Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.790
Filtrar
1.
Cell Death Dis ; 15(10): 746, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39397024

RESUMEN

Evasion of cell death is a hallmark of cancer, and consequently the induction of cell death is a common strategy in cancer treatment. However, the molecular mechanisms regulating different types of cell death are poorly understood. We have formerly shown that in the epidermis of hypomorphic zebrafish hai1a mutant embryos, pre-neoplastic transformations of keratinocytes caused by unrestrained activity of the type II transmembrane serine protease Matriptase-1 heal spontaneously. This healing is driven by Matriptase-dependent increased sphingosine kinase (SphK) activity and sphingosine-1-phosphate (S1P)-mediated keratinocyte loss via apical cell extrusion. In contrast, amorphic hai1afr26 mutants with even higher Matriptase-1 and SphK activity die within a few days. Here we show that this lethality is not due to epidermal carcinogenesis, but to aberrant tp53-independent apoptosis of keratinocytes caused by increased levels of pro-apoptotic C16 ceramides, sphingolipid counterparts to S1P within the sphingolipid rheostat, which severely compromises the epidermal barrier. Mathematical modelling of sphingolipid rheostat homeostasis, combined with in vivo manipulations of components of the rheostat or the ceramide de novo synthesis pathway, indicate that this unexpected overproduction of ceramides is caused by a negative feedback loop sensing ceramide levels and controlling ceramide replenishment via de novo synthesis. Therefore, despite their initial decrease due to increased conversion to S1P, ceramides eventually reach cell death-inducing levels, making transformed pre-neoplastic keratinocytes die even before they are extruded, thereby abrogating the normally barrier-preserving mode of apical live cell extrusion. Our results offer an in vivo perspective of the dynamics of sphingolipid homeostasis and its relevance for epithelial cell survival versus cell death, linking apical cell extrusion and apoptosis. Implications for human carcinomas and their treatments are discussed.


Asunto(s)
Apoptosis , Ceramidas , Queratinocitos , Esfingolípidos , Esfingosina , Pez Cebra , Animales , Apoptosis/genética , Pez Cebra/metabolismo , Esfingolípidos/metabolismo , Queratinocitos/metabolismo , Ceramidas/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Lisofosfolípidos/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Epidermis/metabolismo , Epidermis/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
2.
Cell Commun Signal ; 22(1): 526, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39478550

RESUMEN

BACKGROUND: Phospholipase C gamma 1 (PLCγ1) is an important mediator of the T cell receptor (TCR) and growth factor signaling. PLCγ1 is activated by Src family kinases (SFKs) and produces inositol 1,4,5-triphosphate (InsP3) from phosphatidylinositol 4,5-bisphosphate (PIP2). Inositol polyphosphate multikinase (IPMK) is a pleiotropic enzyme with broad substrate specificity and non-catalytic activities that mediate various functional protein-protein interactions. Therefore, IPMK plays critical functions in key biological events such as cell growth. However, the contribution of IPMK to the activation of PLCγ1 in TCR signaling remains mostly unelucidated. The current study aimed to elucidate the functions of IPMK in TCR signaling and to uncover the mode of IPMK-mediated signaling action in PLCγ1 activation. METHODS: Concanavalin A (ConA)-induced acute hepatitis model was established in CD4+ T cell-specific IPMK knockout mice (IPMKΔCD4). Histological analysis was performed to assess hepatic injury. Primary cultures of naïve CD4+ T cells were used to uncover the role of mechanisms of IPMK in vitro. Western blot analysis, quantitative real-time PCR, and flow cytometry were performed to analyze the TCR-stimulation-induced PLCγ1 activation and the downstream signaling pathway in naïve CD4+ T cells. Yeast two-hybrid screening and co-immunoprecipitation were conducted to identify the IPMK-binding proteins and protein complexes. RESULTS: IPMKΔCD4 mice showed alleviated ConA-induced acute hepatitis. CD4+ helper T cells in these mice showed reduced PLCγ1 Y783 phosphorylation, which subsequently dampens calcium signaling and IL-2 production. IPMK was found to contribute to PLCγ1 activation via the direct binding of IPMK to Src-associated substrate during mitosis of 68 kDa (Sam68). Mechanistically, IPMK stabilizes the interaction between Sam68 and to PLCγ1, thereby promoting PLCγ1 phosphorylation. Interfering this IPMK-Sam68 binding interaction with IPMK dominant-negative peptides impaired PLCγ1 phosphorylation. CONCLUSIONS: Our results demonstrate that IPMK non-catalytically promotes PLCγ1 phosphorylation by stabilizing the PLCγ1-Sam68 complex. Targeting IPMK in CD4+ T cells may be a promising strategy for managing immune diseases caused by excessive stimulation of TCR.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Fosfolipasa C gamma , Fosfotransferasas (Aceptor de Grupo Alcohol) , Receptores de Antígenos de Linfocitos T , Transducción de Señal , Fosfolipasa C gamma/metabolismo , Animales , Receptores de Antígenos de Linfocitos T/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ratones Endogámicos C57BL , Humanos , Unión Proteica , Ratones Noqueados , Concanavalina A/farmacología
3.
Biomolecules ; 14(10)2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39456186

RESUMEN

Indole-3-carbinol (I3C), a hydrolysis product of indole-3-methylglucosinolate, is toxic to herbivorous insects and pathogens. In mammals, I3C is extensively studied for its properties in cancer prevention and treatment. Produced in Brassicaceae, I3C reversibly inhibits root elongation in a concentration-dependent manner. This inhibition is partially explained by the antagonistic action of I3C on auxin signaling through TIR1. To further elucidate the mode of action of I3C in plants, we have employed a forward-genetic amiRNA screen that circumvents functional redundancy. We identified and characterized two amiRNA lines with impaired I3C response. The first line, ICT2, targets the phosphatidylinositol 4-phosphate 5-kinase family (PIP5K), exhibiting tolerance to I3C, while the second line, ICS1, targets the Wall-Associated Kinases (WAK1-3) family, showing susceptibility to I3C. Both lines maintain I3C-induced antagonism of auxin signaling, indicating that their phenotypes are due to auxin-independent mechanisms. Transcript profiling experiments reveal that both lines are transcriptionally primed to respond to I3C treatment. Physiological, metabolomic, and transcriptomic analysis reveal that these kinases mediate numerous developmental processes and are involved in abiotic and biotic stress responses.


Asunto(s)
Arabidopsis , Indoles , Fosfotransferasas (Aceptor de Grupo Alcohol) , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Estrés Fisiológico/efectos de los fármacos , Indoles/farmacología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
4.
Biomolecules ; 14(10)2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39456221

RESUMEN

The 18-exon human TKFC gene codes for dual-activity triokinase and FMN cyclase (TKFC) in an ORF, spanning from exon 2 to exon 18. In addition to TKFC-coding transcripts (classified as tkfc type by their intron-17 splice), databases contain evidence for alternative TKFC transcripts, but none of them has been expressed, studied, and reported in the literature. A novel full-ORF transcript was cloned from brain cDNA and sequenced (accession no. DQ344550). It results from an alternative 3' splice-site in intron 17. The cloned cDNA contains an ORF also spanning from exon 2 to exon 18 of the TKFC gene but with a 56-nt insertion between exons 17 and 18 (classified as tkfc_ins56 type). This insertion introduces an in-frame stop, and the resulting ORF codes for a shorter TKFC variant, which, after expression, is enzymatically inactive. TKFC intron-17 splicing was found to be differentially expressed in human tissues. In a multiple-tissue northern blot using oligonucleotide probes, the liver showed a strong expression of the tkfc-like splice of intron 17, and the heart preferentially expressed the tkfc_ins56-like splice. Through a comparison to global expression data from massive-expression studies of human tissues, it was inferred that the intestine preferentially expresses TKFC transcripts that contain neither of those splices. An analysis of transcript levels quantified by RNA-Seq in the GTEX database revealed an exception to this picture due to the occurrence of a non-coding short transcript with a tkfc-like splice. Altogether, the results support the occurrence of potentially relevant transcript variants of the TKFC gene, differentially expressed in human tissues. (This work is dedicated in memoriam to Professor Antonio Sillero, 1938-2024, for his lifelong mentoring and his pioneering work on triokinase).


Asunto(s)
Empalme Alternativo , Intrones , Humanos , Empalme Alternativo/genética , Intrones/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química
5.
J Cell Sci ; 137(18)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39239853

RESUMEN

Cytokinesis is the final stage of the cell cycle that results in the physical separation of daughter cells. To accomplish cytokinesis, many organisms build an actin- and myosin-based cytokinetic ring (CR) that is anchored to the plasma membrane (PM). Defects in CR-PM anchoring can arise when the PM lipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] is depleted. In Schizosaccharomyces pombe, reduced PM PI(4,5)P2 results in a CR that cannot maintain a medial position and slides toward one cell end, resulting in two differently sized daughter cells. S. pombe PM PI(4,5)P2 is synthesized by the phosphatidylinositol 4-phosphate 5-kinase (PI5-kinase) Its3, but what regulates this enzyme to maintain appropriate PM PI(4,5)P2 levels in S. pombe is not known. To identify Its3 regulators, we used proximity-based biotinylation, and the uncharacterized protein Duc1 was specifically detected. We discovered that Duc1 decorates the PM except at the cell division site and that its unique localization pattern is dictated by binding to the endoplasmic reticulum (ER)-PM contact site proteins Scs2 and Scs22. Our evidence suggests that Duc1 also binds PI(4,5)P2 and helps enrich Its3 at the lateral PM, thereby promoting PM PI(4,5)P2 synthesis and robust CR-PM anchoring.


Asunto(s)
Membrana Celular , Citocinesis , Retículo Endoplásmico , Fosfatidilinositol 4,5-Difosfato , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Retículo Endoplásmico/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
6.
mBio ; 15(10): e0199324, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39235230

RESUMEN

Malassezia globosa is a lipophilic basidiomycetous yeast that occurs abundantly in breast tumors and that may contribute to a shortened overall survival of breast cancer (BRAC) patients, suggesting that the yeast may participate in the carcinogenesis of BRAC. However, the mechanisms involved in the M. globosa-based acceleration of BRAC are unknown. Here, we show that M. globosa can colonize mammary tissue in 7,12-dimethylbenz[a] anthracene-induced mice. The abundance of M. globosa shortened the overall survival and increased the tumor incidence. Transcriptome data illustrated that IL-17A plays a key role in tumor growth due to M. globosa colonization, and tumor-associated macrophage infiltration was elevated during M. globosa colonization which triggers M2 polarization of macrophages via toll-like receptors 4/nuclear factor kappa-B (Nf-κB) signaling. Our results show that the expression of sphingosine kinase 1 (Sphk1) is increased in breast tumors after inoculation with M. globosa. Moreover, we discovered that Sphk1-specific small interfering RNA blocked the formation of lipid droplets, which can effectively alleviate the expression of the signal transducer and activator of the transcription 3 (STAT3)/Nf-κB pathway. Taken together, our results demonstrate that M. globosa could be a possible factor for the progression of BRAC. The mechanisms by which M. globosa promotes BRAC development involve the IL-17A/macrophage axis. Meanwhile, Sphk1 overexpression was induced by M. globosa infection, which also promoted the proliferation of MCF-7 cells.IMPORTANCELiterature has suggested that Malassezia globosa is associated with breast tumors; however, this association has not been confirmed. Here, we found that M. globosa colonizes in breast fat pads leading to tumor growth. As a lipophilic yeast, the expression of sphingosine kinase 1 (Sphk1) was upregulated to promote tumor growth after M. globosa colonization. Moreover, the IL-17A/macrophages axis plays a key role in mechanisms involved in the M. globosa-induced breast cancer acceleration from the tumor immune microenvironment perspective.


Asunto(s)
Neoplasias de la Mama , Interleucina-17 , Malassezia , Animales , Ratones , Femenino , Neoplasias de la Mama/microbiología , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Interleucina-17/metabolismo , Interleucina-17/genética , Malassezia/genética , Malassezia/patogenicidad , Malassezia/crecimiento & desarrollo , Humanos , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , FN-kappa B/metabolismo , FN-kappa B/genética , Transducción de Señal , Macrófagos/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Proliferación Celular , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
7.
Eur J Neurosci ; 60(8): 5966-5979, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39267207

RESUMEN

Phosphoinositides, such as PI(4,5)P2, are known to function as structural components of membranes, signalling molecules, markers of membrane identity, mediators of protein recruitment and regulators of neurotransmission and synaptic development. Phosphatidylinositol 4-kinases (PI4Ks) synthesize PI4P, which are precursors for PI(4,5)P2, but may also have independent functions. The roles of PI4Ks in neurotransmission and synaptic development have not been studied in detail. Previous studies on PI4KII and PI4KIIIß at the Drosophila larval neuromuscular junction have suggested that PI4KII and PI4KIIIß enzymes may serve redundant roles, where single PI4K mutants yielded mild or no synaptic phenotypes. However, the precise synaptic functions (neurotransmission and synaptic growth) of these PI4Ks have not been thoroughly studied. Here, we used PI4KII and PI4KIIIß null mutants and presynaptic-specific knockdowns of these PI4Ks to investigate their roles in neurotransmission and synaptic growth. We found that PI4KII and PI4KIIIß appear to have non-overlapping functions. Specifically, glial PI4KII functions to restrain synaptic growth, whereas presynaptic PI4KIIIß promotes synaptic growth. Furthermore, loss of PI4KIIIß or presynaptic PI4KII impairs neurotransmission. The data presented in this study uncover new roles for PI4K enzymes in neurotransmission and synaptic growth.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa , Unión Neuromuscular , Transmisión Sináptica , Animales , Transmisión Sináptica/fisiología , Unión Neuromuscular/metabolismo , 1-Fosfatidilinositol 4-Quinasa/metabolismo , 1-Fosfatidilinositol 4-Quinasa/genética , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Sinapsis/metabolismo , Sinapsis/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Larva/crecimiento & desarrollo
8.
Cell Death Dis ; 15(9): 678, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284838

RESUMEN

SPHK1 (sphingosine kinase type 1) is characterized as a rate-limiting enzyme in sphingolipid metabolism to phosphorylate sphingosine into sphingosine-1-phosphate (S1P) that can bind to S1P receptors (S1PRs) to initiate several signal transductions leading to cell proliferation and survival of normal cell. Many studies have indicated that SPHK1 is involved in several types of cancer development, however, a little is known in bladder cancer. The TCGA database analysis was utilized for analyzing the clinical relevance of SPHK1 in bladder cancer. Through CRISPR/Cas9 knockout (KO) and constitutive activation (CA) strategies on SPHK1 in the bladder cancer cells, we demonstrated the potential downstream target could be programmed cell death 1 ligand 2 (PD-L2). On the other hand, we demonstrated that FDA-approved SPHK1 inhibitor Gilenya® (FTY720) can successfully suppress bladder cancer metastasis by in vitro and in vivo approaches. This finding indicated that SPHK1 as a potent therapeutic target for metastatic bladder cancer by dissecting the mechanism of action, SPHK1/S1P-elicited Akt/ß-catenin activation promoted the induction of PD-L2 that is a downstream effector in facilitating bladder cancer invasion and migration. Notably, PD-L2 interacted with c-Src that further activates FAK. Here, we unveil the clinical relevance of SPHK1 in bladder cancer progression and the driver role in bladder cancer metastasis. Moreover, we demonstrated the inhibitory effect of FDA-approved SPHK1 inhibitor FTY720 on bladder cancer metastasis from both in vitro and in vivo models.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol) , Transducción de Señal , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Humanos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Línea Celular Tumoral , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Metástasis de la Neoplasia , Ratones , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Familia-src Quinasas/metabolismo , Movimiento Celular , Ratones Desnudos , Lisofosfolípidos/metabolismo , Proteína Tirosina Quinasa CSK/metabolismo , Clorhidrato de Fingolimod/farmacología , Proliferación Celular
9.
Physiol Rep ; 12(17): e70021, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39261977

RESUMEN

Many pathological conditions lead to defects in intestinal epithelial integrity and loss of barrier function; Sphingosine-1-phosphate (S1P) has been shown to augment intestinal barrier integrity, though the exact mechanisms are not completely understood. We have previously shown that overexpression of Sphingosine Kinase 1 (SphK1), the rate limiting enzyme for S1P synthesis, significantly increased S1P production and cell proliferation. Here we show that microRNA 495 (miR-495) upregulation led to decreased levels of SphK1 resultant from a direct effect at the SphK1 mRNA. Increasing expression of miR-495 in intestinal epithelial cells resulted in decreased proliferation and increased susceptibility to apoptosis. Transgenic expression of miR-495 inhibited mucosal growth, as well as decreased proliferation in the crypts. The intestinal villi also expressed decreased levels of barrier proteins and exaggerated damage upon exposure to cecal ligation-puncture. These results implicate miR-495 as a critical negative regulator of intestinal epithelial protection and proliferation through direct regulation of SphK1, the rate limiting enzyme critical for production of S1P.


Asunto(s)
Apoptosis , Mucosa Intestinal , Lisofosfolípidos , MicroARNs , Fosfotransferasas (Aceptor de Grupo Alcohol) , Esfingosina , MicroARNs/metabolismo , MicroARNs/genética , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Animales , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Mucosa Intestinal/metabolismo , Ratones , Proliferación Celular , Regulación hacia Abajo , Células Epiteliales/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos
10.
Biochem Pharmacol ; 229: 116520, 2024 11.
Artículo en Inglés | MEDLINE | ID: mdl-39236934

RESUMEN

Hepatic stellate cells (HSCs) play a role in hepatic fibrosis and sphingosine kinase (SphK) is involved in biological processes. As studies on the regulatory mechanisms and functions of SphK in HSCs during liver fibrosis are currently limited, this study aimed to elucidate the regulatory mechanism and connected pathways of SphK upon HSC activation. The expression of SphK1 was higher in HSCs than in hepatocytes, and upregulated in activated primary HSCs. SphK1 was also increased in liver homogenates of carbon tetrachloride-treated or bile duct ligated mice and in transforming growth factor-ß (TGF-ß)-treated LX-2 cells. TGF-ß-mediated SphK1 induction was due to Smad3 signaling in LX-2 cells. SphK1 modulation altered the expression of liver fibrogenesis-related genes. This SphK1-mediated profibrogenic effect was dependent on SphK1/sphingosine-1-phosphate/sphingosine-1-phosphate receptor signaling through ERK. Epigallocatechin gallate blocked TGF-ß-induced SphK1 expression and hepatic fibrogenesis by attenuating Smad and MAPK activation. SphK1 induced by TGF-ß facilitates HSC activation and liver fibrogenesis, which is reversed by epigallocatechin gallate. Accordingly, SphK1 and related signal transduction may be utilized to treat liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Cirrosis Hepática , Ratones Endogámicos C57BL , Fosfotransferasas (Aceptor de Grupo Alcohol) , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/patología , Animales , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Humanos , Masculino , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular
11.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119846, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39284549

RESUMEN

BACKGROUND: Deregulation of lipid metabolism is one of the most prominent metabolic features in cancer. The activation of sphingolipid metabolic pathways affects the proliferation, invasion, angiogenesis, chemoresistance, and immune escape of tumors, including colorectal cancer (CRC). Dehydrogenase/reductase member 2 (DHRS2), which belongs to the short-chain dehydrogenase/reductase (SDR) family, has been reported to participate in the regulation of lipid metabolism and impact on cancer progression. Trichothecin (TCN) is a sesquiterpenoid metabolite originating from an endophytic fungus of the herbal plant Maytenus hookeri Loes. Studies have shown that TCN exerts a broad-spectrum antitumor activity. METHODS: We evaluated the proliferative ability of CRC cells by CCK8 and colony formation assays. A metabolite profiling using liquid chromatography coupled with mass spectrometry (LC/MS) was adopted to identify the proximal metabolite changes linked to DHRS2 overexpression. RNA stability assay and RNA immunoprecipitation (RIP) experiments were applied to determine the post-transcriptional regulation of SPHK1 expression by DHRS2. We used flow cytometry to detect changes in cell cycle and cell apoptosis of CRC cells in the absence or presence of TCN. RESULTS: We demonstrate that DHRS2 hampers the sphingosine kinases 1 (SPHK1)/sphingosine 1-phosphate (S1P) metabolic pathway to inhibit CRC cell growth. DHRS2 directly binds to SPHK1 mRNA to accelerate its degradation in a post-transcriptionally regulatory manner. Moreover, we illustrate that SPHK1 downregulation induced by DHRS2 contributes to TCN-induced growth inhibition of CRC. CONCLUSIONS: The present study provides a mechanistic connection among metabolic enzymes, metabolites, and the malignant progression of CRC. Moreover, TCN could be developed as a potential pharmacological tool against CRC by the induction of DHRS2 and targeting SPHK1/S1P metabolic pathway.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Fosfotransferasas (Aceptor de Grupo Alcohol) , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Regulación Neoplásica de la Expresión Génica , Regulación hacia Abajo , Línea Celular Tumoral , Apoptosis , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Tricotecenos
12.
Asian Pac J Cancer Prev ; 25(8): 2605-2613, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39205557

RESUMEN

BACKGROUND: Sphingosine kinase 1 (SphK1) is a lipid enzyme whose role in the etiology of cancer has been well explored. Here, a systematic review and meta-analysis were conducted to evaluate the association of SphK1 expression with hematological malignancy. MATERIALS AND METHODS: Relevant studies were identified through electronic databases (PubMed, Scopus, Embase, and OVID) and evaluated based on predefined inclusion and exclusion criteria. Quality assessment using the Newcastle-Ottawa Scale (NOS) was conducted, and pooled odds ratio (OR) was calculated to assess the association between SphK1 expression and hematological malignancy. RESULTS: Nine studies meeting the inclusion criteria were included in the systematic review. These studies utilized various techniques to assess SphK1 expression in hematological malignancies. The quality assessment reported that the included studies were of moderate quality. Meta-analysis of eligible studies revealed a positive association between SphK1 expression and hematological malignancies at the protein level (OR = 52.37, 95% CI = 10.10 to 271.47, and P = 0.00001). The funnel plot indicated no publication bias among the included studies. However, the certainty of the evidence was low according to the GRADE assessment. CONCLUSION: Our study's findings support the link between SphK1 expression and hematological malignancies. SphK1 gene dysregulation may contribute to various malignancies, suggesting it could be a therapeutic target to improve patient outcomes. Further research is needed to understand SphK1's mechanistic role in hematological malignancies and its therapeutic potential.


Asunto(s)
Neoplasias Hematológicas , Fosfotransferasas (Aceptor de Grupo Alcohol) , Humanos , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Neoplasias Hematológicas/epidemiología , Neoplasias Hematológicas/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/análisis , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Pronóstico
13.
J Biol Chem ; 300(9): 107631, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098525

RESUMEN

The ability for cells to localize and activate peripheral membrane-binding proteins is critical for signal transduction. Ubiquitously important in these signaling processes are phosphatidylinositol phosphate (PIP) lipids, which are dynamically phosphorylated by PIP lipid kinases on intracellular membranes. Functioning primarily at the plasma membrane, phosphatidylinositol-4-phosphate 5-kinases (PIP5K) catalyzes the phosphorylation of PI(4)P to generate most of the PI(4,5)P2 lipids found in eukaryotic plasma membranes. Recently, we determined that PIP5K displays a positive feedback loop based on membrane-mediated dimerization and cooperative binding to its product, PI(4,5)P2. Here, we examine how two motifs contribute to PI(4,5)P2 recognition to control membrane association and catalysis of PIP5K. Using a combination of single molecule TIRF microscopy and kinetic analysis of PI(4)P lipid phosphorylation, we map the sequence of steps that allow PIP5K to cooperatively engage PI(4,5)P2. We find that the specificity loop regulates the rate of PIP5K membrane association and helps orient the kinase to more effectively bind PI(4,5)P2 lipids. After correctly orienting on the membrane, PIP5K transitions to binding PI(4,5)P2 lipids near the active site through a motif previously referred to as the substrate or PIP-binding motif (PIPBM). The PIPBM has broad specificity for anionic lipids and serves a role in regulating membrane association in vitro and in vivo. Overall, our data supports a two-step membrane-binding model where the specificity loop and PIPBM act in concert to help PIP5K orient and productively engage anionic lipids to drive the positive feedback during PI(4,5)P2 production.


Asunto(s)
Membrana Celular , Fosfatidilinositol 4,5-Difosfato , Fosfotransferasas (Aceptor de Grupo Alcohol) , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilación , Membrana Celular/metabolismo , Humanos , Retroalimentación Fisiológica , Cinética , Secuencias de Aminoácidos , Unión Proteica
14.
Structure ; 32(10): 1711-1724.e5, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39173621

RESUMEN

Protein glycation is a universal, non-enzymatic modification that occurs when a sugar covalently attaches to a primary amine. These spontaneous modifications may have deleterious or regulatory effects on protein function, and their removal is mediated by the conserved metabolic kinase fructosamine-3-kinase (FN3K). Despite its crucial role in protein repair, we currently have a poor understanding of how FN3K engages or phosphorylates its substrates. By integrating structural biology and biochemistry, we elucidated the catalytic mechanism for FN3K-mediated protein deglycation. Our work identifies key amino acids required for binding and phosphorylating glycated substrates and reveals the molecular basis of an evolutionarily conserved protein repair pathway. Additional structural-functional studies revealed unique structural features of human FN3K as well as differences in the dimerization behavior and regulation of FN3K family members. Our findings improve our understanding of the structure of FN3K and its catalytic mechanism, which opens new avenues for therapeutically targeting FN3K.


Asunto(s)
Modelos Moleculares , Fosfotransferasas (Aceptor de Grupo Alcohol) , Unión Proteica , Humanos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Glicosilación , Multimerización de Proteína , Dominio Catalítico , Fosforilación , Cristalografía por Rayos X , Especificidad por Sustrato , Sitios de Unión
15.
Plant Mol Biol ; 114(5): 91, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172289

RESUMEN

Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) catalyzes the final step in phytic acid (InsP6) synthesis. In this study, the effects of OsIPK1 mutations on InsP6 synthesis, grain filling and their underlying mechanisms were investigated. Seven gRNAs were designed to disrupt the OsIPK1 gene via CRISPR/CAS9 system. Only 4 of them generated 29 individual insertion or deletion T0 plants, in which nine biallelic or heterozygous genotypes were identified. Segregation analysis revealed that OsIPK1 frameshift mutants are homozygous lethality. The biallelic and heterozygous frameshift mutants exhibited significant reduction in yield-related traits, particularly in the seed-setting rate and yield per plant. Despite a notable decline in pollen viability, the male and female gametes had comparable transmission rates to their progenies in the mutants. A significant number of the filling-aborted (FA) grains was observed in mature grains of these heterozygous frameshift mutants. These grains exhibited a nearly complete blockage of InsP6 synthesis, resulting in a pronounced increase in Pi content. In contrast, a slight decline in InsP6 content was observed in the plump grains. During the filling stage, owing to the excessive accumulation of Pi, starch synthesis was significantly impaired, and the endosperm development-specific gene expression was nearly abolished. Consistently, the activity of whereas AGPase, a key enzyme in starch synthesis, was significantly decreased and Pi transporter gene expression was upregulated in the FA grains. Taken together, these results demonstrate that OsIPK1 frameshift mutations result in excessive Pi accumulation, decreased starch synthesis, and ultimately leading to lower yields in rice.


Asunto(s)
Mutación del Sistema de Lectura , Regulación de la Expresión Génica de las Plantas , Homeostasis , Oryza , Fósforo , Proteínas de Plantas , Almidón , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Almidón/biosíntesis , Almidón/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Sistemas CRISPR-Cas , Grano Comestible/genética , Grano Comestible/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plantas Modificadas Genéticamente , Ácido Fítico/metabolismo , Ácido Fítico/biosíntesis
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167487, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39216649

RESUMEN

Myopathy leads to skeletal and cardiac muscle degeneration which is a major cause of physical disability and heart failure. Despite the therapeutic advancement the prevalence of particularly cardiac diseases is rising at an alarming rate and novel therapeutic targets are required. Nicotinamide riboside kinase-2 (NRK-2 or NMRK2) is a muscle-specific ß1-integrin binding protein abundantly expressed in the skeletal muscle while only a trace amount is detected in the healthy cardiac muscle. The level in cardiac tissue is profoundly upregulated under pathogenic conditions such as ischemia and hypertension. NRK-2 was initially identified to regulate myoblast differentiation and to enhance the levels of NAD+, an important coenzyme that potentiates cellular energy production and stress resilience. Recent advancement has shown that NRK-2 critically regulates numerous cellular and molecular processes under pathogenic conditions to modulate the disease severity. Therefore, given its restricted expression in the cardiac and skeletal muscle, NRK-2 may serve as a unique therapeutic target. In this review, we provided a comprehensive overview of the diverse roles of NRK-2 played in different cardiac and muscular diseases and discussed the underlying molecular mechanisms in detail. Moreover, this review precisely examined how NRK-2 regulates metabolism in cardiac muscle, and how dysfunctional NRK-2 is associated with energetic deficit and impaired muscle function, manifesting various cardiac and skeletal muscle disease conditions.


Asunto(s)
Músculo Esquelético , Fosfotransferasas (Aceptor de Grupo Alcohol) , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Animales , Miocardio/metabolismo , Miocardio/patología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Enfermedades Musculares/genética , Cardiopatías/metabolismo , Cardiopatías/patología
17.
Nucleic Acids Res ; 52(16): 9630-9653, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39087523

RESUMEN

DNA damage has been implicated in the stimulation of the type 1 interferon (T1IFN) response. Here, we show that downregulation of the DNA repair protein, polynucleotide kinase/phosphatase (PNKP), in a variety of cell lines causes robust phosphorylation of STAT1, upregulation of interferon-stimulated genes and persistent accumulation of cytosolic DNA, all of which are indicators for the activation of the T1IFN response. Furthermore, this did not require damage induction by ionizing radiation. Instead, our data revealed that production of reactive oxygen species (ROS) synergises with PNKP loss to potentiate the T1IFN response, and that loss of PNKP significantly compromises mitochondrial DNA (mtDNA) integrity. Depletion of mtDNA or treatment of PNKP-depleted cells with ROS scavengers abrogated the T1IFN response, implicating mtDNA as a significant source of the cytosolic DNA required to potentiate the T1IFN response. The STING signalling pathway is responsible for the observed increase in the pro-inflammatory gene signature in PNKP-depleted cells. While the response was dependent on ZBP1, cGAS only contributed to the response in some cell lines. Our data have implications for cancer therapy, since PNKP inhibitors would have the potential to stimulate the immune response, and also to the neurological disorders associated with PNKP mutation.


Asunto(s)
Enzimas Reparadoras del ADN , ADN Mitocondrial , Interferón Tipo I , Fosfotransferasas (Aceptor de Grupo Alcohol) , Radiación Ionizante , Especies Reactivas de Oxígeno , Humanos , Interferón Tipo I/metabolismo , Interferón Tipo I/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Reparación del ADN , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Daño del ADN , Línea Celular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Transducción de Señal , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Fosforilación , Citosol/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
18.
Redox Biol ; 76: 103289, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39167913

RESUMEN

Metastasizing cancer cells encounter a multitude of stresses throughout the metastatic cascade. Oxidative stress is known to be a major barrier for metastatic colonization, such that metastasizing cancer cells must rewire their metabolic pathways to increase their antioxidant capacity. NADPH is essential for regeneration of cellular antioxidants and several NADPH-regenerating pathways have been shown to play a role in metastasis. We have found that metastatic melanoma cells have increased levels of both NADPH and NADP+ suggesting increased de novo biosynthesis of NADP+. De novo biosynthesis of NADP+ occurs through a single enzymatic reaction catalyzed by NAD+ kinase (NADK). Here we show that different NADK isoforms are differentially expressed in metastatic melanoma cells, with Isoform 3 being specifically upregulated in metastasis. We find that Isoform 3 is more potent in expanding the NADP(H) pools, increasing oxidative stress resistance and promoting metastatic colonization compared to Isoform 1. We have found that Isoform 3 is transcriptionally upregulated by oxidative stress through the action of NRF2. Together, our work presents a previously uncharacterized role of NADK isoforms in oxidative stress resistance and metastasis and suggests that NADK Isoform 3 is a potential therapeutic target in metastatic disease.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Isoenzimas , Melanoma , Factor 2 Relacionado con NF-E2 , Metástasis de la Neoplasia , Estrés Oxidativo , Fosfotransferasas (Aceptor de Grupo Alcohol) , Melanoma/metabolismo , Melanoma/patología , Melanoma/genética , Humanos , Animales , Isoenzimas/metabolismo , Isoenzimas/genética , Ratones , Línea Celular Tumoral , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , NADP/metabolismo
19.
Int J Biol Macromol ; 278(Pt 1): 134392, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098675

RESUMEN

Leishmania donovani relies on specific vitamins and cofactors crucial for its survival and pathogenesis. Tailoring therapies to disrupt these pathways offers a promising strategy for the treatment of Visceral Leishmaniasis. Current treatment regimens are limited due to drug resistance and high costs. The dependency of Leishmania parasites on Vitamin B2 and its metabolic products is not known. In this study, we have biochemically and biophysically characterized a Vitamin B2 metabolism enzyme, riboflavin kinase from L. donovani (LdRFK) which converts riboflavin (vitamin B2) into flavin mononucleotide (FMN). Sequence comparison with human counterpart reflects 31.58 % identity only, thus opening up the possibility of exploring it as drug target. The rfk gene was cloned, expressed and the recombinant protein was purified. Kinetic parameters of LdRFK were evaluated with riboflavin and ATP as substrates which showed differential binding affinity when compared with the human RFK enzyme. Thermal and denaturant stability of the enzyme was evaluated. The rfk gene was overexpressed in the parasites and its role in growth and cell cycle was evaluated. In the absence of crystal structure, homology modelling and molecular dynamic simulation studies were performed to predict LdRFK structure. The data shows differences in substrate binding between human and parasite enzyme. This raises the possibility of exploring LdRFK for specific designing of antileishmanial molecules. Gene disruption studies can further validate its candidature as antileishmanial target.


Asunto(s)
Leishmania donovani , Fosfotransferasas (Aceptor de Grupo Alcohol) , Riboflavina , Leishmania donovani/enzimología , Leishmania donovani/genética , Riboflavina/metabolismo , Riboflavina/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Humanos , Cinética , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Especificidad por Sustrato , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Clonación Molecular , Estabilidad de Enzimas , Mononucleótido de Flavina/metabolismo
20.
Cell Commun Signal ; 22(1): 391, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113090

RESUMEN

BACKGROUND: Approximately 25-30% of patients with acute myeloid leukemia (AML) have FMS-like receptor tyrosine kinase-3 (FLT3) mutations that contribute to disease progression and poor prognosis. Prolonged exposure to FLT3 tyrosine kinase inhibitors (TKIs) often results in limited clinical responses due to diverse compensatory survival signals. Therefore, there is an urgent need to elucidate the mechanisms underlying FLT3 TKI resistance. Dysregulated sphingolipid metabolism frequently contributes to cancer progression and a poor therapeutic response. However, its relationship with TKI sensitivity in FLT3-mutated AML remains unknown. Thus, we aimed to assess mechanisms of FLT3 TKI resistance in AML. METHODS: We performed lipidomics profiling, RNA-seq, qRT-PCR, and enzyme-linked immunosorbent assays to determine potential drivers of sorafenib resistance. FLT3 signaling was inhibited by sorafenib or quizartinib, and SPHK1 was inhibited by using an antagonist or via knockdown. Cell growth and apoptosis were assessed in FLT3-mutated and wild-type AML cell lines via Cell counting kit-8, PI staining, and Annexin-V/7AAD assays. Western blotting and immunofluorescence assays were employed to explore the underlying molecular mechanisms through rescue experiments using SPHK1 overexpression and exogenous S1P, as well as inhibitors of S1P2, ß-catenin, PP2A, and GSK3ß. Xenograft murine model, patient samples, and publicly available data were analyzed to corroborate our in vitro results. RESULTS: We demonstrate that long-term sorafenib treatment upregulates SPHK1/sphingosine-1-phosphate (S1P) signaling, which in turn positively modulates ß-catenin signaling to counteract TKI-mediated suppression of FLT3-mutated AML cells via the S1P2 receptor. Genetic or pharmacological inhibition of SPHK1 potently enhanced the TKI-mediated inhibition of proliferation and apoptosis induction in FLT3-mutated AML cells in vitro. SPHK1 knockdown enhanced sorafenib efficacy and improved survival of AML-xenografted mice. Mechanistically, targeting the SPHK1/S1P/S1P2 signaling synergizes with FLT3 TKIs to inhibit ß-catenin activity by activating the protein phosphatase 2 A (PP2A)-glycogen synthase kinase 3ß (GSK3ß) pathway. CONCLUSIONS: These findings establish the sphingolipid metabolic enzyme SPHK1 as a regulator of TKI sensitivity and suggest that combining SPHK1 inhibition with TKIs could be an effective approach for treating FLT3-mutated AML.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Leucemia Mieloide Aguda , Fosfotransferasas (Aceptor de Grupo Alcohol) , Proteína Fosfatasa 2 , beta Catenina , Tirosina Quinasa 3 Similar a fms , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , beta Catenina/metabolismo , beta Catenina/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Animales , Ratones , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/antagonistas & inhibidores , Línea Celular Tumoral , Sorafenib/farmacología , Apoptosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...