits drug polypharmacology to investigate endothelial barrier regulation. A screen of 28 kinase inhibitors identified multiple inhibitors that promote endothelial barrier integrity and revealed divergent barrier phenotypes for BCR-ABL drugs. Target deconvolution predicted 50 barrier-regulating kinases from diverse kinase families. Using gene knockdowns, we identified kinases with a role in endothelial barrier regulation and dissected different mechanisms of action of barrier-protective kinase inhibitors. These results demonstrate the importance of polypharmacology in the endothelial barrier phenotype of kinase inhibitors and provide promising new leads for barrier-strengthening therapies.


Asunto(s)
Compuestos de Anilina/farmacología , Carbazoles/farmacología , Alcaloides Indólicos/farmacología , Nitrilos/farmacología , Fosfotransferasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Compuestos de Anilina/química , Carbazoles/química , Línea Celular , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Alcaloides Indólicos/química , Nitrilos/química , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Polifarmacología , Inhibidores de Proteínas Quinasas/química , Quinolinas/química , Transducción de Señal/efectos de los fármacos
9.
Int Immunopharmacol ; 99: 107928, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34217994

RESUMEN

Liver ischemia/reperfusion injury (IRI) is an inevitable pathological process exacerbating the occurrence of rejection in liver transplantation. At present, there is still a lack of sufficient cognition for the mechanism as well as effective clinical strategies. F-box/WD repeat-containing protein 5 (FBXW5), a key modulator of stress signalling, was recently reported to participate in hepatic immunity. However, the role of FBXW5 in liver IRI is still unclear. In the present study, we found expression of FBXW5 was increased in liver IRI both in vivo and in vitro. Inhibition of FBXW5 significantly alleviated both mitogen-activated protein kinase (MAPK) and inhibitor of nuclear factor kappa-B kinase (IKK) pathways, thus resulting in cytokine release, hepatic pathological injury and apoptosis. Over-expression of FBXW5 achieved an opposite effect. Investigations on the mechanism showed that FBXW5 intensified hepatic inflammation by promoting phosphorylation of ASK1, while blockade of TRAF6 could abolish this process. Moreover, reinforce of mTOR amplified the anti-inflammatory efficacy derived from inhibition of FBXW5, indicating the function of FBXW5/ASK1/TRAF6 axis in hepatic IRI might be relatively independent of mTOR-guided M2 polarization of Kupffer cell. Taken together, FBXW5 could be a key accelerator in liver IRI by enhancing activation of ASK1 in a TRAF6-dependent manner. The joint intervention towards both FBXW5 and mTOR might be a promising strategy to protect liver from IRI.


Asunto(s)
Proteínas F-Box/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Daño por Reperfusión/metabolismo , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Apoptosis , Citocinas/metabolismo , Inhibidores Enzimáticos/metabolismo , Proteínas F-Box/genética , Regulación de la Expresión Génica , Humanos , Macrófagos del Hígado , Hígado , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Animales , Fosforilación , Fosfotransferasas/antagonistas & inhibidores
10.
Biomolecules ; 11(6)2021 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067242

RESUMEN

Oximes have been studied for decades because of their significant roles as acetylcholinesterase reactivators. Over the last twenty years, a large number of oximes have been reported with useful pharmaceutical properties, including compounds with antibacterial, anticancer, anti-arthritis, and anti-stroke activities. Many oximes are kinase inhibitors and have been shown to inhibit over 40 different kinases, including AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase (CDK), serine/threonine kinases glycogen synthase kinase 3 α/ß (GSK-3α/ß), Aurora A, B-Raf, Chk1, death-associated protein-kinase-related 2 (DRAK2), phosphorylase kinase (PhK), serum and glucocorticoid-regulated kinase (SGK), Janus tyrosine kinase (JAK), and multiple receptor and non-receptor tyrosine kinases. Some oximes are inhibitors of lipoxygenase 5, human neutrophil elastase, and proteinase 3. The oxime group contains two H-bond acceptors (nitrogen and oxygen atoms) and one H-bond donor (OH group), versus only one H-bond acceptor present in carbonyl groups. This feature, together with the high polarity of oxime groups, may lead to a significantly different mode of interaction with receptor binding sites compared to corresponding carbonyl compounds, despite small changes in the total size and shape of the compound. In addition, oximes can generate nitric oxide. This review is focused on oximes as kinase inhibitors with anticancer and anti-inflammatory activities. Oximes with non-kinase targets or mechanisms of anti-inflammatory activity are also discussed.


Asunto(s)
Antiinflamatorios , Antineoplásicos , Inhibidores Enzimáticos , Neoplasias/tratamiento farmacológico , Oximas , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Humanos , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/uso terapéutico , Neoplasias/enzimología , Oximas/química , Oximas/uso terapéutico , Fosfotransferasas/antagonistas & inhibidores , Fosfotransferasas/metabolismo
11.
Nat Commun ; 12(1): 3898, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162854

RESUMEN

One topical area of supramolecular chemistry is the binding of anionic species but despite the importance of anions in diverse cellular processes and for cancer development, anion receptors or 'binders' have received little attention as potential anti-cancer therapeutics. Here we report self-assembling trimetallic cryptands (e.g. [L2(Metal)3]6+ where Metal = Cu2+, Zn2+ or Mn2+) which can encapsulate a range of anions and which show metal-dependent differences in chemical and biological reactivities. In cell studies, both [L2Cu3]6+ and [L2Zn3]6+ complexes are highly toxic to a range of human cancer cell lines and they show significant metal-dependent selective activity towards cancer cells compared to healthy, non-cancerous cells (by up to 2000-fold). The addition of different anions to the complexes (e.g. PO43-, SO42- or PhOPO32-) further alters activity and selectivity allowing the activity to be modulated via a self-assembly process. The activity is attributed to the ability to either bind or hydrolyse phosphate esters and mechanistic studies show differential and selective inhibition of multiple kinases by both [L2Cu3]6+ and [L2Zn3]6+ complexes but via different mechanisms.


Asunto(s)
Aniones/química , Antineoplásicos/química , Complejos de Coordinación/química , Metales/química , Células A549 , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Western Blotting , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , Células HCT116 , Células HT29 , Humanos , Concentración 50 Inhibidora , Neoplasias/metabolismo , Neoplasias/patología , Fosfotransferasas/antagonistas & inhibidores , Fosfotransferasas/metabolismo
12.
J Biol Chem ; 296: 100260, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33814344

RESUMEN

The concept of liquid-liquid phase separation (LLPS) has emerged as an intriguing mechanism for the organization of membraneless compartments in cells. The alcohol 1,6-hexanediol is widely used as a control to dissolve LLPS assemblies in phase separation studies in diverse fields. However, little is known about potential side effects of 1,6-hexanediol, which could compromise data interpretation and mislead the scientific debate. To examine this issue, we analyzed the effect of 1,6-hexanediol on the activities of various enzymes in vitro. Already at 1% volume concentration, 1,6-hexanediol strongly impaired kinases and phosphatases and partly blocked DNA polymerases, while it had no effect on DNase activity. At concentrations that are usually used to dissolve LLPS droplets (5-10%), both kinases and phosphatases were virtually inactive. Given the widespread function of protein phosphorylation in cells, our data argue for a careful review of 1,6-hexanediol in phase separation studies.


Asunto(s)
Glicoles/farmacología , Orgánulos/química , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Fosfotransferasas/antagonistas & inhibidores , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/efectos de los fármacos , Glicoles/química , Orgánulos/genética , Monoéster Fosfórico Hidrolasas/química , Fosforilación/efectos de los fármacos , Fosfotransferasas/química , Dominios Proteicos/genética
13.
Eur J Med Chem ; 214: 113206, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33540355

RESUMEN

Allosteric and ATP-competitive kinase inhibitors act by distinct mechanisms and are expected to have high and low kinase selectivity, respectively. This also raises the question whether or not these different types of inhibitors might be structurally distinct. To address this question, we have assembled data sets of currently available competitive and allosteric kinase inhibitors confirmed by X-ray crystallography and systematically compared these compounds on the basis of different structural criteria. Many competitive and allosteric inhibitors were found to contain the same or similar substructures and a subset of allosteric inhibitors was found to share core structures with ATP site-directed inhibitors. In some instances, small chemical modifications of common cores were found to yield either allosteric or competitive inhibitors. Hence, these different categories of inhibitors with distinct mechanisms of action were often structurally related and represented much more of a structural continuum than discrete states. Additional target annotations were frequently identified for competitive inhibitors, but were rare for allosteric inhibitors. As a part of this study, our collection of kinase inhibitors and the associated information are made freely available to enable further assessment of chemical modifications that distinguish similar kinase inhibitors with distinct mechanisms of action.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Fosfotransferasas/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Fosfotransferasas/metabolismo , Relación Estructura-Actividad
14.
J Am Chem Soc ; 143(2): 639-643, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33395291

RESUMEN

Phosphorylation is the most common reversible post-translational modification (PTM) of proteins. Because a given kinase often has many substrates in a cell and is involved in numerous functions, traditional inhibition of the enzyme leads to unintended consequences. Here we report synthetic receptors to manipulate kinase phosphorylation precisely for the first time, utilizing the receptors' abilities to bind peptides with high affinity and specificity. The inhibition enables selective phosphorylation of peptides with identical consensus motifs in a mixture. A particular phosphosite can be inhibited while other sites in the same substrate undergo phosphorylation. The receptors may work either individually on their targeted strands or in concert to protect segments of a long sequence. The binding-derived inhibition is able to compete with protein-protein interactions within a multidomain kinase, enabling controlled PTM to be performed in a previously unavailable manner.


Asunto(s)
Péptidos/farmacología , Fosfotransferasas/antagonistas & inhibidores , Humanos , Modelos Moleculares , Estructura Molecular , Péptidos/química , Fosforilación , Fosfotransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato
15.
Cell Death Differ ; 28(1): 337-348, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32908202

RESUMEN

Tauopathies are a group of neurodegenerative diseases characterized by hyperphosphorylation of the microtubule-binding protein, tau, and typically feature axon impairment and synaptic dysfunction. Cyclin-dependent kinase5 (Cdk5) is a major tau kinase and its activity requires p35 or p25 regulatory subunits. P35 is subjected to rapid proteasomal degradation in its membrane-bound form and is cleaved by calpain under stress to a stable p25 form, leading to aberrant Cdk5 activation and tau hyperphosphorylation. The type Ib transmembrane protein RPS23RG1 has been implicated in Alzheimer's disease (AD). However, physiological and pathological roles for RPS23RG1 in AD and other tauopathies are largely unclear. Herein, we observed retarded axon outgrowth, elevated p35 and p25 protein levels, and increased tau phosphorylation at major Cdk5 phosphorylation sites in Rps23rg1 knockout (KO) mice. Both downregulation of p35 and the Cdk5 inhibitor roscovitine attenuated tau hyperphosphorylation and axon outgrowth impairment in Rps23rg1 KO neurons. Interestingly, interactions between the RPS23RG1 carboxyl-terminus and p35 amino-terminus promoted p35 membrane distribution and proteasomal degradation. Moreover, P301L tau transgenic (Tg) mice showed increased tau hyperphosphorylation with reduced RPS23RG1 levels and impaired axon outgrowth. Overexpression of RPS23RG1 markedly attenuated tau hyperphosphorylation and axon outgrowth defects in P301L tau Tg neurons. Our results demonstrate the involvement of RPS23RG1 in tauopathy disorders, and implicate a role for RPS23RG1 in inhibiting tau hyperphosphorylation through homeostatic p35 degradation and suppression of Cdk5 activation. Reduced RPS23RG1 levels in tauopathy trigger aberrant Cdk5-p35 activation, consequent tau hyperphosphorylation, and axon outgrowth impairment, suggesting that RPS23RG1 may be a potential therapeutic target in tauopathy disorders.


Asunto(s)
Enfermedad de Alzheimer/genética , Fosfotransferasas/genética , Proteínas Ribosómicas/genética , Enfermedad de Alzheimer/prevención & control , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proyección Neuronal , Neuronas/metabolismo , Fosforilación , Fosfotransferasas/antagonistas & inhibidores , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas tau/genética , Proteínas tau/metabolismo
16.
ChemMedChem ; 16(7): 1048-1062, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33295694

RESUMEN

Understanding the ligandability of a target protein, defined as the capability of a protein to bind drug-like compounds on any site, can give important stimuli to drug-development projects. For instance, inhibition of protein-protein interactions usually depends on the identification of protein surface binders. DNA-encoded chemical libraries (DELs) allow scanning of protein surfaces with large chemical space. Encoded library selection screens uncovered several protein-protein interaction inhibitors and compounds binding to the surface of G protein-coupled receptors (GPCRs) and kinases. The protein surface-binding chemotypes from DELs are predominantly chemically modified and cyclized peptides, and functional small-molecule peptidomimetics. Peptoid libraries and structural peptidomimetics have been less studied in the DEL field, hinting at hitherto less populated chemical space and suggesting alternative library designs. Roughly a third of bioactive molecules evolved from smaller, target-focused libraries. They showcase the potential of encoded libraries to identify more potent molecules from weak, for example, fragment-like, starting points.


Asunto(s)
ADN/química , Fosfotransferasas/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Humanos , Fosfotransferasas/metabolismo , Unión Proteica/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Propiedades de Superficie
17.
São Paulo; s.n; s.n; 2021. 129 p. graf, tab.
Tesis en Portugués | LILACS | ID: biblio-1382002

RESUMEN

O melanoma é um tipo de câncer de pele geneticamente diverso, que surge diante das transformações em melanócitos. A mutação BRAFV600E está presente em mais de 90% de todas as mutações em BRAF, sendo assim ocorre em cerca de 50% dos casos registrados. As mutações em NRAS, ocupam o segundo lugar entre as mutações mais prevalentes, cerca de 20% dos casos. Informações sobre as assinaturas genéticas, permitiram o desenvolvimento de terapia alvo dirigida. O Vemurafenib, inibidor da quinase BRAFV600E, apresentou inicialmente resultados bastante satisfatórios, contudo existe registro de casos de recidiva e resistência. O receptor aril de hidrocarbonetos é expresso em vários componentes da pele, e assim está relacionado a homeostase e fisiopatologia da pele. Diante disso, a avaliação da expressão do receptor em um painel de linhagens mutadas para NRAS e BRAF, e BRAF resistentes, mostrou-se maior do que a encontrada em melanócitos. Também encontramos maior expressão de mRNA de AhR em linhagens de melanoma derivadas de sítio primário e metastático, mutadas para BRAFV600E, quando comparadas ao melanócito. Agregado a isto, a análise in silico no TCGA (The Cancer Genome Atlas) mostrou que há 18% de alteração genética em AhR, sendo em maior parte a alta regulação de mRNA. Também, a análise do banco público GSE12391, mostrou aumento de mRNA de AhR na fase de crescimento vertical do melanoma. Assim, concluímos que há maior expressão de mRNA e sua importância nas fases de desenvolvimento do melanoma, tanto nos processos iniciais quanto em processos de migração, invasão e metástase. Ainda, encontramos maior mRNA do receptor em linhagens resistentes ao Vemurafenib. Este resultado sustenta a hipótese de que AhR pode ser considerado um marcador de resistência em melanomas. O AhR, inicialmente no citoplasma, quando ativado pode atuar como fator de transcrição regulando vários genes que apresentam sequências definidas, participando de respostas carcinogênicas. Compostos halogenados e moléculas endógenas derivadas das vias de metabolização do triptofano são agonistas do receptor. Anteriormente, nosso grupo mostrou que linhagens de melanoma incubadas com triptamina e DMT exibiram menor clonogenicidade. Diante de uma literatura escassa sobre o papel do DMT no melanoma e com base nestes resultados, nosso objetivo foi avaliar o papel de AhR nesta interface DMT-melanoma. Para isto, nosso objetivo foi construir linhagem editada geneticamente para AhR através da ferramenta CRISPR-Cas9. Vários foram os esforços, sem sucesso, utilizados nas tentativas de comprovar a manutenção de células editadas na cultura. Atrelamos a este resultado a possibilidade de haver duas subpopulações editadas geneticamente pós CRISPR-Cas9, onde uma destas manteve o padrão de crescimento semelhante às células wild type. Devido a este crescimento diferencial, não obtivemos congruências nos ensaios e postulamos a perda do possível nocaute. A partir disso, realizamos ensaios de interactoma para avaliar a interação de DMT-AhR. Nosso resultado sugere a interação de DMT ao receptor sigma 1, e não ao receptor aril de hidrocarbonetos. Desta forma, o interactoma sustenta a hipótese de que DMT não é um ligante de AhR. Para certificar este resultado análises de docking associados a ensaios biológicos, avaliando o papel do receptor, devem ser realizados para averiguar a afinidade e seletividade de DMT como ligante do receptor na linhagem de melanoma


Melanoma is a genetically diverse type of skin cancer, which arises from changes in melanocytes. The BRAFV600E mutation is present in more than 90% of all BRAF mutations, so it occurs in about 50% of registered cases. Mutations in NRAS occupy the second place among the most prevalent mutations, about 20% of cases. Information on genetic signatures allowed the development of targeted therapy. vemurafenib, kinase inhibitor BRAFV600E, initially presented very satisfactory results, however there is a record of cases of relapse and resistance. The aryl hydrocarbon receptor is expressed in several components of the skin and is thus related to homeostasis and skin pathophysiology. Therefore, the evaluation of receptor expression in a panel of strains mutated to NRAS and BRAF, and resistant BRAF, proved to be greater than that found in melanocytes. We also found main expression of AhR mRNA in melanoma strains derived from primary and metastatic site, mutated to BRAFV600E, when compared to melanocyte. Added to this, the in silico analysis in TCGA (The Cancer Genome Atlas) showed that there is 18% of genetic alteration in AhR, being mostly the high regulation of mRNA. Also, an analysis by the public bank GSE12391, showed an increase in AhR mRNA in the vertical growth phase of melanoma. Thus, it is concluded that there is greater expression of mRNA and its importance in the stages of development of melanoma, both in recent processes and in the processes of migration, invasion and metastasis. In addition, we found higher receptor mRNA in strains resistant to vemurafenib. This result supports the hypothesis that AhR can be considered a marker of resistance in melanomas. AhR, initially in the cytoplasm, when activated can act as a transcription factor regulating several genes that have defined sequences, participating in carcinogenic responses. Along with this, we show that along the tumor progression, there is an increase in AhR in the radial growth phase of melanoma. Halogenated compounds and endogenous molecules derived from the tryptophan metabolism pathways are receptor agonists. Previously, our group showed that melanoma strains incubated with tryptamine and DMT exhibited less clonogenicity. In view of a scarce literature on the role of DMT in melanoma and based on these results, our objective was to evaluate the role of AhR in this DMT-melanoma interface. For this, our goal was to build genetically edited strain for AhR using the CRISPR-Cas9 tool. Several efforts were unsuccessful in attempts to prove the maintenance of cells edited in the culture. We linked to this result the possibility of having two subpopulations genetically edited after CRISPR-Cas9, where one of them maintained the growth pattern like wild type cells. Due to this differential growth, we did not obtain congruence in the tests and postulated the loss of the possible knockout. From that, we performed interactome assays to evaluate the DMT-AhR interaction. Our result suggests the interaction of DMT with the sigma 1 receptor, and not the aryl hydrocarbon receptor. Thus, the interactome supports the hypothesis that DMT is not an AhR ligand. To certify this result, docking analyses associated with biological assays, evaluating the role of the receptor, should be performed to ascertain the affinity and selectivity of DMT as a ligand of the receptor in the melanoma lineage


Asunto(s)
Piel/lesiones , Genoma , Receptores de Hidrocarburo de Aril , Melanocitos/clasificación , Melanoma , Neoplasias/patología , Fosfotransferasas/antagonistas & inhibidores , Asociación , Factores de Transcripción/agonistas , Citoplasma/clasificación , Migración Humana
18.
Proc Natl Acad Sci U S A ; 117(49): 31105-31113, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229534

RESUMEN

Kinase-targeted therapies have the potential to improve the survival of patients with cancer. However, the cancer-specific spectrum of kinase alterations exhibits distinct functional properties and requires mutation-oriented drug treatments. Besides post-translational modifications and diverse intermolecular interactions of kinases, it is the distinct disease mutation which reshapes full-length kinase conformations, affecting their activity. Oncokinase mutation profiles differ between cancer types, as it was shown for BRAF in melanoma and non-small-cell lung cancers. Here, we present the target-oriented application of a kinase conformation (KinCon) reporter platform for live-cell measurements of autoinhibitory kinase activity states. The bioluminescence-based KinCon biosensor allows the tracking of conformation dynamics of full-length kinases in intact cells and real time. We show that the most frequent BRAF cancer mutations affect kinase conformations and thus the engagement and efficacy of V600E-specific BRAF inhibitors (BRAFi). We illustrate that the patient mutation harboring KinCon reporters display differences in the effectiveness of the three clinically approved BRAFi vemurafenib, encorafenib, and dabrafenib and the preclinical paradox breaker PLX8394. We confirmed KinCon-based drug efficacy predictions for BRAF mutations other than V600E in proliferation assays using patient-derived lung cancer cell lines and by analyzing downstream kinase signaling. The systematic implementation of such conformation reporters will allow to accelerate the decision process for the mutation-oriented RAF-kinase cancer therapy. Moreover, we illustrate that the presented kinase reporter concept can be extended to other kinases which harbor patient mutations. Overall, KinCon profiling provides additional mechanistic insights into full-length kinase functions by reporting protein-protein interaction (PPI)-dependent, mutation-specific, and drug-driven changes of kinase activity conformations.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Conformación Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Células A549 , Carbamatos/química , Carbamatos/farmacología , Compuestos Heterocíclicos con 2 Anillos/farmacología , Humanos , Imidazoles/química , Imidazoles/farmacología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación/efectos de los fármacos , Oximas/química , Oximas/farmacología , Fosfotransferasas/antagonistas & inhibidores , Fosfotransferasas/ultraestructura , Inhibidores de Proteínas Quinasas/química , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Proteico-Postraduccional/genética , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/ultraestructura , Sulfonamidas/química , Sulfonamidas/farmacología , Vemurafenib/química , Vemurafenib/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA