Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Plant Cell Environ ; 47(6): 2044-2057, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38392920

RESUMEN

Blue light photoreceptor cryptochrome 1 (CRY1) in herbaceous plants plays crucial roles in various developmental processes, including cotyledon expansion, hypocotyl elongation and anthocyanin biosynthesis. However, the function of CRY1 in perennial trees is unclear. In this study, we identified two ortholog genes of CRY1 (PagCRY1a and PagCRY1b) from Populus, which displayed high sequence similarity to Arabidopsis CRY1. Overexpression of PagCRY1 substantially inhibited plant growth and promoted secondary xylem development in Populus, while CRISPR/Cas9-mediated knockout of PagCRY1 enhanced plant growth and delayed secondary xylem development. Moreover, overexpression of PagCRY1 dramatically increased anthocyanin accumulation. The further analysis supported that PagCRY1 functions specifically in response to blue light. Taken together, our results demonstrated that modulating the expression of blue light photoreceptor CRY1 ortholog gene in Populus could significantly influence plant biomass production and the process of wood formation, laying a foundation for further investigating the light-regulated tree growth.


Asunto(s)
Antocianinas , Proteínas de Arabidopsis , Criptocromos , Regulación de la Expresión Génica de las Plantas , Luz , Populus , Madera , Populus/genética , Populus/metabolismo , Populus/crecimiento & desarrollo , Criptocromos/metabolismo , Criptocromos/genética , Antocianinas/biosíntesis , Antocianinas/metabolismo , Madera/metabolismo , Madera/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Xilema/metabolismo , Xilema/genética , Xilema/crecimiento & desarrollo , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/genética , Luz Azul
3.
Plant J ; 118(5): 1423-1438, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38402588

RESUMEN

This study investigates photoreceptor's role in the adaption of photosynthetic apparatus to high light (HL) intensity by examining the response of tomato wild type (WT) (Solanum lycopersicum L. cv. Moneymaker) and tomato mutants (phyA, phyB1, phyB2, cry1) plants to HL. Our results showed a photoreceptor-dependent effect of HL on the maximum quantum yield of photosystem II (Fv/Fm) with phyB1 exhibiting a decrease, while phyB2 exhibiting an increase in Fv/Fm. HL resulted in an increase in the efficient quantum yield of photosystem II (ΦPSII) and a decrease in the non-photochemical quantum yields (ΦNPQ and ΦN0) solely in phyA. Under HL, phyA showed a significant decrease in the energy-dependent quenching component of NPQ (qE), while phyB2 mutants showed an increase in the state transition (qT) component. Furthermore, ΔΔFv/Fm revealed that PHYB1 compensates for the deficit of PHYA in phyA mutants. PHYA signaling likely emerges as the dominant effector of PHYB1 and PHYB2 signaling within the HL-induced signaling network. In addition, PHYB1 compensates for the role of CRY1 in regulating Fv/Fm in cry1 mutants. Overall, the results of this research provide valuable insights into the unique role of each photoreceptor and their interplay in balancing photon energy and photoprotection under HL condition.


Asunto(s)
Luz , Complejo de Proteína del Fotosistema II , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/efectos de la radiación , Solanum lycopersicum/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Fotosíntesis/fisiología , Fitocromo B/metabolismo , Fitocromo B/genética , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/genética , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitocromo A/metabolismo , Fitocromo A/genética
4.
New Phytol ; 236(5): 1824-1837, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36089828

RESUMEN

Light regulates the subcellular localization of plant photoreceptors, a key step in light signaling. Ultraviolet-B radiation (UV-B) induces the plant photoreceptor UV RESISTANCE LOCUS 8 (UVR8) nuclear accumulation, where it regulates photomorphogenesis. However, the molecular mechanism for the UV-B-regulated UVR8 nuclear localization dynamics is unknown. With fluorescence recovery after photobleaching (FRAP), cell fractionation followed by immunoblotting and co-immunoprecipitation (Co-IP) assays we tested the function of UVR8-interacting proteins including CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 in the regulation of UVR8 nuclear dynamics in Arabidopsis thaliana. We showed that UV-B-induced rapid UVR8 nuclear translocation is independent of COP1, which previously was shown to be required for UV-B-induced UVR8 nuclear accumulation. Instead, we provide evidence that the UV-B-induced UVR8 homodimer-to-monomer photo-switch and the concurrent size reduction of UVR8 enables its monomer nuclear translocation, most likely via free diffusion. Nuclear COP1 interacts with UV-B-activated UVR8 monomer, thereby promoting UVR8 nuclear retention. Conversely, RUP1and RUP2, whose expressions are induced by UV-B, inhibit UVR8 nuclear retention via attenuating the UVR8-COP1 interaction, allowing UVR8 to exit the nucleus. Collectively, our data suggest that UV-B-induced monomerization of UVR8 promotes its nuclear translocation via free diffusion. In the nucleus, COP1 binding promotes UVR8 monomer nuclear retention, which is counterbalanced by the major negative regulators RUP1 and RUP2.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Transducción de Señal , Arabidopsis/metabolismo , Fotorreceptores de Plantas/metabolismo , Rayos Ultravioleta , Ubiquitina-Proteína Ligasas/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
J Exp Bot ; 73(21): 7126-7138, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-35640572

RESUMEN

The red phytochrome and blue cryptochrome plant photoreceptors play essential roles in promoting genome-wide changes in nuclear and chloroplastic gene expression for photomorphogenesis, plastid development, and greening. While their importance in anterograde signalling has been long recognized, the molecular mechanisms involved remain under active investigation. More recently, the intertwining of the light signalling cascades with the retrograde signals for the optimization of chloroplast functions has been acknowledged. Advances in the field support the participation of phytochromes, cryptochromes, and key light-modulated transcription factors, including HY5 and the PIFs, in the regulation of chloroplastic biochemical pathways that produce retrograde signals, including the tetrapyrroles and the chloroplastic MEP-isoprenoids. Interestingly, in a feedback loop, the photoreceptors and their signalling components are targets themselves of these retrograde signals, aimed at optimizing photomorphogenesis to the status of the chloroplasts, with GUN proteins functioning at the convergence points. High light and shade are also conditions where the photoreceptors tune growth responses to chloroplast functions. Interestingly, photoreceptors and retrograde signals also converge in the modulation of dual-localized proteins (chloroplastic/nuclear) including WHIRLY and HEMERA/pTAC12, whose functions are required for the optimization of photosynthetic activities in changing environments and are proposed to act themselves as retrograde signals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Luz , Cloroplastos/metabolismo , Fitocromo/metabolismo , Criptocromos/metabolismo , Comunicación , Regulación de la Expresión Génica de las Plantas
6.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163658

RESUMEN

Continuous and ubiquitous expression of foreign genes sometimes results in harmful effects on the growth, development and metabolic activities of plants. Tissue-specific promoters help to overcome this disadvantage, but do not allow one to precisely control transgene expression over time. Thus, inducible transgene expression systems have obvious benefits. In plants, transcriptional regulation is usually driven by chemical agents under the control of chemically-inducible promoters. These systems are diverse, but usually contain two elements, the chimeric transcription factor and the reporter gene. The commonly used chemically-induced expression systems are tetracycline-, steroid-, insecticide-, copper-, and ethanol-regulated. Unlike chemical-inducible systems, optogenetic tools enable spatiotemporal, quantitative and reversible control over transgene expression with light, overcoming limitations of chemically-inducible systems. This review updates and summarizes optogenetic and chemical induction methods of transgene expression used in basic plant research and discusses their potential in field applications.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Optogenética , Plantas/genética , Investigación , Transgenes , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/metabolismo , Plantas Modificadas Genéticamente
7.
Nat Plants ; 7(10): 1397-1408, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34650267

RESUMEN

Cryptochromes (CRYs) are photoreceptors that mediate light regulation of the circadian clock in plants and animals. Here we show that CRYs mediate blue-light regulation of N6-methyladenosine (m6A) modification of more than 10% of messenger RNAs in the Arabidopsis transcriptome, especially those regulated by the circadian clock. CRY2 interacts with three subunits of the METTL3/14-type N6-methyladenosine RNA methyltransferase (m6A writer): MTA, MTB and FIP37. Photo-excited CRY2 undergoes liquid-liquid phase separation (LLPS) to co-condense m6A writer proteins in vivo, without obviously altering the affinity between CRY2 and the writer proteins. mta and cry1cry2 mutants share common defects of a lengthened circadian period, reduced m6A RNA methylation and accelerated degradation of mRNA encoding the core component of the molecular oscillator circadian clock associated 1 (CCA1). These results argue for a photoregulatory mechanism by which light-induced phase separation of CRYs modulates m6A writer activity, mRNA methylation and abundance, and the circadian rhythms in plants.


Asunto(s)
Adenosina/análogos & derivados , Arabidopsis/genética , Relojes Circadianos/genética , Criptocromos/metabolismo , Fotorreceptores de Plantas/metabolismo , Adenosina/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación
8.
Plant Cell Environ ; 44(10): 3246-3256, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34181245

RESUMEN

Inflorescence movements in response to natural gradients of sunlight are frequently observed in the plant kingdom and are suggested to contribute to reproductive success. Although the physiological and molecular bases of light-mediated tropisms in vegetative organs have been thoroughly investigated, the mechanisms that control inflorescence orientation in response to light gradients under natural conditions are not well understood. In this work, we have used a combination of laboratory and field experiments to investigate light-mediated re-orientation of Arabidopsis thaliana inflorescences. We show that inflorescence phototropism is promoted by photons in the UV and blue spectral range (≤500 nm) and depends on multiple photoreceptor families. Experiments under controlled conditions show that UVR8 is the main photoreceptor mediating the phototropic response to narrowband UV-B radiation, and phototropins and cryptochromes control the response to narrowband blue light. Interestingly, whereas phototropins mediate bending in response to low irradiances of blue, cryptochromes are the principal photoreceptors acting at high irradiances. Moreover, phototropins negatively regulate the action of cryptochromes at high irradiances of blue light. Experiments under natural field conditions demonstrate that cryptochromes are the principal photoreceptors acting in the promotion of the heliotropic response of inflorescences under full sunlight.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas Cromosómicas no Histona/genética , Citocromos/genética , Fotorreceptores de Plantas/genética , Fototropismo/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Citocromos/metabolismo , Fotorreceptores de Plantas/metabolismo
9.
Nat Commun ; 12(1): 3593, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135337

RESUMEN

Photoreceptors are conserved in green algae to land plants and regulate various developmental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a cryptochrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities.


Asunto(s)
Chlorophyta/metabolismo , Océanos y Mares , Fotorreceptores de Plantas/metabolismo , Fitoplancton/metabolismo , Adaptación Fisiológica/genética , Núcleo Celular/metabolismo , Chlorophyta/clasificación , Chlorophyta/genética , Criptocromos/genética , Criptocromos/metabolismo , Evolución Molecular , Luz , Metagenoma , Fotorreceptores de Plantas/genética , Filogenia , Fitocromo/genética , Fitocromo/metabolismo , Fitoplancton/clasificación , Fitoplancton/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcripción Genética/efectos de la radiación
10.
Nat Commun ; 12(1): 2155, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846325

RESUMEN

Cryptochromes (CRYs) are photoreceptors or components of the molecular clock in various evolutionary lineages, and they are commonly regulated by polyubiquitination and proteolysis. Multiple E3 ubiquitin ligases regulate CRYs in animal models, and previous genetics study also suggest existence of multiple E3 ubiquitin ligases for plant CRYs. However, only one E3 ligase, Cul4COP1/SPAs, has been reported for plant CRYs so far. Here we show that Cul3LRBs is the second E3 ligase of CRY2 in Arabidopsis. We demonstrate the blue light-specific and CRY-dependent activity of LRBs (Light-Response Bric-a-Brack/Tramtrack/Broad 1, 2 & 3) in blue-light regulation of hypocotyl elongation. LRBs physically interact with photoexcited and phosphorylated CRY2, at the CCE domain of CRY2, to facilitate polyubiquitination and degradation of CRY2 in response to blue light. We propose that Cul4COP1/SPAs and Cul3LRBs E3 ligases interact with CRY2 via different structure elements to regulate the abundance of CRY2 photoreceptor under different light conditions, facilitating optimal photoresponses of plants grown in nature.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Criptocromos/metabolismo , Fotorreceptores de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Criptocromos/química , Criptocromos/genética , Células HEK293 , Humanos , Luz , Modelos Biológicos , Mutación/genética , Fosforilación/efectos de la radiación , Poliubiquitina/metabolismo , Unión Proteica/efectos de la radiación , Proteolisis/efectos de la radiación , Plantones/efectos de la radiación , Ubiquitinación/efectos de la radiación
11.
Plant Physiol ; 186(2): 1220-1239, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33693822

RESUMEN

Plants are plastic organisms that optimize growth in response to a changing environment. This adaptive capability is regulated by external cues, including light, which provides vital information about the habitat. Phytochrome photoreceptors detect far-red light, indicative of nearby vegetation, and elicit the adaptive shade-avoidance syndrome (SAS), which is critical for plant survival. Plants exhibiting SAS are typically more elongated, with distinctive, small, narrow leaf blades. By applying SAS-inducing end-of-day far-red (EoD FR) treatments at different times during Arabidopsis (Arabidopsis thaliana) leaf 3 development, we have shown that SAS restricts leaf blade size through two distinct cellular strategies. Early SAS induction limits cell division, while later exposure limits cell expansion. This flexible strategy enables phytochromes to maintain control of leaf size through the proliferative and expansion phases of leaf growth. mRNAseq time course data, accessible through a community resource, coupled to a bioinformatics pipeline, identified pathways that underlie these dramatic changes in leaf growth. Phytochrome regulates a suite of major development pathways that control cell division, expansion, and cell fate. Further, phytochromes control cell proliferation through synchronous regulation of the cell cycle, DNA replication, DNA repair, and cytokinesis, and play an important role in sustaining ribosome biogenesis and translation throughout leaf development.


Asunto(s)
Proteínas de Arabidopsis/efectos de la radiación , Arabidopsis/fisiología , Fitocromo/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , División Celular , Luz , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/efectos de la radiación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación
13.
Plant Sci ; 303: 110766, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33487351

RESUMEN

UV RESISTANCE LOCUS 8 (UVR8) is a photoreceptor that regulates UV-B photomorphogenesis in plants. UV-B photon perception promotes UVR8 homodimer dissociation into monomer, which is reverted to homodimer post UV-B, forming a complete photocycle. UVR8 monomer interacts with CONSTITUTIVELY PHOTOMORPHOGENEIC 1 (COP1) to initiate UV-B signaling. The function and mechanism of Arabidopsis UVR8 (AtUVR8) are extensively investigated, however, little is known about UVR8 and its signaling mechanisms in other plant species. Tomato is a widely used model plant for horticulture research. In this report we tested whether an ortholog of AtUVR8 in Tomato (SIUVR8) can complement Arabidopsis uvr8 mutant and whether the above-mentioned key signaling mechanisms of UVR8 are conserved. Heterologous expressed SIUVR8 in an Arabidopsis uvr8 null mutant rescued the uvr8 mutant in the tested UV-B responses including hypocotyl elongation, UV-B target gene expression and anthocyanin accumulation, demonstrating that the SIUVR8 is a putative UV-B photoreceptor. Moreover, in response to UV-B, SIUVR8 forms a protein complex with Arabidopsis COP1 in plants, suggesting conserved signaling mechanism. SIUVR8 exhibits similar photocycle as AtUVR8 in plants, which highlights conserved photoreceptor activation and inactivation mechanisms.


Asunto(s)
Fotorreceptores de Plantas/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Antocianinas/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/fisiología , Secuencia Conservada/genética , Luz , Solanum lycopersicum/metabolismo , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/fisiología
14.
Mol Plant ; 14(1): 61-76, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33276158

RESUMEN

Plants detect and respond to the proximity of competitors using light signals perceived by photoreceptor proteins. A low ratio of red to far-red radiation (R:FR ratio) is a key signal of competition that is sensed by the photoreceptor phytochrome B (phyB). Low R:FR ratios increase the synthesis of growth-related hormones, including auxin and gibberellins, promoting stem elongation and other shade-avoidance responses. Other photoreceptors that help plants to optimize their developmental configuration and resource allocation patterns in the canopy include blue light photoreceptors, such as cryptochromes and phototropins, and UV receptors, such as UVR8. All photoreceptors act by directly or indirectly controlling the activity of two major regulatory nodes for growth and development: the COP1/SPA ubiquitin E3 ligase complex and the PIF transcription factors. phyB is also an important modulator of hormonal pathways that regulate plant defense against herbivores and pathogens, including the jasmonic acid signaling pathway. In this Perspective, we discuss recent advances on the studies of the mechanisms that link photoreceptors with growth and defense. Understanding these mechanisms is important to provide a functional platform for breeding programs aimed at improving plant productivity, stress tolerance, and crop health in species of agronomic interest, and to manipulate the light environments in protected agriculture.


Asunto(s)
Agricultura , Fotorreceptores de Plantas/metabolismo , Desarrollo de la Planta , Inmunidad de la Planta , Productos Agrícolas/fisiología , Fototransducción
15.
Nat Commun ; 11(1): 4316, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859932

RESUMEN

Plants utilize a UV-B (280 to 315 nm) photoreceptor UVR8 (UV RESISTANCE LOCUS 8) to sense environmental UV levels and regulate gene expression to avoid harmful UV effects. Uniquely, UVR8 uses intrinsic tryptophan for UV-B perception with a homodimer structure containing 26 structural tryptophan residues. However, besides 8 tryptophans at the dimer interface to form two critical pyramid perception centers, the other 18 tryptophans' functional role is unknown. Here, using ultrafast fluorescence spectroscopy, computational methods and extensive mutations, we find that all 18 tryptophans form light-harvesting networks and funnel their excitation energy to the pyramid centers to enhance light-perception efficiency. We determine the timescales of all elementary tryptophan-to-tryptophan energy-transfer steps in picoseconds to nanoseconds, in excellent agreement with quantum computational calculations, and finally reveal a significant leap in light-perception quantum efficiency from 35% to 73%. This photoreceptor is the first system discovered so far, to be best of our knowledge, using natural amino-acid tryptophans to form networks for both light harvesting and light perception.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas Cromosómicas no Histona/genética , Transferencia de Energía , Fluorescencia , Cinética , Luz , Modelos Moleculares , Mutación , Conformación Proteica , Multimerización de Proteína , Triptófano/metabolismo , Rayos Ultravioleta
16.
J Mol Biol ; 432(7): 1880-1900, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32105734

RESUMEN

Control of cellular events by optogenetic tools is a powerful approach to manipulate cellular functions in a minimally invasive manner. A common problem posed by the application of optogenetic tools is to tune the activity range to be physiologically relevant. Here, we characterized a photoreceptor of the light-oxygen-voltage (LOV) domain family of Phaeodactylum tricornutum aureochrome 1a (AuLOV) as a tool for increasing protein stability under blue light conditions in budding yeast. Structural studies of AuLOVwt, the variants AuLOVM254, and AuLOVW349 revealed alternative dimer association modes for the dark state, which differ from previously reported AuLOV dark-state structures. Rational design of AuLOV-dimer interface mutations resulted in an optimized optogenetic tool that we fused to the photoactivatable adenylyl cyclase from Beggiatoa sp. This synergistic light-regulation approach using two photoreceptors resulted in an optimized, photoactivatable adenylyl cyclase with a cyclic adenosine monophosphate production activity that matches the physiological range of Saccharomyces cerevisiae. Overall, we enlarged the optogenetic toolbox for yeast and demonstrated the importance of fine-tuning the optogenetic tool activity for successful application in cells.


Asunto(s)
Diatomeas/metabolismo , Luz , Optogenética , Oxígeno/metabolismo , Fotorreceptores de Plantas/química , Factores de Transcripción/química , Diatomeas/efectos de la radiación , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Conformación Proteica , Dominios Proteicos , Estabilidad Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(6): 3261-3269, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31988133

RESUMEN

Light-environment signals, sensed by plant phytochrome photoreceptors, are transduced to target genes through direct regulation of PHYTOCHROME-INTERACTING FACTOR (PIF) transcription factor abundance and activity. Previous genome-wide DNA-binding and expression analysis has identified a set of genes that are direct targets of PIF transcriptional regulation. However, quantitative analysis of promoter occupancy versus expression level has suggested that unknown "trans factors" modulate the intrinsic transcriptional activation activity of DNA-bound PIF proteins. Here, using computational analysis of published data, we have identified PSEUDO-RESPONSE REGULATORS (PRR5 and PRR7) as displaying a high frequency of colocalization with the PIF proteins at their binding sites in the promoters of PIF Direct Target Genes (DTGs). We show that the PRRs function to suppress PIF-stimulated growth in the light and vegetative shade and that they repress the rapid PIF-induced expression of PIF-DTGs triggered by exposure to shade. The repressive action of the PRRs on both growth and DTG expression requires the PIFs, indicating direct action on PIF activity, rather than a parallel antagonistic pathway. Protein interaction assays indicate that the PRRs exert their repressive activity by binding directly to the PIF proteins in the nucleus. These findings support the conclusion that the PRRs function as direct outputs from the core circadian oscillator to regulate the expression of PIF-DTGs through modulation of PIF transcriptional activation activity, thus expanding the roles of the multifunctional PIF-signaling hub.


Asunto(s)
Proteínas de Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Relojes Circadianos/genética , Fotosíntesis/genética , Activación Transcripcional/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Plant J ; 102(2): 276-298, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31778231

RESUMEN

In photosynthetic organisms many processes are light dependent and sensing of light requires light-sensitive proteins. The supposed eyespot photoreceptor protein Babo1 (formerly Vop1) has previously been classified as an opsin due to the capacity for binding retinal. Here, we analyze Babo1 and provide evidence that it is no opsin. Due to the localization at the basal bodies, the former Vop1 and Cop1/2 proteins were renamed V.c. Babo1 and C.r. Babo1. We reveal a large family of more than 60 Babo1-related proteins from a wide range of species. The detailed subcellular localization of fluorescence-tagged Babo1 shows that it accumulates at the basal apparatus. More precisely, it is located predominantly at the basal bodies and to a lesser extent at the four strands of rootlet microtubules. We trace Babo1 during basal body separation and cell division. Dynamic structural rearrangements of Babo1 particularly occur right before the first cell division. In four-celled embryos Babo1 was exclusively found at the oldest basal bodies of the embryo and on the corresponding d-roots. The unequal distribution of Babo1 in four-celled embryos could be an integral part of a geometrical system in early embryogenesis, which establishes the anterior-posterior polarity and influences the spatial arrangement of all embryonic structures and characteristics. Due to its retinal-binding capacity, Babo1 could also be responsible for the unequal distribution of retinoids, knowing that such concentration gradients of retinoids can be essential for the correct patterning during embryogenesis of more complex organisms. Thus, our findings push the Babo1 research in another direction.


Asunto(s)
Proteínas Algáceas/metabolismo , División Celular , Volvox/genética , Proteínas Algáceas/genética , Cuerpos Basales/metabolismo , Cuerpos Basales/ultraestructura , Genes Reporteros , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Filogenia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Volvox/metabolismo , Volvox/ultraestructura
19.
Biochem Biophys Res Commun ; 522(1): 177-183, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31757427

RESUMEN

UV RESISTANCE LOCUS 8 (UVR8) is a UV-B photoreceptor that regulates various aspects of plant photomorphogenesis. Physiological functions of UVR8 have been extensively investigated in Arabidopsis. However, functions of Tomato UVR8 (SlUVR8) are largely unknown. To analyze physiological functions of SlUVR8, we generated sluvr8 knock-out mutant lines with CRISPR-CAS9 gene editing approach. At seedling stage, SlUVR8 regulates hypocotyl elongation and anthocyanin accumulation under UV-B. Moreover, SlUVR8 regulates acclimation to low dose UV-B and promotes tolerance to elevated UV-B stress. These results revealed pivotal roles of SlUVR8 in the regulation of Tomato seedling development and UV-B stress tolerance. The manipulation of photoreceptor SlUVR8 may represent a powerful tool to improve Tomato plant performance in nature where high dose UV-B is present.


Asunto(s)
Fotorreceptores de Plantas/metabolismo , Plantones/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Rayos Ultravioleta/efectos adversos , Antocianinas/metabolismo , Solanum lycopersicum/efectos de la radiación , Plantones/efectos de la radiación , Estrés Fisiológico/efectos de la radiación
20.
Plant Cell ; 31(10): 2510-2524, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31409629

RESUMEN

Plant photoreceptors tightly regulate gene expression to control photomorphogenic responses. Although gene expression is modulated by photoreceptors at various levels, the regulatory mechanism at the pre-mRNA splicing step remains unclear. Alternative splicing, a widespread mechanism in eukaryotes that generates two or more mRNAs from the same pre-mRNA, is largely controlled by splicing regulators, which recruit spliceosomal components to initiate pre-mRNA splicing. The red/far-red light photoreceptor phytochrome participates in light-mediated splicing regulation, but the detailed mechanism remains unclear. Here, using protein-protein interaction analysis, we demonstrate that in the moss Physcomitrella patens, phytochrome4 physically interacts with the splicing regulator heterogeneous nuclear ribonucleoprotein H1 (PphnRNP-H1) in the nucleus, a process dependent on red light. We show that PphnRNP-H1 is involved in red light-mediated phototropic responses in P. patens and that it binds with higher affinity to the splicing factor pre-mRNA-processing factor39-1 (PpPRP39-1) in the presence of red light-activated phytochromes. Furthermore, PpPRP39-1 associates with the core component of U1 small nuclear RNP in P. patens Genome-wide analyses demonstrated the involvement of both PphnRNP-H1 and PpPRP39-1 in light-mediated splicing regulation. Our results suggest that phytochromes target the early step of spliceosome assembly via a cascade of protein-protein interactions to control pre-mRNA splicing and photomorphogenic responses.


Asunto(s)
Empalme Alternativo/efectos de la radiación , Bryopsida/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Fotorreceptores de Plantas/metabolismo , Fitocromo/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Empalme Alternativo/genética , Bryopsida/genética , Bryopsida/efectos de la radiación , Ontología de Genes , Estudio de Asociación del Genoma Completo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Luz , Fitocromo/efectos de la radiación , Unión Proteica/efectos de la radiación , Mapeo de Interacción de Proteínas , Precursores del ARN/metabolismo , Factores de Empalme de ARN/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Empalmosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA