Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
IUCrJ ; 11(Pt 5): 645-646, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39212519

RESUMEN

The photo-reaction of the LOV1 domain of the Chlamydomonas reinhardtii phototropin is investigated by room-temperature time-resolved serial crystallography. A covalent adduct forms between the C4a atom of the central flavin-mononucleotide chromophore and a protein cysteine. The structure of the adduct is very similar to that of LOV2 determined 23 years ago from the maidenhair fern Phy3.


Asunto(s)
Chlamydomonas reinhardtii , Fototropinas , Sincrotrones , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cristalografía por Rayos X/métodos , Fototropinas/química , Fototropinas/metabolismo , Modelos Moleculares , Mononucleótido de Flavina/química , Dominios Proteicos , Chlamydomonas/química , Chlamydomonas/metabolismo
2.
IUCrJ ; 11(Pt 5): 792-808, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39037420

RESUMEN

Light-oxygen-voltage (LOV) domains are small photosensory flavoprotein modules that allow the conversion of external stimuli (sunlight) into intracellular signals responsible for various cell behaviors (e.g. phototropism and chloroplast relocation). This ability relies on the light-induced formation of a covalent thioether adduct between a flavin chromophore and a reactive cysteine from the protein environment, which triggers a cascade of structural changes that result in the activation of a serine/threonine (Ser/Thr) kinase. Recent developments in time-resolved crystallography may allow the activation cascade of the LOV domain to be observed in real time, which has been elusive. In this study, we report a robust protocol for the production and stable delivery of microcrystals of the LOV domain of phototropin Phot-1 from Chlamydomonas reinhardtii (CrPhotLOV1) with a high-viscosity injector for time-resolved serial synchrotron crystallography (TR-SSX). The detailed process covers all aspects, from sample optimization to data collection, which may serve as a guide for soluble protein preparation for TR-SSX. In addition, we show that the crystals obtained preserve the photoreactivity using infrared spectroscopy. Furthermore, the results of the TR-SSX experiment provide high-resolution insights into structural alterations of CrPhotLOV1 from Δt = 2.5 ms up to Δt = 95 ms post-photoactivation, including resolving the geometry of the thioether adduct and the C-terminal region implicated in the signal transduction process.


Asunto(s)
Chlamydomonas reinhardtii , Sincrotrones , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/química , Cristalografía por Rayos X/métodos , Luz , Fototropinas/química , Fototropinas/metabolismo , Fototropinas/genética , Dominios Proteicos
3.
Plant Cell Environ ; 47(8): 3215-3226, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38736289

RESUMEN

Chloroplasts accumulate in regions of plant cells exposed to irradiation to maximize light reception for efficient photosynthesis. This response is mediated by the blue-light receptor phototropin. Upon the perception of blue light, phototropin is photoactivated, an unknown signal is transmitted from the photoactivated phototropin to distant chloroplasts, and the chloroplasts begin their directional movement. How activated phototropin initiates this signal transmission is unknown. Here, using the liverwort Marchantia polymorpha, we analysed whether increased photoactive phototropin levels mediate signal transmission and chloroplast behaviour during the accumulation response. The signal transmission rate was higher in transgenic cells overexpressing phototropin than in wild-type cells. However, the chloroplast directional movement was similar between wild-type and transgenic cells. Consistent with the observation, increasing the amount of photoactivated phototropin through higher blue-light intensity also accelerated signal transmission but did not affect chloroplast behaviour in wild-type cells. Photoactivation of phototropin under weak blue-light led to the greater protein level of phosphorylated phototropin in cells overexpressing phototropin than in wild-type cells, whereas the autophosphorylation level within each phototropin molecule was similar. These results indicate that the abundance of photoactivated phototropin modulates the signal transmission rate to distant chloroplasts but does not affect chloroplast behaviour during the accumulation response.


Asunto(s)
Cloroplastos , Luz , Marchantia , Fototropinas , Plantas Modificadas Genéticamente , Transducción de Señal , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Cloroplastos/fisiología , Fototropinas/metabolismo , Fototropinas/genética , Marchantia/fisiología , Marchantia/efectos de la radiación , Marchantia/genética , Marchantia/metabolismo , Fosforilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
4.
Plant Physiol ; 195(1): 213-231, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38431282

RESUMEN

In addition to providing the radiant energy that drives photosynthesis, sunlight carries signals that enable plants to grow, develop and adapt optimally to the prevailing environment. Here we trace the path of research that has led to our current understanding of the cellular and molecular mechanisms underlying the plant's capacity to perceive and transduce these signals into appropriate growth and developmental responses. Because a fully comprehensive review was not possible, we have restricted our coverage to the phytochrome and cryptochrome classes of photosensory receptors, while recognizing that the phototropin and UV classes also contribute importantly to the full scope of light-signal monitoring by the plant.


Asunto(s)
Criptocromos , Fitocromo , Plantas , Criptocromos/metabolismo , Criptocromos/genética , Fitocromo/metabolismo , Plantas/metabolismo , Plantas/efectos de la radiación , Luz , Fototransducción , Fenómenos Fisiológicos de las Plantas , Transducción de Señal , Fototropinas/metabolismo , Fototropinas/genética
5.
J Comput Chem ; 45(17): 1493-1504, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38476039

RESUMEN

Avena sativa phototropin 1 light-oxygen-voltage 2 domain (AsLOV2) is a model protein of Per-Arnt-Sim (PAS) superfamily, characterized by conformational changes in response to external environmental stimuli. This conformational change begins with the unfolding of the N-terminal A'α helix in the dark state followed by the unfolding of the C-terminal Jα helix. The light state is characterized by the unfolded termini and the subsequent modifications in hydrogen bond patterns. In this photoreceptor, ß-sheets are identified as crucial components for mediating allosteric signal transmission between the two termini. Through combined experimental and computational investigations, the Hß and Iß strands are recognized as the most critical and influential ß-sheets in AsLOV2's allosteric mechanism. To elucidate the role of these ß-sheets, we introduced 13 distinct mutations (F490L, N492A, L493A, F494L, H495L, L496F, Q497A, R500A, F509L, Q513A, L514A, D515V, and T517V) and conducted comprehensive molecular dynamics simulations. In-depth hydrogen bond analyses emphasized the role of two hydrogen bonds, Asn482-Leu453 and Gln479-Val520, in the observed distinct behaviors of L493A, L496F, Q497A, and D515V mutants. This illustrates the role of ß-sheets in the transmission of the allosteric signal upon the photoactivation of the light state.


Asunto(s)
Simulación de Dinámica Molecular , Regulación Alostérica , Conformación Proteica en Lámina beta , Fototropinas/química , Fototropinas/metabolismo , Enlace de Hidrógeno , Conformación Proteica
6.
J Exp Bot ; 75(8): 2403-2416, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38189579

RESUMEN

Many ferns thrive even in low-light niches such as under an angiosperm forest canopy. However, the shade adaptation strategy of ferns is not well understood. Phytochrome 3/neochrome (phy3/neo) is an unconventional photoreceptor, found in the fern Adiantum capillus-veneris, that controls both red and blue light-dependent phototropism and chloroplast photorelocation, which are considered to improve photosynthetic efficiency in ferns. Here we show that phy3/neo localizes not only at the plasma membrane but also in the nucleus. Since both phototropism and chloroplast photorelocation are mediated by membrane-associated phototropin photoreceptors, we speculated that nucleus-localized phy3/neo possesses a previously undescribed biological function. We reveal that phy3/neo directly interacts with Adiantum cryptochrome 3 (cry3) in the nucleus. Plant cryptochromes are blue light receptors that transcriptionally regulate photomorphogenesis; therefore, phy3/neo may function via cry3 to synchronize light-mediated development with phototropism and chloroplast photorelocation to promote fern growth under low-light conditions. Furthermore, we demonstrate that phy3/neo regulates the expression of the Cyclin-like gene AcCyc1 and promotes prothallium expansion growth. These findings provide insight into the shade adaptation strategy of ferns and suggest that phy3/neo plays a substantial role in the survival and growth of ferns during the tiny gametophytic stage under low-light conditions, such as those on the forest floor.


Asunto(s)
Helechos , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Fototropinas/genética , Helechos/metabolismo , Células Germinativas de las Plantas , Fototropismo/fisiología , Criptocromos , Luz
7.
J Mol Biol ; 436(5): 168356, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944792

RESUMEN

The light-oxygen-voltage (LOV) domains of phototropins emerged as essential constituents of light-sensitive proteins, helping initiate blue light-triggered responses. Moreover, these domains have been identified across all kingdoms of life. LOV domains utilize flavin nucleotides as co-factors and undergo structural rearrangements upon exposure to blue light, which activates an effector domain that executes the final output of the photoreaction. LOV domains are versatile photoreceptors that play critical roles in cellular signaling and environmental adaptation; additionally, they can noninvasively sense and control intracellular processes with high spatiotemporal precision, making them ideal candidates for use in optogenetics, where a light signal is linked to a cellular process through a photoreceptor. The ongoing development of LOV-based optogenetic tools, driven by advances in structural biology, spectroscopy, computational methods, and synthetic biology, has the potential to revolutionize the study of biological systems and enable the development of novel therapeutic strategies.


Asunto(s)
Optogenética , Fototropinas , Oxígeno , Dominios Proteicos/efectos de la radiación , Fototropinas/química , Fototropinas/efectos de la radiación , Luz
8.
Science ; 382(6673): 935-940, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37995216

RESUMEN

In plants, light direction is perceived by the phototropin photoreceptors, which trigger directional growth responses known as phototropism. The formation of a phototropin activation gradient across a photosensitive organ initiates this response. However, the optical tissue properties that functionally contribute to phototropism remain unclear. In this work, we show that intercellular air channels limit light transmittance through various organs in several species. Air channels enhance light scattering in Arabidopsis hypocotyls, thereby steepening the light gradient. This is required for an efficient phototropic response in Arabidopsis and Brassica. We identified an embryonically expressed ABC transporter required for the presence of air channels in seedlings and a structure surrounding them. Our work provides insights into intercellular air space development or maintenance and identifies a mechanism of directional light sensing in plants.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5 , Proteínas de Arabidopsis , Arabidopsis , Brassica , Hipocótilo , Fototropinas , Fototropismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/metabolismo , Brassica/genética , Brassica/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Luz , Fototropinas/metabolismo , Transducción de Señal
9.
PLoS Biol ; 21(10): e3002344, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37906610

RESUMEN

Sunflowers are famous for their ability to track the sun throughout the day and then reorient at night to face east the following morning. This occurs by differential growth patterns, with the east sides of stems growing more during the day and the west sides of stems growing more at night. This process, termed heliotropism, is generally believed to be a specialized form of phototropism; however, the underlying mechanism is unknown. To better understand heliotropism, we compared gene expression patterns in plants undergoing phototropism in a controlled environment and in plants initiating and maintaining heliotropic growth in the field. We found the expected transcriptome signatures of phototropin-mediated phototropism in sunflower stems bending towards monochromatic blue light. Surprisingly, the expression patterns of these phototropism-regulated genes are quite different in heliotropic plants. Most genes rapidly induced during phototropism display only minor differences in expression across solar tracking stems. However, some genes that are both rapidly induced during phototropism and are implicated in growth responses to foliar shade are rapidly induced on the west sides of stems at the onset of heliotropism, suggesting a possible role for red light photoreceptors in solar tracking. To test the involvement of different photoreceptor signaling pathways in heliotropism, we modulated the light environment of plants initiating solar tracking. We found that depletion of either red and far-red light or blue light did not hinder the initiation or maintenance of heliotropism in the field. Together, our results suggest that the transcriptional regulation of heliotropism is distinct from phototropin-mediated phototropism and likely involves inputs from multiple light signaling pathways.


Asunto(s)
Proteínas de Arabidopsis , Helianthus , Helianthus/metabolismo , Fototropinas/metabolismo , Luz Solar , Luz , Fototropismo/fisiología , Transducción de Señal , Proteínas de Arabidopsis/metabolismo
10.
Proc Natl Acad Sci U S A ; 120(18): e2302185120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37098057

RESUMEN

Small RNAs (sRNAs) form complexes with Argonaute proteins and bind to transcripts with complementary sequences to repress gene expression. sRNA-mediated regulation is conserved in a diverse range of eukaryotes and is involved in the control of various physiological functions. sRNAs are present in the unicellular green alga Chlamydomonas reinhardtii, and genetic analyses revealed that the core sRNA biogenesis and action mechanisms are conserved with those of multicellular organisms. However, the roles of sRNAs in this organism remain largely unknown. Here, we report that Chlamydomonas sRNAs contribute to the induction of photoprotection. In this alga, photoprotection is mediated by LIGHT HARVESTING COMPLEX STRESS-RELATED 3 (LHCSR3), whose expression is induced by light signals through the blue-light receptor phototropin (PHOT). We demonstrate here that sRNA-defective mutants showed increased PHOT abundance leading to greater LHCSR3 expression. Disruption of the precursor for two sRNAs predicted to bind to the PHOT transcript also increased PHOT accumulation and LHCSR3 expression. The induction of LHCSR3 in the mutants was enhanced by light containing blue wavelengths, but not by red light, indicating that the sRNAs regulate the degree of photoprotection via regulation of PHOT expression. Our results suggest that sRNAs are involved not only in the regulation of photoprotection but also in biological phenomena regulated by PHOT signaling.


Asunto(s)
Chlamydomonas reinhardtii , ARN Pequeño no Traducido , Chlamydomonas reinhardtii/metabolismo , Fototropinas/genética , Luz , Interferencia de ARN , ARN Pequeño no Traducido/metabolismo
11.
Curr Biol ; 33(6): 1071-1081.e5, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36841238

RESUMEN

Stomatal movement is orchestrated by diverse signaling cascades and metabolic activities in guard cells. Light triggers the opening of the pores through the phototropin-mediated pathway, which leads to the activation of plasma membrane H+-ATPase and thereby facilitates potassium accumulation through Kin+ channels. However, it remains poorly understood how phototropin signaling is fine-tuned to prevent excessive stomatal opening and consequent water loss. Here, we show that the stomatal response to light is negatively regulated by 12-oxo-phytodienoic acid (OPDA), an oxylipin metabolite produced through enzymatic oxygenation of polyunsaturated fatty acids (PUFAs). We identify a set of phospholipase-encoding genes, phospholipase (PLIP)1/2/3, which are transactivated rapidly in guard cells upon illumination in a phototropin-dependent manner. These phospholipases release PUFAs from the chloroplast membrane, which is oxidized by guard-cell lipoxygenases and further metabolized to OPDA. The OPDA-deficient mutants had wider stomatal pores, whereas mutants containing elevated levels of OPDA showed the opposite effect on stomatal aperture. Transmembrane solute fluxes that drive stomatal aperture were enhanced in lox6-1 guard cells, indicating that OPDA signaling ultimately impacts on activities of proton pumps and Kin+ channels. Interestingly, the accelerated stomatal kinetics in lox6-1 leads to increased plant growth without cost in water or macronutrient use. Together, our results reveal a new role for chloroplast membrane oxylipin metabolism in stomatal regulation. Moreover, the accelerated stomatal opening kinetics in OPDA-deficient mutants benefits plant growth and water use efficiency.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oxilipinas/metabolismo , Fototropinas/metabolismo , Estomas de Plantas/fisiología , Luz , Cloroplastos/metabolismo
12.
Plant J ; 114(2): 390-402, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36794876

RESUMEN

Directional movements impact the ability of plants to respond and adjust their growth accordingly to the prevailing light environment. The plasma-membrane associated protein, ROOT PHOTOTROPISM 2 (RPT2) is a key signalling component involved in chloroplast accumulation movement, leaf positioning, and phototropism, all of which are regulated redundantly by the ultraviolet/blue light-activated AGC kinases phototropin 1 and 2 (phot1 and phot2). We recently demonstrated that members of the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3)/RPT2-like (NRL) family in Arabidopsis thaliana, including RPT2, are directly phosphorylated by phot1. However, whether RPT2 is a substrate for phot2, and the biological significance of phot phosphorylation of RPT2 remains to be determined. Here, we show that RPT2 is phosphorylated by both phot1 and phot2 at a conserved serine residue (S591) within the C-terminal region of the protein. Blue light triggered the association of 14-3-3 proteins with RPT2 consistent with S591 acting as a 14-3-3 binding site. Mutation of S591 had no effect on the plasma membrane localization of RPT2 but reduced its functionality for leaf positioning and phototropism. Moreover, our findings indicate that S591 phosphorylation within the C-terminus of RPT2 is required for chloroplast accumulation movement to low level blue light. Taken together, these findings further highlight the importance of the C-terminal region of NRL proteins and how its phosphorylation contributes to phot receptor signalling in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fototropismo/genética , Fosforilación , Fototropinas/genética , Fototropinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Plantas Modificadas Genéticamente/genética , Luz , Hojas de la Planta/metabolismo , Cloroplastos/metabolismo , Fosfoproteínas/metabolismo
13.
ACS Synth Biol ; 11(10): 3529-3533, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36180042

RESUMEN

The optogenetic tool LEXY consists of the second light oxygen voltage (LOV) domain of Avena sativa phototropin 1 mutated to contain a nuclear export signal. It allows exporting from the nucleus with blue light proteins of interest (POIs) genetically fused to it. Mutations slowing the dark recovery rate of the LOV domain within LEXY were recently shown to allow for better depletion of some POIs from the nucleus in Drosophila embryos and for the usage of low light illumination regimes. We investigated these variants in mammalian cells and found they increase the cytoplasmic localization of the proteins we tested after illumination, but also during the dark phases, which corresponds to higher leakiness of the system. These data suggest that, when aiming to sequester into the nucleus a protein with a cytoplasmic function, the original LEXY is preferable. The iLEXY variants are, instead, advantageous when wanting to deplete the nucleus of the POI as much as possible.


Asunto(s)
Proteínas Nucleares , Fototropinas , Animales , Fototropinas/genética , Fototropinas/metabolismo , Proteínas Nucleares/metabolismo , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Señales de Exportación Nuclear/genética , Luz , Avena/genética , Avena/metabolismo , Oxígeno/metabolismo , Mamíferos/metabolismo
14.
J Integr Plant Biol ; 64(10): 1901-1915, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35924740

RESUMEN

Plant shoot phototropism is triggered by the formation of a light-driven auxin gradient leading to bending growth. The blue light receptor phototropin 1 (phot1) senses light direction, but how this leads to auxin gradient formation and growth regulation remains poorly understood. Previous studies have suggested phot1's role for regulated apoplastic acidification, but its relation to phototropin and hypocotyl phototropism is unclear. Herein, we show that blue light can cause phot1 to interact with and phosphorylate FERONIA (FER), a known cell growth regulator, and trigger downstream phototropic bending growth in Arabidopsis hypocotyls. fer mutants showed defects in phototropic growth, similar to phot1/2 mutant. FER also interacts with and phosphorylates phytochrome kinase substrates, the phot1 downstream substrates. The phot1-FER pathway acts upstream of apoplastic acidification and the auxin gradient formation in hypocotyl under lateral blue light, both of which are critical for phototropic bending growth in hypocotyls. Our study highlights a pivotal role of FER in the phot1-mediated phototropic cell growth regulation in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fototropinas/genética , Fototropinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Hipocótilo/metabolismo , Fitocromo/metabolismo , Ácidos Indolacéticos/metabolismo , Luz
15.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35955826

RESUMEN

Photosensory proteins known as photoreceptors (PHRs) are crucial for delineating light environments in synchronization with other environmental cues and regulating their physiological variables in plants. However, this has not been well studied in the Brassica genus, which includes several important agricultural and horticultural crops. Herein, we identified five major PHR gene families-phytochrome (PHY), cryptochrome (CRY), phototropin (PHOT), F-box containing flavin binding proteins (ZTL/FKF1/LKP2), and UV RESISTANCE LOCUS 8 (UVR8)-genomic scales and classified them into subfamilies based on their phylogenetic clustering with Arabidopsis homologues. The molecular evolution characteristics of Brassica PHR members indicated indirect expansion and lost one to six gene copies at subfamily levels. The segmental duplication was possibly the driving force of the evolution and amplification of Brassica PHRs. Gene replication retention and gene loss events of CRY, PHY, and PHOT members found in diploid progenitors were highly conserved in their tetraploid hybrids. However, hybridization events were attributed to quantitative changes in UVR8 and ZTL/FKF1/LKP2 members. All PHR members underwent purifying selection. In addition, the transcript expression profiles of PHR genes in different tissue and in response to exogenous ABA, and abiotic stress conditions suggested their multiple biological significance. This study is helpful in understanding the molecular evolution characteristics of Brassica PHRs and lays the foundation for their functional characterization.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassica , Proteínas F-Box , Fitocromo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica/genética , Brassica/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Criptocromos/genética , Evolución Molecular , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas , Fototropinas/genética , Filogenia , Fitocromo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
J Exp Bot ; 73(18): 6034-6051, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35781490

RESUMEN

Chloroplast movements are controlled by ultraviolet/blue light through phototropins. In Arabidopsis thaliana, chloroplast accumulation at low light intensities and chloroplast avoidance at high light intensities are observed. These responses are controlled by two homologous photoreceptors, the phototropins phot1 and phot2. Whereas chloroplast accumulation is triggered by both phototropins in a partially redundant manner, sustained chloroplast avoidance is elicited only by phot2. Phot1 is able to trigger only a small, transient chloroplast avoidance, followed by the accumulation phase. The source of this functional difference is not fully understood at either the photoreceptor or the signalling pathway levels. In this article, we review current understanding of phototropin functioning and try to dissect the differences that result in signalling to elicit two distinct chloroplast responses. First, we focus on phototropin structure and photochemical and biochemical activity. Next, we analyse phototropin expression and localization patterns. We also summarize known photoreceptor systems controlling chloroplast movements. Finally, we focus on the role of environmental stimuli in controlling phototropin activity. All these aspects impact the signalling to trigger chloroplast movements and raise outstanding questions about the mechanism involved.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fototropinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Luz , Fosfoproteínas/metabolismo
17.
Plant J ; 111(1): 205-216, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35476214

RESUMEN

Plant cells alter the intracellular positions of chloroplasts to ensure efficient photosynthesis, a process controlled by the blue light receptor phototropin. Chloroplasts migrate toward weak light (accumulation response) and move away from excess light (avoidance response). Chloroplasts are encircled by the endoplasmic reticulum (ER), which forms a complex network throughout the cytoplasm. To ensure rapid chloroplast relocation, the ER must alter its structure in conjunction with chloroplast relocation movement, but little is known about the underlying mechanism. Here, we searched for interactors of phototropin in the liverwort Marchantia polymorpha and identified a RETICULON (RTN) family protein; RTN proteins play central roles in ER tubule formation and ER network maintenance by stabilizing the curvature of ER membranes in eukaryotic cells. Marchantia polymorpha RTN1 (MpRTN1) is localized to ER tubules and the rims of ER sheets, which is consistent with the localization of RTNs in other plants and heterotrophs. The Mprtn1 mutant showed an increased ER tubule diameter, pointing to a role for MpRTN1 in ER membrane constriction. Furthermore, Mprtn1 showed a delayed chloroplast avoidance response but a normal chloroplast accumulation response. The live cell imaging of ER dynamics revealed that ER restructuring was impaired in Mprtn1 during the chloroplast avoidance response. These results suggest that during the chloroplast avoidance response, MpRTN1 restructures the ER network and facilitates chloroplast movement via an interaction with phototropin. Our findings provide evidence that plant cells respond to fluctuating environmental conditions by controlling the movements of multiple organelles in a synchronized manner.


Asunto(s)
Marchantia , Cloroplastos/metabolismo , Retículo Endoplásmico/metabolismo , Luz , Marchantia/fisiología , Fototropinas/metabolismo
18.
Plant Cell ; 34(6): 2328-2342, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35285491

RESUMEN

The Arabidopsis (Arabidopsis thaliana) leaf veins bundle-sheath cells (BSCs)-a selective barrier to water and solutes entering the mesophyll-increase the leaf radial hydraulic conductance (Kleaf) by acidifying the xylem sap by their plasma membrane H+-ATPase,  AHA2. Based on this and on the BSCs' expression of phototropins PHOT1 and PHOT2, and the known blue light (BL)-induced Kleaf increase, we hypothesized that, resembling the guard cells, BL perception by the BSCs' phots activates its H+-ATPase, which, consequently, upregulates Kleaf. Indeed, under BL, the Kleaf of the knockout mutant lines phot1-5, phot2-1, phot1-5 phot2-1, and aha2-4 was lower than that of the wild-type (WT). BSC-only-directed complementation of phot1-5 or aha2-4 by PHOT1 or AHA2, respectively, restored the BL-induced Kleaf increase. BSC-specific silencing of PHOT1 or PHOT2 prevented such Kleaf increase. A xylem-fed kinase inhibitor (tyrphostin 9) replicated this also in WT plants. White light-ineffective in the phot1-5 mutant-acidified the xylem sap (relative to darkness) in WT and in the PHOT1-complemented phot1-5. These results, supported by BL increase of BSC protoplasts' water permeability and cytosolic pH and their hyperpolarization by BL, identify the BSCs as a second phot-controlled water conductance element in leaves, in series with stomatal conductance. Through both, BL regulates the leaf water balance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Fototropinas/genética , Fototropinas/metabolismo , Hojas de la Planta/metabolismo , Haz Vascular de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Agua/metabolismo
20.
Plant Signal Behav ; 17(1): 2027138, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35068333

RESUMEN

The blue light photoreceptors, phototropin 1 (phot1) and phot2, and their signal transducer, NONPHOTOTROPIC HYPOCOTYL3 (NPH3), are activators of the phototropic responses of Arabidopsis hypocotyls. In a recent study, we reported that the control of NPH3 phosphorylation at serine 7 (S7: or S5), S213, S223, S237, S467, S474 (or S476), and S722 (or S723) contributes to the photosensory adaptation of phot1 signaling during the phototropic response. Phosphomimetic NPH3SE mutant and unphosphorylatable NPH3SA mutant on those serine residues function efficiently under blue light conditions at fluence rates of 10-5 µmol m-2 s-1 and 10-3 µmol m-2 s-1 or more, respectively. We here demonstrate that phosphomimetic NPH3SE, but not unphosphorylatable NPH3SA, promotes phot2-dependent phototropism under blue light condition at 100 µmol m-2 s-1. This result suggests that phot1 negatively controls phot2 signaling through the dephosphorylation of NPH3 at those residues and that the hyperactivation of phot1- and phot2-NPH3 complexes does not occur at the same time under high intensity blue light. We hypothesize that the dephosphorylation of NPH3 on those serine residues suppresses both phot1 and phot2 signaling, which results in different impacts on phot1- and phot2-dependent hypocotyl phototropism due to the differences in the photosensitivity and activation levels of phot1 and phot2.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hipocótilo/metabolismo , Luz , Fosfoproteínas/metabolismo , Fosforilación , Fototropinas/metabolismo , Fototropismo/genética , Serina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...