Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 186(2): 1220-1239, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33693822

RESUMEN

Plants are plastic organisms that optimize growth in response to a changing environment. This adaptive capability is regulated by external cues, including light, which provides vital information about the habitat. Phytochrome photoreceptors detect far-red light, indicative of nearby vegetation, and elicit the adaptive shade-avoidance syndrome (SAS), which is critical for plant survival. Plants exhibiting SAS are typically more elongated, with distinctive, small, narrow leaf blades. By applying SAS-inducing end-of-day far-red (EoD FR) treatments at different times during Arabidopsis (Arabidopsis thaliana) leaf 3 development, we have shown that SAS restricts leaf blade size through two distinct cellular strategies. Early SAS induction limits cell division, while later exposure limits cell expansion. This flexible strategy enables phytochromes to maintain control of leaf size through the proliferative and expansion phases of leaf growth. mRNAseq time course data, accessible through a community resource, coupled to a bioinformatics pipeline, identified pathways that underlie these dramatic changes in leaf growth. Phytochrome regulates a suite of major development pathways that control cell division, expansion, and cell fate. Further, phytochromes control cell proliferation through synchronous regulation of the cell cycle, DNA replication, DNA repair, and cytokinesis, and play an important role in sustaining ribosome biogenesis and translation throughout leaf development.


Asunto(s)
Proteínas de Arabidopsis/efectos de la radiación , Arabidopsis/fisiología , Fitocromo/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , División Celular , Luz , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/efectos de la radiación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación
2.
Chembiochem ; 20(22): 2813-2817, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31192518

RESUMEN

Light-sensing protein domains that link an exogenous light signal to the activity of an enzyme have attracted much attention for the engineering of new regulatory mechanisms into proteins and for studying the dynamic behavior of intracellular reactions and reaction cascades. Light-oxygen-voltage (LOV) photoreceptors are blue-light-sensing modules that have been intensely characterized for this purpose and linked to several proteins of interest. For the successful application of these tools, it is crucial to identify appropriate fusion strategies for combining sensor and enzyme domains that sustain activity and light-induced responsivity. Terminal fusion of LOV domains is the natural strategy; however, this is not transferrable to T7 RNA polymerase because both of its termini are involved in catalysis. It is shown herein that it is possible to covalently insert LOV domains into the polymerase protein, while preserving its activity and generating new light-responsive allosteric coupling.


Asunto(s)
Bacteriófago T7/enzimología , ARN Polimerasas Dirigidas por ADN/química , Fotorreceptores de Plantas/química , Proteínas Recombinantes de Fusión/química , Transcripción Genética/efectos de la radiación , Proteínas Virales/química , Secuencia de Aminoácidos , Avena/química , ARN Polimerasas Dirigidas por ADN/genética , Luz , Simulación de Dinámica Molecular , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/efectos de la radiación , Dominios Proteicos/efectos de la radiación , Ingeniería de Proteínas , ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/efectos de la radiación , Proteínas Virales/genética
3.
Biochemistry ; 57(5): 620-630, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29239168

RESUMEN

The light, oxygen, voltage (LOV) domain proteins are blue light photoreceptors that utilize a noncovalently bound flavin mononucleotide (FMN) cofactor as the chromophore. The modular nature of these proteins has led to their wide adoption in the emerging fields of optogenetics and optobiology, where the LOV domain has been fused to a variety of output domains leading to novel light-controlled applications. In this work, we extend our studies of the subpicosecond to several hundred microsecond transient infrared spectroscopy of the isolated LOV domain AsLOV2 to three full-length photoreceptors in which the LOV domain is fused to an output domain: the LOV-STAS protein, YtvA, the LOV-HTH transcription factor, EL222, and the LOV-histidine kinase, LovK. Despite differences in tertiary structure, the overall pathway leading to cysteine adduct formation from the FMN triplet state is highly conserved, although there are slight variations in rate. However, significant differences are observed in the vibrational spectra and kinetics after adduct formation, which are directly linked to the specific output function of the LOV domain. While the rate of adduct formation varies by only 3.6-fold among the proteins, the subsequent large-scale structural changes in the full-length LOV photoreceptors occur over the micro- to submillisecond time scales and vary by orders of magnitude depending on the different output function of each LOV domain.


Asunto(s)
Fotorreceptores Microbianos/efectos de la radiación , Fotorreceptores de Plantas/efectos de la radiación , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Sitios de Unión , Cristalografía por Rayos X , Cisteína/química , Mononucleótido de Flavina/química , Enlace de Hidrógeno , Modelos Moleculares , Fotoblanqueo , Fotoquímica , Fotorreceptores Microbianos/química , Fotorreceptores de Plantas/química , Conformación Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/efectos de la radiación , Técnica de Sustracción
4.
Plant Sci ; 255: 72-81, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28131343

RESUMEN

Ultraviolet-A radiation (UV-A: 315-400nm) is a component of solar radiation that exerts a wide range of physiological responses in plants. Currently, field attenuation experiments are the most reliable source of information on the effects of UV-A. Common plant responses to UV-A include both inhibitory and stimulatory effects on biomass accumulation and morphology. UV-A effects on biomass accumulation can differ from those on root: shoot ratio, and distinct responses are described for different leaf tissues. Inhibitory and enhancing effects of UV-A on photosynthesis are also analysed, as well as activation of photoprotective responses, including UV-absorbing pigments. UV-A-induced leaf flavonoids are highly compound-specific and species-dependent. Many of the effects on growth and development exerted by UV-A are distinct to those triggered by UV-B and vary considerably in terms of the direction the response takes. Such differences may reflect diverse UV-perception mechanisms with multiple photoreceptors operating in the UV-A range and/or variations in the experimental approaches used. This review highlights a role that various photoreceptors (UVR8, phototropins, phytochromes and cryptochromes) may play in plant responses to UV-A when dose, wavelength and other conditions are taken into account.


Asunto(s)
Embryophyta/efectos de la radiación , Fotorreceptores de Plantas/efectos de la radiación , Fotosíntesis , Estructuras de las Plantas/efectos de la radiación , Rayos Ultravioleta , Biomasa , Embryophyta/crecimiento & desarrollo , Embryophyta/metabolismo , Flavonoides/metabolismo , Fotorreceptores de Plantas/metabolismo , Pigmentos Biológicos/metabolismo , Estructuras de las Plantas/crecimiento & desarrollo , Estructuras de las Plantas/metabolismo
5.
Nat Methods ; 13(9): 755-8, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27427858

RESUMEN

LOVTRAP is an optogenetic approach for reversible light-induced protein dissociation using protein A fragments that bind to the LOV domain only in the dark, with tunable kinetics and a >150-fold change in the dissociation constant (Kd). By reversibly sequestering proteins at mitochondria, we precisely modulated the proteins' access to the cell edge, demonstrating a naturally occurring 3-mHz cell-edge oscillation driven by interactions of Vav2, Rac1, and PI3K proteins.


Asunto(s)
Luz , Optogenética/métodos , Fosfatidilinositol 3-Quinasa/química , Fotorreceptores de Plantas , Proteínas Proto-Oncogénicas c-vav/química , Proteína de Unión al GTP rac1/química , Avena/metabolismo , Células HeLa , Humanos , Cinética , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/efectos de la radiación , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/efectos de la radiación , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-vav/genética , Proteínas Proto-Oncogénicas c-vav/efectos de la radiación , Proteínas Recombinantes de Fusión , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/efectos de la radiación
7.
J Plant Res ; 129(2): 115-22, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26843269

RESUMEN

Plant photoreceptors link environmental light cues with physiological responses, determining how individual plants complete their life cycles. Structural and functional evolution of photoreceptors has co-occurred as plants diversified and faced the challenge of new light environments, during the transition of plants to land and as substantial plant canopies evolved. Large-scale comparative sequencing projects allow us for the first time to document photoreceptor evolution in understudied clades, revealing some surprises. Here we review recent progress in evolutionary studies of three photoreceptor families: phytochromes, phototropins and neochromes.


Asunto(s)
Fototransducción , Fotorreceptores de Plantas/genética , Fototropinas/genética , Fitocromo/genética , Plantas/genética , Xantófilas/genética , Evolución Biológica , Ambiente , Variación Genética , Luz , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/efectos de la radiación , Fototropinas/química , Fototropinas/efectos de la radiación , Fitocromo/química , Fitocromo/efectos de la radiación , Plantas/efectos de la radiación , Dominios Proteicos , Transcriptoma , Xantófilas/química , Xantófilas/efectos de la radiación
8.
Proc Natl Acad Sci U S A ; 111(32): 11894-9, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25071218

RESUMEN

Plants detect different facets of their radiation environment via specific photoreceptors to modulate growth and development. UV-B is perceived by the photoreceptor UV RESISTANCE LOCUS 8 (UVR8). The molecular mechanisms linking UVR8 activation to plant growth are not fully understood, however. When grown in close proximity to neighboring vegetation, shade-intolerant plants initiate dramatic stem elongation to overtop competitors. Here we show that UV-B, detected by UVR8, provides an unambiguous sunlight signal that inhibits shade avoidance responses in Arabidopsis thaliana by antagonizing the phytohormones auxin and gibberellin. UV-B triggers degradation of the transcription factors PHYTOCHROME INTERACTING FACTOR 4 and PHYTOCHROME INTERACTING FACTOR 5 and stabilizes growth-repressing DELLA proteins, inhibiting auxin biosynthesis via a dual mechanism. Our findings show that UVR8 signaling is closely integrated with other photoreceptor pathways to regulate auxin signaling and plant growth in sunlight.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/efectos de la radiación , Ácidos Indolacéticos/metabolismo , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/efectos de la radiación , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN , Genes de Plantas , Giberelinas/metabolismo , Giberelinas/efectos de la radiación , Ácidos Indolacéticos/antagonistas & inhibidores , Modelos Biológicos , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fotorreceptores de Plantas/genética , Plantas Modificadas Genéticamente , Estabilidad Proteica/efectos de la radiación , Proteolisis/efectos de la radiación , Transducción de Señal/efectos de la radiación , Luz Solar , Rayos Ultravioleta
9.
Proc Natl Acad Sci U S A ; 111(32): 11888-93, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25071219

RESUMEN

To incorporate the far-red light (FR) signal into a strategy for optimizing plant growth, FAR-RED ELONGATED HYPOCOTYL1 (FHY1) mediates the nuclear translocation of the FR photoreceptor phytochrome A (phyA) and facilitates the association of phyA with the promoters of numerous associated genes crucial for the response to environmental stimuli. However, whether FHY1 plays additional roles after FR irradiation remains elusive. Here, through the global identification of FHY1 chromatin association sites through ChIP-seq analysis and by the comparison of FHY1-associated sites with phyA-associated sites, we demonstrated that nuclear FHY1 can either act independently of phyA or act in association with phyA to activate the expression of distinct target genes. We also determined that phyA can act independently of FHY1 in regulating phyA-specific target genes. Furthermore, we determined that the independent FHY1 nuclear pathway is involved in crucial aspects of plant development, as in the case of inhibited seed germination under FR during salt stress. Notably, the differential presence of cis-elements and transcription factors in common and unique FHY1- and/or phyA-associated genes are indicative of the complexity of the independent and coordinated FHY1 and phyA pathways. Our study uncovers previously unidentified aspects of FHY1 function beyond its currently recognized role in phyA-dependent photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fotorreceptores de Plantas/metabolismo , Fitocromo A/metabolismo , Fitocromo/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Germinación , Luz , Modelos Biológicos , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/efectos de la radiación , Fitocromo/genética , Fitocromo/efectos de la radiación , Fitocromo A/genética , Fitocromo A/efectos de la radiación , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Transducción de Señal
10.
Plant Cell ; 24(9): 3755-66, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23012433

RESUMEN

Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor specifically for UV-B light that initiates photomorphogenic responses in plants. UV-B exposure causes rapid conversion of UVR8 from dimer to monomer, accumulation in the nucleus, and interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which functions with UVR8 in UV-B responses. Studies in yeast and with purified UVR8 implicate several tryptophan amino acids in UV-B photoreception. However, their roles in UV-B responses in plants, and the functional significance of all 14 UVR8 tryptophans, are not known. Here we report the functions of the UVR8 tryptophans in vivo. Three tryptophans in the ß-propeller core are important in maintaining structural stability and function of UVR8. However, mutation of three other core tryptophans and four at the dimeric interface has no apparent effect on function in vivo. Mutation of three tryptophans implicated in UV-B photoreception, W233, W285, and W337, impairs photomorphogenic responses to different extents. W285 is essential for UVR8 function in plants, whereas W233 is important but not essential for function, and W337 has a lesser role. Ala mutants of these tryptophans appear monomeric and constitutively bind COP1 in plants, but their responses indicate that monomer formation and COP1 binding are not sufficient for UVR8 function.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Cromosómicas no Histona/metabolismo , Fotorreceptores de Plantas/metabolismo , Triptófano/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efectos de la radiación , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/efectos de la radiación , Modelos Moleculares , Mutación , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/efectos de la radiación , Multimerización de Proteína , Estabilidad Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Luz Solar , Triptófano/química , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas , Rayos Ultravioleta
11.
Plant Physiol ; 157(3): 1497-504, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21896889

RESUMEN

We found that the levels of mRNA of two enzymes involved in chlorophyll catabolism in Arabidopsis (Arabidopsis thaliana), products of two chlorophyllase genes, AtCLH1 and AtCLH2, dramatically increase (by almost 100- and 10-fold, respectively) upon illumination with white light. The measurements of photosystem II quantum efficiency in 3-(3,4-dichlorophenyl)-1,1-dimethylurea-inhibited leaves show that their expression is not related to photosynthesis but mediated by photoreceptors. To identify the photoreceptors involved, we used various light treatments and Arabidopsis photoreceptor mutants (cry1, cry2, cry1cry2, phot1, phot2, phot1phot2, phyA phyB, phyAphyB). In wild-type Columbia, the amount of transcripts of both genes increase after white-light irradiation but their expression profile and the extent of regulation differ considerably. Blue and red light is active in the case of AtCLH1, whereas only blue light raises the AtCLH2 mRNA level. The fundamental difference is the extent of up-regulation, higher by one order of magnitude in AtCLH1. Both blue and red light is active in the induction of AtCLH1 expression in all mutants, pointing to a complex control network and redundancy between photoreceptors. The blue-specific up-regulation of the AtCLH2 transcript is mediated by cryptochromes and modulated by phototropin1 and phytochromes. Individually darkened leaves were used to test the effects of senescence on the expression of AtCLH1 and AtCLH2. The expression profile of AtCLH1 remains similar to that found in nonsenescing leaves up to 5 d after darkening. In contrast, the light induction of AtCLH2 mRNA declines during dark treatment. These results demonstrate that the expression of enzymes involved in chlorophyll catabolism is light controlled.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/efectos de la radiación , Hidrolasas de Éster Carboxílico/genética , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Oscuridad , Diurona/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mutación/genética , Fotorreceptores de Plantas/efectos de los fármacos , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación
12.
Planta ; 229(1): 25-36, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18825406

RESUMEN

Cyclobutane pyrimidine dimers (CPDs) constitute a majority of DNA lesions caused by ultraviolet-B (UVB). CPD photolyase, which rapidly repairs CPDs, is essential for plant survival under sunlight containing UVB. Our earlier results that the transcription of the cucumber CPD photolyase gene (CsPHR) was activated by light have prompted us to propose that this light-driven transcriptional activation would allow plants to meet the need of the photolyase activity upon challenges of UVB from sunlight. However, molecular mechanisms underlying the light-dependent transcriptional activation of CsPHR were unknown. In order to understand spectroscopic aspects of the plant response, we investigated the wavelength-dependence (action spectra) of the light-dependent transcriptional activation of CsPHR. In both cucumber seedlings and transgenic Arabidopsis seedlings expressing reporter genes under the control of the CsPHR promoter, the action spectra exhibited the most predominant peak in the long-wavelength UVB waveband (around 310 nm). In addition, a 95-bp cis-acting region in the CsPHR promoter was identified to be essential for the UVB-driven transcriptional activation of CsPHR. Thus, we concluded that the photoperception of long-wavelength UVB by UVB photoreceptor(s) led to the induction of the CsPHR transcription via a conserved cis-acting element.


Asunto(s)
Cucumis sativus/enzimología , Desoxirribodipirimidina Fotoliasa/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/efectos de la radiación , Activación Transcripcional/efectos de la radiación , Rayos Ultravioleta , Cucumis sativus/genética , Cucumis sativus/efectos de la radiación , Genes Reporteros , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Regiones Promotoras Genéticas/genética , Transcripción Genética/efectos de la radiación
13.
J Am Chem Soc ; 130(34): 11303-11, 2008 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-18671352

RESUMEN

A series of six open-chain tetrapyrroles has been synthesized and used as chromophores for the plant photoreceptor protein phytochrome. The novel chromophores vary in the size of substituents 17 and 18 at ring D. This ring undergoes maximal conformational change upon light excitation ( Z --> E photoisomerization of the 15,16-double bond). Instead of methyl and vinyl substituents (positions 17, 18) as present in the native chromophore phytochromobilin, dimethyl, methyl and isopropyl, methyl and tert-butyl, ethyl and methyl, vinyl and methyl, and isopropyl and methyl substituents have been generated. All novel chromophores assemble with the apoprotein. The obtained chromoproteins show hypsochromic shifts of the absorbance maxima by 10 nm maximally, compared to the native pigment, except for the 17-isopropyl-18-methyl-substituted compound which showed a 100 nm hypsochromic shift of selectively the P r form. The assembly kinetics were slowed down in correlation to the increasing size of the substituents, with stronger effects for modified substituents at position 17. The thermal stability of the photoinduced P fr form for the 18-isopropyl and the 18- tert butyl substituents was even greater than that of the native pigments. Those chromophores carrying substituents at position 17 larger than the methyl group (ethyl and isopropyl) showed a very low stability of the respective P fr forms. Time-resolved detection of the P r to P fr conversion (laser-induced flash photolysis) revealed a slower formation of the P fr form for those chromophores carrying larger substituents at position 18, whereas the rise and decay kinetics of the early intermediates are only moderately changed. Introduction of larger substituents at position 17 (ethyl, vinyl, and isopropyl) causes drastic changes in the kinetics; in particular the formation of the first thermally stable intermediate, I 700, is significantly slowed, making a detection of its rise possible.


Asunto(s)
Fotorreceptores de Plantas/química , Fitocromo/química , Tetrapirroles/síntesis química , Alcanos/química , Apoproteínas/química , Isomerismo , Cinética , Luz , Modelos Químicos , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/efectos de la radiación , Fitocromo/metabolismo , Fitocromo/efectos de la radiación , Temperatura , Compuestos de Vinilo/química
14.
Mol Plant ; 1(1): 4-14, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20031911

RESUMEN

The cryptochrome photoreceptors of higher plants are dimeric proteins. Their N-terminal photosensory domain mediates dimerization, and the unique C-terminal extension (CCT) mediates signaling. We made use of the human FK506-binding protein (FKBP) that binds with high affinity to rapamycin or rapamycin analogs (rapalogs). The FKBP-rapamycin complex is recognized by another protein, FRB, thus allowing rapamycin-induced dimerization of two target proteins. Here we demonstrate by bioluminescence resonance energy transfer (BRET) assays the applicability of this regulated dimerization system to plants. Furthermore, we show that fusion proteins consisting of the C-terminal domain of Arabidopsis cryptochrome 2 fused to FKBP and FRB and coexpressed in Arabidopsis cells specifically induce the expression of cryptochrome-controlled reporter and endogenous genes in darkness upon incubation with the rapalog. These results demonstrate that the activation of cryptochrome signal transduction can be chemically induced in a dose-dependent fashion and uncoupled from the light signal, and provide the groundwork for gain-of-function experiments to study specifically the role of photoreceptors in darkness or in signaling cross-talk even under light conditions that activate members of all photoreceptor families.


Asunto(s)
Criptocromos/metabolismo , Criptocromos/efectos de la radiación , Fotorreceptores de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efectos de la radiación , Criptocromos/efectos de los fármacos , Dimerización , Transferencia de Energía , Genes Reporteros , Luz , Luciferasas/metabolismo , Luminiscencia , Fotorreceptores de Plantas/efectos de los fármacos , Fotorreceptores de Plantas/efectos de la radiación , Plantas/efectos de los fármacos , Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/efectos de la radiación , Sirolimus/análogos & derivados , Sirolimus/farmacología , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...