Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 501
Filtrar
1.
J Cosmet Dermatol ; 23(10): 3066-3077, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39129257

RESUMEN

BACKGROUND: Acne vulgaris (AV) is a widespread inflammatory skin condition associated with increased sebum production, abnormal keratinization, bacterial overgrowth, and inflammation. Overactive sebaceous glands (SGs) produce excess sebum, promote Cutibacterium acnes growth, and affect acne development. Energy-based treatments (EBDs), including light therapy, photodynamic therapy (PDT), lasers, and radiofrequency (RF) devices, have emerged as effective treatment options. As the use of EBDs becomes more widespread, it is imperative to understand their effects on skin parameters, such as sebum, in AV. METHODS: Searches were conducted in Embase, PubMed, Web of Science, and the Cochrane Library. The studies included were randomized and nonrandomized trials on facial AV that used EBDs and featured objective casual sebum level (CSL) measurements via Sebumeter. Data synthesis involved percentage reductions in CSL at follow-ups compared to baseline. RESULTS: Twenty-three studies were analyzed. PDT and RF consistently reduced CSL by 30%-40% and 30%-35%, respectively. Laser therapy showed lesser reductions, whereas light therapy varied significantly and studies had a high risk of bias. All EBD therapies were more effective than no treatment and PDT was superior to light monotherapy. Laser therapy combined with fractional microneedling radiofrequency (FMR) or as a standalone was more effective than laser alone. CONCLUSION: Noninvasive sebum measurement provides valuable insights into AV treatment efficacy. PDT, lasers, especially the 1450-nm diode laser, and FMR are promising for reducing sebum. Standardization of measurement techniques and further research are vital for enhancing treatment personalization, reducing side effects, and improving AV management.


Asunto(s)
Acné Vulgar , Fotoquimioterapia , Terapia por Radiofrecuencia , Sebo , Humanos , Acné Vulgar/diagnóstico , Acné Vulgar/terapia , Terapia por Láser/instrumentación , Terapia por Láser/efectos adversos , Terapia por Láser/métodos , Fotoquimioterapia/métodos , Fotoquimioterapia/instrumentación , Fototerapia/métodos , Fototerapia/instrumentación , Terapia por Radiofrecuencia/métodos , Terapia por Radiofrecuencia/instrumentación , Terapia por Radiofrecuencia/efectos adversos , Glándulas Sebáceas/efectos de la radiación , Glándulas Sebáceas/metabolismo , Sebo/metabolismo , Resultado del Tratamiento
2.
Lasers Med Sci ; 39(1): 131, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38750381

RESUMEN

Photodynamic therapy (PDT) is a targeted treatment method that utilizes a photosensitizer (PS) to induce cytotoxicity in malignant and non-malignant tumors. Optimization of PDT requires investigation of the selectivity of PS for the target tissues, irradiating light source, irradiation wavelengths, fluence rate, fluence, illumination mode, and overall treatment plan. In this study, we developed the Multi-mode Automatized Well-plate PDT LED Laboratory Irradiation System (MAWPLIS), an innovative device that automates time-consuming well plate light dosage/PS dose measurement experiment. The careful control of LED current and temperature stabilization in the LED module allowed the system to achieve high optical output stability. The MAWPLIS was designed by integrating a 3-axis moving system and motion controller, a quick-switching LED controller unit equipped with interchangeable LED modules capable of employing multiple wavelengths, and a TEC system. The proposed system achieved high optical output stability (1 mW) within the range of 0-500 mW, high wavelength stability (5 nm) at 635 nm, and high temperature stability (0.2 °C) across all radiation modes. The system's validation involved in vitro analysis using 5-ALA across varying concentrations, incubation periods, light exposures, and wavelengths in HT-29 colon cancer and WI-38 human lung fibroblast cell lines. Specifically, a combination of 405 nm and 635 nm wavelengths was selected to demonstrate enhanced strategies for colon cancer cell eradication and system validation. The MAWPLIS system represents a significant advancement in photodynamic therapy (PDT) research, offering automation and standardization of time-intensive experiments, high stability and precision, and improved PDT efficacy through dual-wavelength integration.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Fotoquimioterapia/métodos , Fotoquimioterapia/instrumentación , Humanos , Células HT29 , Ácido Aminolevulínico/administración & dosificación
3.
Dermatol Surg ; 50(4): 345-353, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38551277

RESUMEN

BACKGROUND: Warts are one of the most common benign neoplasms caused by human papillomavirus infection and often pose a therapeutic challenge. OBJECTIVE: To summarize the current evidence on the safety and efficacy of laser and energy-based devices for the treatment of cutaneous verrucae. METHODS: A comprehensive systematic review of the literature on laser and energy-based devices for the treatment of cutaneous verrucae was performed. RESULTS: A total of 904 unique studies were identified, of which 109 were included in this review. The most commonly used lasers as a single treatment modality for verrucae included the long-pulsed Nd:Yag (n = 20) and pulsed dye (n = 18) lasers. Other modalities included the CO2 ablative laser (n = 10), photodynamic therapy (n = 11), local hyperthermia (n = 11), microwave therapy (n = 2), and nanopulse stimulation (n = 1). Other studies combined energy-based modalities with additional treatments, such as retinoids, imiquimod, and intralesional bleomycin. Overall, such devices were generally well-tolerated, with only a mild side effect profile. CONCLUSION: Overall, the use of laser and energy-based devices is a safe and well-tolerated option for cutaneous verrucae that is relatively less invasive than surgical interventions. Future studies using more consistent outcome assessment tools will be valuable to help clinicians develop device-specific protocols and treatment regimens to ensure replicable and effective outcomes.


Asunto(s)
Verrugas , Humanos , Verrugas/terapia , Terapia por Láser/instrumentación , Terapia por Láser/métodos , Fotoquimioterapia/métodos , Fotoquimioterapia/instrumentación , Resultado del Tratamiento , Hipertermia Inducida/instrumentación , Hipertermia Inducida/métodos , Láseres de Gas/uso terapéutico
4.
Adv Sci (Weinh) ; 10(5): e2203742, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36541716

RESUMEN

Photodynamic therapy (PDT) under hypoxic conditions and drug resistance in chemotherapy are perplexing problems in anti-tumor treatment. In addition, central nervous system neoplasm-targeted nanoplatforms are urgently required. To address these issues, a new multi-functional protein hybrid nanoplatform is designed, consisting of transferrin (TFR) as the multicategory solid tumor recognizer and hemoglobin for oxygen supply (ODP-TH). This protein hybrid framework encapsulates the photosensitizer protoporphyrin IX (PpIX) and chemotherapeutic agent doxorubicin (Dox), which are attached by a glutathione-responsive disulfide bond. Mechanistically, ODP-TH crosses the blood-brain barrier (BBB) and specifically aggregated in hypoxic tumors via protein homology recognition. Oxygen and encapsulated drugs ultimately promote a therapeutic effect by down-regulating the abundance of multidrug resistance gene 1 (MDR1) and hypoxia-inducible factor-1-α (HIF-1α). The results reveal that ODP-TH achieves oxygen transport and protein homology recognition in the hypoxic tumor occupation. Indeed, compared with traditional photodynamic chemotherapy, ODP-TH achieves a more efficient tumor-inhibiting effect. This study not only overcomes the hypoxia-related inhibition in combination therapy by targeted oxygen transport but also achieves an effective treatment of multiple tumors, such as breast cancer and glioma, providing a new concept for the construction of a promising multi-functional targeted and intensive anti-tumor nanoplatform.


Asunto(s)
Carcinoma , Fotoquimioterapia , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/terapia , Carcinoma/tratamiento farmacológico , Carcinoma/terapia , Hipoxia , Oxígeno/farmacología , Oxígeno/uso terapéutico , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/instrumentación , Fotoquimioterapia/métodos , Nanotecnología/instrumentación , Nanotecnología/métodos , Nanomedicina/instrumentación , Nanomedicina/métodos
5.
Brasília; CONITEC; mar. 2022.
No convencional en Portugués | LILACS, ColecionaSUS | ID: biblio-1378099

RESUMEN

CONTEXTO: Os PCDT são documentos que visam garantir o melhor cuidado de saúde diante do contexto brasileiro e dos recursos disponíveis no SUS. Podem ser utilizados como materiais educativos aos profissionais de saúde, auxílio administrativo aos gestores, regulamentação da conduta assistencial perante o Poder Judiciário e explicitação de direitos aos usuários do SUS. Os PCDT são os documentos oficiais do SUS que estabelecem critérios para o diagnóstico de uma doença ou agravo à saúde; tratamento preconizado, com os medicamentos e demais produtos apropriados, quando couber; posologias recomendadas; mecanismos de controle clínico; e acompanhamento e verificação dos resultados terapêuticos a serem seguidos pelos gestores do SUS. Os PCDT devem incluir recomendações de condutas, medicamentos ou produtos para as diferentes fases evolutivas da doença ou do agravo à saúde de que se tratam, bem como aqueles indicados em casos de perda de eficácia e de surgimento de intolerância ou reação adversa relevante,


Asunto(s)
Protocolos Clínicos , Degeneración Macular/diagnóstico , Degeneración Macular/tratamiento farmacológico , Degeneración Macular/terapia , Fotoquimioterapia/instrumentación , Sistema Único de Salud , Brasil , Angiografía con Fluoresceína/instrumentación , Coagulación con Láser/instrumentación , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Bevacizumab/uso terapéutico , Ranibizumab/uso terapéutico , Microscopía con Lámpara de Hendidura/instrumentación
6.
Pesqui. bras. odontopediatria clín. integr ; 22: e200192, 2022. tab, graf
Artículo en Inglés | LILACS, BBO | ID: biblio-1365232

RESUMEN

Abstract Objective: To evaluate the effectiveness of Antimicrobial Photodynamic Therapy (aPDT), associated with scaling and root planing in the non-surgical periodontal treatment of individuals with Down Syndrome. Material and Methods: A controlled, randomized, split-mouth study was conducted. A total of 8 participants diagnosed with Down Syndrome aged 17-38 years of both sexes with clinical periodontitis were included in the study. Participants were treated at least three times: at the baseline, Plaque Index (PI), Bleeding on Probing (BOP), and Probing Pocket Depth (PPD) were obtained. After one week, conventional scaling and root planing were performed, and two quadrants were randomly selected for aPDT application. The reassessment was obtained one month after the aPDT application. The significance level was set at 5%. Analyses were performed considering a 95% confidence interval. Results: In the intergroup evaluation, no statistically significant differences were observed (p>0.05). In the intragroup evaluation, no statistically significant variations were observed in relation to the PI (p>0.05) and PPD (p>0.05); however, a statistically significant reduction in the BOP was observed between the test group (p=0.013) and control group (p=0.015). Conclusion: The use of aPDT as adjuvant therapy did not promote additional benefits in decreasing PI and PPD after 1 month of treatment. However, a significant reduction in the BOP was observed in the intragroup evaluation.


Asunto(s)
Humanos , Masculino , Femenino , Adolescente , Adulto , Enfermedades Periodontales/patología , Periodontitis , Fotoquimioterapia/instrumentación , Índice Periodontal , Síndrome de Down/patología , Brasil/epidemiología , Índice de Placa Dental , Interpretación Estadística de Datos , Ensayo Clínico Controlado Aleatorio , Resultado del Tratamiento , Cuidadores , Estadísticas no Paramétricas , Rayos Láser
7.
Am J Clin Dermatol ; 22(6): 785-800, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34287769

RESUMEN

Acne vulgaris is a disease of the pilosebaceous unit and the most common inflammatory dermatosis worldwide. It is also associated with significant economic burden. Limitations of conventional topical and systemic treatments include long treatment course, intolerable adverse effects, antibiotic resistance, and patient compliance. Therefore, laser and light-based interventions present as alternative options over the past decade and have been used in combination with conventional pharmacological therapies and other physical modalities. An updated overview on the use of lasers and light-based devices in acne management is presented to help clinicians understand the safety and efficacy of these treatment options. The effectiveness of neodymium:yttrium aluminum garnet (Nd:YAG) for treating acne is supported by more high-level studies compared with other laser devices. There is limited evidence to support the use of CO2 lasers, potassium titanyl phosphate lasers, and 1565-nm non-ablative fractional lasers for treating acne. Among light devices, photodynamic therapy is the most studied, showing higher efficacies than some of the conventional topical and oral acne therapies. Intense-pulsed light and blue light therapies also show favorable outcomes. A limitation is that most studies are non-randomized and lack a control group, and report on a variety of device settings, treatment regimens, and outcome measures, making it challenging to summarize and generalize findings. Although the use of laser and light devices to treat acne is promising, further work with randomized controlled study designs and larger sample sizes will provide improved guidance on the application of these modalities.


Asunto(s)
Acné Vulgar/terapia , Tratamiento de Luz Pulsada Intensa/instrumentación , Terapia por Luz de Baja Intensidad/instrumentación , Fotoquimioterapia/instrumentación , Acné Vulgar/diagnóstico , Ensayos Clínicos como Asunto , Humanos , Láseres de Gas/uso terapéutico , Láseres de Estado Sólido/uso terapéutico , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
8.
Adv Sci (Weinh) ; 8(15): e2004769, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34145986

RESUMEN

While promising, the efficacy of aggregation-induced emission (AIE)-based photodynamic therapy (PDT) is limited by several factors including limited depth of laser penetration and intratumoral hypoxia. In the present study, a novel bacteria-based AIEgen (TBP-2) hybrid system (AE) is developed, that is able to facilitate the hypoxia-tolerant PDT treatment of orthotopic colon tumors via an interventional method. For this approach, an interventional device is initially designed, composed of an optical fiber and an endoscope, allowing for clear visualization of the position of the orthotopic tumor within the abdominal cavity. It is then possible to conduct successful PDT treatment of this hypoxic tumor via laser irradiation, as the TBP-2 is able to generate hydroxyl radicals (•OH) via a type I mechanism within this hypoxic microenvironment. Moreover, this interventional approach is proved to significantly impair orthotopic colon cancer growth and overcame PDT defects. This study is the first report involving such an interventional PDT strategy to knowledge, and it has the potential to complement other treatment modalities while also highlighting novel approaches to the design of hybrid AIEgen systems.


Asunto(s)
Bacterias/metabolismo , Neoplasias del Colon/terapia , Hipoxia/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Microambiente Tumoral , Animales , Modelos Animales de Enfermedad , Endoscopía Gastrointestinal/métodos , Ratones , Fotoquimioterapia/instrumentación , Fármacos Fotosensibilizantes/metabolismo
9.
Am J Clin Dermatol ; 22(3): 379-394, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33432476

RESUMEN

Warts are regularly treated by dermatologists, and while many respond readily to first-line treatments, others may represent a therapeutic challenge. Large, deep, numerous, and extensive warts; treatment-resistant lesions with higher risk for side effects, such as hypopigmentation; or patients unable to tolerate or comply with our treatment regimen, may need alternative treatment options. In this work we review the characteristics of select modalities that should be considered for difficult-to-treat warts. We discuss efficacy and tolerability data as well as practical features that can guide us to select the best treatment for every scenario. Novel approaches, still in an investigational phase, are also discussed to illustrate potential future directions of wart treatment.


Asunto(s)
Verrugas/terapia , Administración Cutánea , Antivirales/administración & dosificación , Terapia Combinada/instrumentación , Terapia Combinada/métodos , Criocirugía , Humanos , Factores Inmunológicos/administración & dosificación , Inmunoterapia/métodos , Inyecciones Intralesiones , Queratolíticos/administración & dosificación , Vacuna contra el Sarampión-Parotiditis-Rubéola/administración & dosificación , Óxido Nítrico/administración & dosificación , Vacunas contra Papillomavirus/administración & dosificación , Fotoquimioterapia/instrumentación , Fotoquimioterapia/métodos , Ácido Salicílico/administración & dosificación , Resultado del Tratamiento , Verrugas/inmunología
10.
Eur J Pharm Biopharm ; 160: 65-76, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33508436

RESUMEN

Biofilm mediated infection caused by multi-drug resistant bacteria are difficult to treat since it protects the microorganisms by host defense system, making them resistant to antibiotics and other antimicrobial agents. Combating such type of nosocomial infection, especially in immunocompromised patients, is an urgent need and foremost challenge faced by clinicians. Therefore, antimicrobial photodynamic therapy (aPDT) has been intensely pursued as an alternative therapy for bacterial infections. aPDT leads to the generation of reactive oxygen species (ROS) that destroy bacterial cells in the presence of a photosensitizer, visible light and oxygen. Here, we elucidated a possibility of its clinical application by reducing the treatment time and exposing curcumin to 20 J/cm2 of blue laser light, which corresponds to only 52 s to counteract vancomycin resistant Staphylococcus aureus (VRSA) both in vitro and in vivo. To understand the mechanism of action, the generation of total reactive oxygen species (ROS) was quantified by 2'-7'-dichlorofluorescein diacetate (DCFH-DA) and the type of phototoxicity was confirmed by fluorescence spectroscopic analysis. The data showed more production of singlet oxygen, indicating type-II phototoxicity. Different anti-biofilm assays (crystal violet and congo red assays) and microscopic studies were performed at sub-MIC concentration of curcumin followed by treatment with laser light against preformed biofilm of VRSA. The result showed significant reduction in the preformed biofilm formation. Finally, its therapeutic potential was validated in skin abrasion wistar rat model. The result showed significant inhibition of bacterial growth. Furthermore, immunomodulatory analysis with rat serum was performed. A significant reduction in expression of proinflammatory cytokines TNF-α and IL-6 were observed. Hence, we conclude that curcumin mediated aPDT with 20 J/cm2 of blue laser treatment (for 52 s) could be used against multi-drug resistant bacterial infections and preformed biofilm formation as a potential therapeutic approach.


Asunto(s)
Antiinfecciosos/administración & dosificación , Curcumina/administración & dosificación , Fotoquimioterapia/métodos , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus Resistente a Vancomicina/efectos de los fármacos , Administración Cutánea , Animales , Carga Bacteriana/efectos de los fármacos , Carga Bacteriana/efectos de la radiación , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de la radiación , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana Múltiple , Humanos , Láseres de Semiconductores , Masculino , Pruebas de Sensibilidad Microbiana , Fotoquimioterapia/instrumentación , Ratas , Especies Reactivas de Oxígeno/metabolismo , Piel/microbiología , Piel/patología , Infecciones Cutáneas Estafilocócicas/microbiología , Infecciones Cutáneas Estafilocócicas/patología , Staphylococcus aureus Resistente a Vancomicina/crecimiento & desarrollo , Staphylococcus aureus Resistente a Vancomicina/aislamiento & purificación
11.
Adv Mater ; 33(4): e2007247, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33306220

RESUMEN

Tumor immunometabolism contributes substantially to tumor proliferation and immune cell activity, and thus plays a crucial role in the efficacy of cancer immunotherapy. Modulation of immunometabolism to boost cancer immunotherapy is mostly based on small-molecule inhibitors, which often encounter the issues of off-target adverse effects, drug resistance, and unsustainable response. In contrast, enzymatic therapeutics can potentially bypass these limitations but has been less exploited. Herein, an organic polymer nanoenzyme (SPNK) with near-infrared (NIR) photoactivatable immunotherapeutic effects is reported for photodynamic immunometabolic therapy. SPNK is composed of a semiconducting polymer core conjugated with kynureninase (KYNase) via PEGylated singlet oxygen (1 O2 ) cleavable linker. Upon NIR photoirradiation, SPNK generates 1 O2 not only to exert photodynamic effect to induce the immunogenic cell death of cancer, but also to unleash KYNase and trigger its activity to degrade the immunosuppressive kynurenine (Kyn). Such a combinational effect mediated by SPNK promotes the proliferation and infiltration of effector T cells, enhances systemic antitumor T cell immunity, and ultimately permits inhibition of both primary and distant tumors in living mice. Therefore, this study provides a promising photodynamic approach toward remotely controlled enzymatic immunomodulation for improved anticancer therapy.


Asunto(s)
Inmunoterapia/métodos , Nanomedicina/métodos , Nanoestructuras/química , Fotoquimioterapia/métodos , Polímeros/química , Polímeros/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inmunoterapia/instrumentación , Rayos Infrarrojos , Ratones , Fotoquimioterapia/instrumentación , Semiconductores , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
12.
São Paulo; s.n; s.n; 2021. 82 p. tab, ilus, graf.
Tesis en Inglés | LILACS | ID: biblio-1379014

RESUMEN

The widespread use of antimicrobial chemotherapy in medicine and livestock production imposed an evolutive selection of drug-resistant strains worldwide. As a result, the effectiveness of our current antimicrobial armamentarium is constantly being reduced to alarming levels. Therefore, novel antimicrobial therapeutic strategies are urgently needed. Antimicrobial photodynamic therapy (APDT) comes to this scenario as a powerful tool to counteract the emergence of microbial drug-resistance. Its mechanisms of action are based on simultaneous oxidative damage of multiple targets and, therefore, it is much less likely to allow any type of microbial resistance. Therefore, the objectives of this study were focused into establishing 1) a mathematical tool to allow precise analysis of microbial photoinactivation; 2) a broad analysis of APDT effectiveness against global priority drug-resistant pathogens; 3) inhibition of ßlactamase enzymes; and 4) how the biochemical mechanisms of APDT avoid emergence of resistance. The main results obtained through the investigation led by this thesis were divided into 4 scientific articles regarding each of the above-mentioned objectives. In summary, we discovered that 1) a power-law function can precisely fit all microbial inactivation kinetics data and provide insightful information of tolerance factors and lethal doses; 2) there is no correlation between drug-resistance and APDT sensitivity, i.e., extensively drug resistant microorganisms are killed in the same kinetics as drug-sensitive controls; 3) ß-lactamases are very sensitive to photodynamic inhibition; 4) biochemical mechanisms of APDT promote oxidative damages to external cell membranes, DNA and proteins whereas the main cause of microbial death seems to be directly associated with protein degradation. Thus, we conclude that APDT is effective against a broad-spectrum of pathogens and has minimum chances of promoting resistance mechanisms


O amplo uso da quimioterapia antimicrobiana impôs uma seleção evolutiva de cepas resistentes a medicamentos. Como resultado, a eficácia dos fármacos antimicrobianos tem sido reduzida a níveis alarmantes. Portanto, novas estratégias terapêuticas antimicrobianas são urgentemente necessárias. A terapia fotodinâmica antimicrobiana (TFDA) entra neste cenário como uma ferramenta poderosa para combater a resistência microbiana. Seus mecanismos de ação são baseados no dano oxidativo sobre múltiplos alvos e, portanto, é muito menos provável que permita o surgimento de qualquer tipo de resistência. Os objetivos deste estudo foram focados ao estabelecimento de 1) modelo matemático para análise precisa da fotoinativação microbiana; 2) ampla análise da eficácia da TFDA contra patógenos resistentes a fármacos antimicrobianos de prioridade global; 3) inibição de ß-lactamases por TFDA; e 4) como os mecanismos bioquímicos da TFDA evitam o surgimento de resistência. Os principais resultados obtidos através da investigação conduzida por esta tese foram divididos em 4 artigos científicos. Em resumo, descobrimos que 1) uma função de lei de potência pode ajustar com precisão todos os dados de cinética de inativação microbiana e fornecer informações detalhadas sobre fatores de tolerância e doses letais; 2) não há correlação entre resistência à quimioterapia antimicrobiana e sensibilidade à TFDA, isto é, cepas extensivamente resistentes aos antimicrobianos são inativadas sob a mesma cinética que controles sensíveis aos antimicrobianos; 3) ß-lactamases são altamente sensíveis à inibição fotodinâmica; 4) os mecanismos bioquímicos da TFDA promovem danos oxidativos às membranas celulares e DNA, porém, a principal causa de morte microbiana é diretamente associada à degradação das proteínas. Assim, concluímos que a TFDA é eficaz contra um amplo espectro de patógenos e tem chances mínimas de promover mecanismos de resistência


Asunto(s)
Fotoquimioterapia/instrumentación , Quimioterapia/instrumentación , Azul de Metileno/efectos adversos , Antiinfecciosos/análisis , Bacterias/clasificación , Preparaciones Farmacéuticas/administración & dosificación , Cinética , Eficacia , Estrategias de Salud , Estrés Oxidativo , Farmacorresistencia Bacteriana , Hongos/aislamiento & purificación
13.
Theranostics ; 10(24): 11197-11214, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042278

RESUMEN

Rationale: The development of a highly effective and tumor-specific therapeutic strategy, which can act against the primary tumor and also condition the host immune system to eliminate distant tumors, remains a clinical challenge. Methods: Herein, we demonstrate a facile yet versatile ZnO-capping and Doxorubicin (DOX)-loaded multifunctional nanocomposite (AuNP@mSiO2@DOX-ZnO) that integrates photothermal properties of gold nanoparticles (NPs), pH-responsive properties and preferential selectivity to tumor cells of ZnO QDs and chemotherapeutic agent into a single NP. The photothermal performance, pH-triggered release and preferential phagocytic ability were assessed. The induced anti-tumor immunity was determined by analyzing immune cell profile in tumor in vivo and molecular mechanism were identified by detecting expression of immunogenic cell death (ICD) markers in vitro. Moreover, mice models of unilateral and bilateral subcutaneous melanoma and lung metastasis were established to evaluate the antitumor effects. Results: As an efficient drug carrier, ZnO-capped NPs guarantee a high DOX payload and an in vitro, efficient release of at pH 5.0. In murine melanoma models, the nanocomposite can significantly inhibit tumor growth for a short period upon low-power laser irradiation. Importantly, ZnO NPs not only demonstrate preferential selectivity for melanoma cells but can also induce ICD. Meanwhile, AuNP@mSiO2-based photothermal therapy (PTT) and DOX are directly cytotoxic towards cancer cells and demonstrate an elevated ICD effect. The induced ICD promotes maturation of dendritic cells, further stimulating the infiltration of effector T cells into tumor sites, preventing tumor growth and distant lung metastases. Conclusions: This study highlights the novel mechanism of ZnO-triggered anti-tumor immunity via inducing ICD. Additionally, we shed light on the multifunctionality of nanocomposites in delivering localized skin tumor therapy as well as inhibiting metastatic growth, which holds great promise in clinical applications.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Muerte Celular Inmunogénica/efectos de los fármacos , Melanoma Experimental/terapia , Neoplasias Cutáneas/terapia , Animales , Línea Celular Tumoral/trasplante , Doxorrubicina/administración & dosificación , Femenino , Oro/química , Humanos , Muerte Celular Inmunogénica/efectos de la radiación , Rayos Láser , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Nanopartículas del Metal/química , Ratones , Nanocompuestos/química , Fotoquimioterapia/instrumentación , Fotoquimioterapia/métodos , Terapia Fototérmica/instrumentación , Terapia Fototérmica/métodos , Porosidad , Dióxido de Silicio/química , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Óxido de Zinc/química
14.
Int J Nanomedicine ; 15: 6827-6838, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982235

RESUMEN

The ultimate goal of phototherapy based on nanoparticles, such as photothermal therapy (PTT) which generates heat and photodynamic therapy (PDT) which not only generates reactive oxygen species (ROS) but also induces a variety of anti-tumor immunity, is to kill tumors. In addition, due to strong efficacy in clinical treatment with minimal invasion and negligible side effects, it has received extensive attention and research in recent years. In this paper, the generations of nanomaterials in PTT and PDT are described separately. In clinical application, according to the different combination pathway of nanoparticles, it can be used to treat different diseases such as tumors, melanoma, rheumatoid and so on. In this paper, the mechanism of pathological treatment is described in detail in terms of inducing apoptosis of cancer cells by ROS produced by PDT, immunogenic cell death to provoke the maturation of dendritic cells, which in turn activate production of CD4+ T cells, CD8+T cells and memory T cells, as well as inhibiting heat shock protein (HSPs), STAT3 signal pathway and so on.


Asunto(s)
Nanopartículas/uso terapéutico , Neoplasias/terapia , Fototerapia/métodos , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Citocinas/metabolismo , Humanos , Hipertermia Inducida , Nanopartículas/administración & dosificación , Neoplasias/inmunología , Neoplasias/patología , Fotoquimioterapia/instrumentación , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Fototerapia/instrumentación , Especies Reactivas de Oxígeno/metabolismo
15.
Nat Rev Clin Oncol ; 17(11): 657-674, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32699309

RESUMEN

Light-activated, photosensitizer-based therapies have been established as safe modalities of tumour ablation for numerous cancer indications. Two main approaches are available: photodynamic therapy, which results in localized chemical damage in the target lesions, and photothermal therapy, which results in localized thermal damage. Whereas the administration of photosensitizers is a key component of photodynamic therapy, exogenous photothermal contrast agents are not required for photothermal therapy but can enhance the efficiency and efficacy of treatment. Over the past decades, great strides have been made in the development of phototherapeutic drugs and devices as cancer treatments, but key challenges have restricted their widespread clinical use outside of certain dermatological indications. Improvements in the tumour specificity of photosensitizers, achieved through targeting or localized activation, could provide better outcomes with fewer adverse effects, as could combinations with chemotherapies or immunotherapies. In this Review, we provide an overview of the current clinical progress of phototherapies for cancer and discuss the emerging preclinical bioengineering approaches that have the potential to overcome challenges in this area and thus improve the efficiency and utility of such treatments.


Asunto(s)
Neoplasias/terapia , Fotoquimioterapia/métodos , Terapia Fototérmica/métodos , Ensayos Clínicos como Asunto , Humanos , Nanotecnología , Fotoquimioterapia/instrumentación , Fármacos Fotosensibilizantes/uso terapéutico , Terapia Fototérmica/instrumentación , Proyectos de Investigación , Resultado del Tratamiento
16.
Int J Mol Sci ; 21(11)2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503329

RESUMEN

Photodynamic therapy (PDT) has long been known as an effective method for treating surface cancer tissues. Although this technique is widely used in modern medicine, some novel approaches for deep lying tumors have to be developed. Recently, deeper penetration of X-rays into tissues has been implemented, which is now known as X-ray photodynamic therapy (XPDT). The two methods differ in the photon energy used, thus requiring the use of different types of scintillating nanoparticles. These nanoparticles are known to convert the incident energy into the activation energy of a photosensitizer, which leads to the generation of reactive oxygen species. Since not all photosensitizers are found to be suitable for the currently used scintillating nanoparticles, it is necessary to find the most effective biocompatible combination of these two agents. The most successful combinations of nanoparticles for XPDT are presented. Nanomaterials such as metal-organic frameworks having properties of photosensitizers and scintillation nanoparticles are reported to have been used as XPDT agents. The role of metal-organic frameworks for applying XPDT as well as the mechanism underlying the generation of reactive oxygen species are discussed.


Asunto(s)
Nanocompuestos/química , Nanopartículas/química , Fotoquimioterapia/instrumentación , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Línea Celular Tumoral , Humanos , Radical Hidroxilo/química , Estructuras Metalorgánicas , Ratones , Nanotecnología/métodos , Trasplante de Neoplasias , Oxígeno/metabolismo , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/química , Rayos X
17.
Theranostics ; 10(15): 6758-6773, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32550902

RESUMEN

Photodynamic therapy (PDT), which involves the generation of reactive oxygen species (ROS) through interactions of a photosensitizer (PS) with light and oxygen, has been applied in oncology. Over the years, PDT techniques have been developed for the treatment of deep-seated cancers. However, (1) the tissue penetration limitation of excitation photon, (2) suppressed efficiency of PS due to multiple energy transfers, and (3) insufficient oxygen source in hypoxic tumor microenvironment still constitute major challenges facing the clinical application of PDT for achieving effective treatment. We present herein a PS-independent, ionizing radiation-induced PDT agent composed of yttrium oxide nanoscintillators core and silica shell (Y2O3:Eu@SiO2) with an annealing process. Our results revealed that annealed Y2O3:Eu@SiO2 could directly induce comprehensive photodynamic effects under X-ray irradiation without the presence of PS molecules. The crystallinity of Y2O3:Eu@SiO2 was demonstrated to enable the generation of electron-hole (e--h+) pairs in Y2O3 under ionizing irradiation, giving rise to the formation of ROS including superoxide, hydroxyl radical and singlet oxygen. In particular, combining Y2O3:Eu@SiO2 with fractionated radiation therapy increased radio-resistant tumor cell damage. Furthermore, photoacoustic imaging of tumors showed re-distribution of oxygen saturation (SO2) and reoxygenation of the hypoxia region. The results of this study support applicability of the integration of fractionated radiation therapy with Y2O3:Eu@SiO2, achieving synchronously in-depth and oxygen-insensitive X-ray PDT. Furthermore, we demonstrate Y2O3:Eu@SiO2 exhibited radioluminescence (RL) under X-ray irradiation and observed the virtually linear correlation between X-ray-induced radioluminescence (X-RL) and the Y2O3:Eu@SiO2 concentration in vivo. With the pronounced X-RL for in-vivo imaging and dosimetry, it possesses significant potential for utilization as a precision theranostics producing highly efficient X-ray PDT for deep-seated tumors.


Asunto(s)
Nanopartículas/química , Nanotecnología/instrumentación , Neoplasias Ováricas/terapia , Fotoquimioterapia/instrumentación , Dióxido de Silicio/química , Itrio/química , Animales , Línea Celular Tumoral , Femenino , Ratones , Ratones Desnudos , Nanopartículas/efectos de la radiación , Neoplasias Ováricas/patología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Oxígeno Singlete , Nanomedicina Teranóstica , Rayos X , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Adv Mater ; 32(29): e2001459, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32484308

RESUMEN

Near-infrared (NIR) activatable upconversion nanoparticles (UCNPs) enable wireless-based phototherapies by converting deep-tissue-penetrating NIR to visible light. UCNPs are therefore ideal as wireless transducers for photodynamic therapy (PDT) of deep-sited tumors. However, the retention of unsequestered UCNPs in tissue with minimal options for removal limits their clinical translation. To address this shortcoming, biocompatible UCNPs implants are developed to deliver upconversion photonic properties in a flexible, optical guide design. To enhance its translatability, the UCNPs implant is constructed with an FDA-approved poly(ethylene glycol) diacrylate (PEGDA) core clad with fluorinated ethylene propylene (FEP). The emission spectrum of the UCNPs implant can be tuned to overlap with the absorption spectra of the clinically relevant photosensitizer, 5-aminolevulinic acid (5-ALA). The UCNPs implant can wirelessly transmit upconverted visible light till 8 cm in length and in a bendable manner even when implanted underneath the skin or scalp. With this system, it is demonstrated that NIR-based chronic PDT is achievable in an untethered and noninvasive manner in a mouse xenograft glioblastoma multiforme (GBM) model. It is postulated that such encapsulated UCNPs implants represent a translational shift for wireless deep-tissue phototherapy by enabling sequestration of UCNPs without compromising wireless deep-tissue light delivery.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Fotoquimioterapia/instrumentación , Polietilenglicoles/química , Tecnología Inalámbrica , Ácido Aminolevulínico/química , Ácido Aminolevulínico/farmacología , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Transformación Celular Neoplásica , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Ratones , Nanopartículas/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología
19.
Nanoscale ; 12(21): 11562-11572, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32432283

RESUMEN

Nanosystems responsive to a tumor microenvironment (TME) have recently attracted great attention due to their potential in precision cancer theranostics. However, theranostic nanosystems with a TME-activated consecutive cascade for the accurate diagnosis and treatment of cancer have rarely been exploited. Herein, an activatable theranostic nanosystem (Bi2S3-Ag2S-DATS@BSA-N3 NYs) is designed and constructed on the basis of a one-pot biomineralization method and surface functional modification to improve second near-infrared (NIR-II) fluorescence/photoacoustic (PA) imaging-guided photothermal therapy (PTT)/gas therapy (GT). Based on enhanced penetration and retention (EPR) effect-mediated tumor accumulation, the tumor-overexpressed glutathione (GSH) can accelerate hydrogen sulfide (H2S) generation from the nanoparticles by reacting with the encapsulated diallyl trisulfide (DATS). Meanwhile, the in situ released H2S can be used not only for gas therapy, but also to start the reduction of -N3(-) to -NH2(+), thereby enhancing the tumor-specific aggregation of NYs. As a result, the activatable nanosystems with excellent tumor accumulation and biodistribution could achieve an accurate NIR-II/PA dual-modality imaging for guiding the synergistic anticancer efficacy (PTT/GT). Thus, this work provides a promising TME-mediated continuously responsive strategy for efficient anticancer therapy.


Asunto(s)
Gases/uso terapéutico , Nanopartículas/química , Nanopartículas/uso terapéutico , Fotoquimioterapia/métodos , Compuestos Alílicos/química , Compuestos Alílicos/uso terapéutico , Azidas/química , Azidas/uso terapéutico , Bismuto/química , Bismuto/uso terapéutico , Sulfuro de Hidrógeno/química , Sulfuro de Hidrógeno/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Imagen Óptica , Oxidación-Reducción , Técnicas Fotoacústicas , Fotoquimioterapia/instrumentación , Compuestos de Plata/química , Compuestos de Plata/uso terapéutico , Sulfuros/química , Sulfuros/uso terapéutico , Nanomedicina Teranóstica , Microambiente Tumoral
20.
Biointerphases ; 15(3): 031002, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32414237

RESUMEN

Prostate cancer is the second most common cancer in men and the second leading cause of male cancer deaths. The current blood test for detecting prostate cancers measures prostate-specific antigen. It has many limitations including a very high rate of false positives. Herein, prostate-specific membrane antigen (PSMA) based immunocapture and hexaminolevulinate (HAL) based photodetection are integrated into a new diagnostic device designed to selectively identify whole prostate cancer cells from voided urine with the aim of providing an accurate noninvasive alternative to current diagnosis methods. Prestained, prostate cancer cells spiked in urine samples at concentrations ranging from 1500 to 2000 cells/ml were captured with 89% sensitivity and 95% specificity. HAL, a cancer specific photosensitizer, was then used to circumvent the need for prestaining. Optimum HAL incubation conditions were identified (50 µM at 37 °C for 2 h) where the mean HAL-induced fluorescence intensity of LNCaP cells was three times that of healthy PNT2 cells, thus providing an independent way to discriminate captured cancer cells from background metabolites. Combining anti-PSMA immunocapture with HAL-induced fluorescent detection, 86% sensitivity and 88% selectivity were achieved, thereby proving the validity of the dual-method for the selective photospecific detection of prostate cancer cells.


Asunto(s)
Fotoquimioterapia/instrumentación , Gases em Plasma/química , Neoplasias de la Próstata/patología , Ácido Aminolevulínico/análogos & derivados , Ácido Aminolevulínico/química , Recuento de Células , Línea Celular Tumoral , Núcleo Celular/metabolismo , Fluorescencia , Humanos , Masculino , Microfluídica , Neoplasias de la Próstata/orina , Sensibilidad y Especificidad , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...