Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.334
Filtrar
1.
PLoS One ; 19(5): e0303060, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38723008

RESUMEN

In the current study we investigated the impact of combination of rutin and vitamin A on glycated products, the glyoxalase system, oxidative markers, and inflammation in animals fed a high-fat high-fructose (HFFD) diet. Thirty rats were randomly divided into six groups (n = 5). The treatments, metformin (120 mg/kg), rutin (100 mg/kg), vitamin A (43 IU/kg), and a combination of rutin (100 mg/kg) and vitamin A (43 IU/kg) were given to relevant groups of rats along with high-fructose high-fat diet for 42 days. HbA1c, D-lactate, Glyoxylase-1, Hexokinase 2, malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), nuclear transcription factor-B (NF-κB), interleukin-6 (IL-6), interleukin-8 (IL-8) and histological examinations were performed after 42 days. The docking simulations were conducted using Auto Dock package. The combined effects of rutin and vitamin A in treated rats significantly (p < 0.001) reduced HbA1c, hexokinase 2, and D-lactate levels while preventing cellular damage. The combination dramatically (p < 0.001) decreased MDA, CAT, and GPx in treated rats and decreased the expression of inflammatory cytokines such as IL-6 andIL-8, as well as the transcription factor NF-κB. The molecular docking investigations revealed that rutin had a strong affinity for several important biomolecules, including as NF-κB, Catalase, MDA, IL-6, hexokinase 2, and GPx. The results propose beneficial impact of rutin and vitamin A as a convincing treatment strategy to treat AGE-related disorders, such as diabetes, autism, alzheimer's, atherosclerosis.


Asunto(s)
Dieta Alta en Grasa , Fructosa , Hiperglucemia , Inflamación , Estrés Oxidativo , Rutina , Vitamina A , Animales , Rutina/farmacología , Estrés Oxidativo/efectos de los fármacos , Fructosa/efectos adversos , Ratas , Dieta Alta en Grasa/efectos adversos , Vitamina A/farmacología , Vitamina A/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Masculino , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hiperglucemia/inducido químicamente , Simulación del Acoplamiento Molecular , Ratas Wistar , Modelos Animales de Enfermedad , Glicosilación/efectos de los fármacos , Metformina/farmacología , Hemoglobina Glucada/metabolismo , FN-kappa B/metabolismo , Hexoquinasa/metabolismo , Catalasa/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732052

RESUMEN

Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner.


Asunto(s)
delta-5 Desaturasa de Ácido Graso , Dieta Occidental , Ácido Graso Desaturasas , Hepatocitos , Ratas Sprague-Dawley , Animales , Ácido Graso Desaturasas/metabolismo , Ácido Graso Desaturasas/genética , Masculino , Ratas , delta-5 Desaturasa de Ácido Graso/metabolismo , Dieta Occidental/efectos adversos , Hepatocitos/metabolismo , Fenotipo , Modelos Animales de Enfermedad , Dependovirus/genética , Hígado/metabolismo , Triglicéridos/metabolismo , Fructosa/metabolismo
3.
Am J Psychiatry ; 181(5): 403-411, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38706338

RESUMEN

OBJECTIVE: There have been no well-controlled and well-powered comparative trials of topiramate with other pharmacotherapies for alcohol use disorder (AUD), such as naltrexone. Moreover, the literature is mixed on the effects of two polymorphisms-rs2832407 (in GRIK1) and rs1799971 (in OPRM1)-on response to topiramate and naltrexone, respectively. The authors sought to examine the comparative effectiveness of topiramate and naltrexone in improving outcomes in AUD and to examine the role of the rs2832407 and rs1799971 polymorphisms, respectively, on response to these medications. METHODS: In a 12-week, double-blind, placebo-controlled, randomized, multisite, genotype-stratified (rs2832407 and rs1799971) clinical trial comparing topiramate and naltrexone in treating AUD, 147 patients with AUD were randomly assigned to treatment with topiramate or naltrexone, stratified by genotype (rs2832407*CC and *AC/AA genotypes and rs1799971*AA and *AG/GG genotypes). The predefined primary outcome was number of heavy drinking days per week. Predefined secondary outcomes included standard drinks per drinking day per week, body mass index (BMI), craving, markers of liver injury, mood, and adverse events. RESULTS: For the number of heavy drinking days per week, there was a near-significant time-by-treatment interaction. For the number of standard drinks per drinking day per week, there was a significant time-by-treatment interaction, which favored topiramate. There were significant time-by-treatment effects, with greater reductions observed with topiramate than naltrexone for BMI, craving, and gamma-glutamyltransferase level. Withdrawal due to side effects occurred in 8% and 5% of the topiramate and naltrexone groups, respectively. Neither polymorphism showed an effect on treatment response. CONCLUSIONS: Topiramate is at least as effective and safe as the first-line medication, naltrexone, in reducing heavy alcohol consumption, and superior in reducing some clinical outcomes. Neither rs2832407 nor rs1799971 had effects on topiramate and naltrexone treatments, respectively.


Asunto(s)
Alcoholismo , Genotipo , Naltrexona , Receptores de Ácido Kaínico , Topiramato , Humanos , Topiramato/uso terapéutico , Naltrexona/uso terapéutico , Método Doble Ciego , Masculino , Femenino , Alcoholismo/tratamiento farmacológico , Alcoholismo/genética , Adulto , Persona de Mediana Edad , Receptores de Ácido Kaínico/genética , Receptores Opioides mu/genética , Resultado del Tratamiento , Antagonistas de Narcóticos/uso terapéutico , Polimorfismo de Nucleótido Simple , Ansia/efectos de los fármacos , Fructosa/análogos & derivados , Fructosa/uso terapéutico
4.
Front Immunol ; 15: 1375461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711514

RESUMEN

Excess dietary fructose consumption has been long proposed as a culprit for the world-wide increase of incidence in metabolic disorders and cancer within the past decades. Understanding that cancer cells can gradually accumulate metabolic mutations in the tumor microenvironment, where glucose is often depleted, this raises the possibility that fructose can be utilized by cancer cells as an alternative source of carbon. Indeed, recent research has increasingly identified various mechanisms that show how cancer cells can metabolize fructose to support their proliferating and migrating needs. In light of this growing interest, this review will summarize the recent advances in understanding how fructose can metabolically reprogram different types of cancer cells, as well as how these metabolic adaptations can positively support cancer cells development and malignancy.


Asunto(s)
Fructosa , Neoplasias , Microambiente Tumoral , Humanos , Fructosa/metabolismo , Fructosa/efectos adversos , Neoplasias/metabolismo , Neoplasias/etiología , Animales , Reprogramación Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Reprogramación Metabólica
5.
Arch Biochem Biophys ; 756: 110021, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697344

RESUMEN

The physiological efficiency of cells largely depends on the possibility of metabolic adaptations to changing conditions, especially on the availability of nutrients. Central carbon metabolism has an essential role in cellular function. In most cells is based on glucose, which is the primary energy source, provides the carbon skeleton for the biosynthesis of important cell macromolecules, and acts as a signaling molecule. The metabolic flux between pathways of carbon metabolism such as glycolysis, pentose phosphate pathway, and mitochondrial oxidative phosphorylation is dynamically adjusted by specific cellular economics responding to extracellular conditions and intracellular demands. Using Saccharomyces cerevisiae yeast cells and potentially similar fermentable carbon sources i.e. glucose and fructose we analyzed the parameters concerning the metabolic status of the cells and connected with them alteration in cell reproductive potential. Those parameters were related to the specific metabolic network: the hexose uptake - glycolysis and activity of the cAMP/PKA pathway - pentose phosphate pathway and biosynthetic capacities - the oxidative respiration and energy generation. The results showed that yeast cells growing in a fructose medium slightly increased metabolism redirection toward respiratory activity, which decreased pentose phosphate pathway activity and cellular biosynthetic capabilities. These differences between the fermentative metabolism of glucose and fructose, lead to long-term effects, manifested by changes in the maximum reproductive potential of cells.


Asunto(s)
Metabolismo Energético , Fermentación , Fructosa , Glucosa , Glucólisis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fructosa/metabolismo , Glucosa/metabolismo , Vía de Pentosa Fosfato
6.
Bioresour Technol ; 401: 130753, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685516

RESUMEN

This work proposes a process design and techno-economic assessment for the production of γ-valerolactone from lignocellulosic derived fructose at industrial scale, with the aim of exploring its feasibility, identifying potential obstacles, and suggesting improvements in the context of France. First, the conceptual process design is developed, the process modelled and optimized. Second, different potential scenarios for the energy supply to the process are analyzed by means of a set of economic key performance indicators, aimed at highlighting the best potential profitability scenario for the sustainable exploitation of waste biomass in the context analyzed. The lowest Minimum Selling Price for GVL is obtained at 10 kt/y plant fueled by biomass, i.e. 1.89 €/kg, along with the highest end-of-live revenue, i.e. 113 M€. Finally, a sensitivity and uncertainties analysis, based on Monte Carlo simulations, are carried out on the results in order to test their robustness with respect to key input parameters.


Asunto(s)
Biomasa , Fructosa , Lactonas , Lactonas/química , Fructosa/química , Biotecnología/métodos , Biotecnología/economía , Método de Montecarlo
7.
Biosci Rep ; 44(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38660995

RESUMEN

Several models of mice-fed high-fat diets have been used to trigger non-alcoholic steatohepatitis and some chemical substances, such as carbon tetrachloride. The present study aimed to evaluate the joint action of a high-fat diet and CCl4 in developing a short-term non-alcoholic steatohepatitis model. C57BL6/J mice were divided into two groups: standard diet-fed (SD), the high-fat diet-fed (HFD) and HFD + fructose-fed and carbon tetrachloride (HFD+CCl4). The animals fed with HFD+CCl4 presented increased lipid deposition compared with both SD and HFD mice. Plasma cholesterol was increased in animals from the HFD+CCl4 group compared with the SD and HFD groups, without significant differences between the SD and HFD groups. Plasma triglycerides showed no significant difference between the groups. The HFD+CCl4 animals had increased collagen deposition in the liver compared with both SD and HFD groups. Hydroxyproline was also increased in the HFD+CCl4 group. Liver enzymes, alanine aminotransferase and aspartate aminotransferase, were increased in the HFD+CCl4 group, compared with SD and HFD groups. Also, CCl4 was able to trigger an inflammatory process in the liver of HFD-fed animals by promoting an increase of ∼2 times in macrophage activity, ∼6 times in F4/80 gene expression, and pro-inflammatory cytokines (IL-1b and TNFa), in addition to an increase in inflammatory pathway protein phosphorylation (IKKbp). HFD e HFD+CCl4 animals increased glucose intolerance compared with SD mice, associated with reduced insulin-stimulated AKT activity in the liver. Therefore, our study has shown that short-term HFD feeding associated with fructose and CCl4 can trigger non-alcoholic steatohepatitis and cause damage to glucose metabolism.


Asunto(s)
Tetracloruro de Carbono , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hígado , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Triglicéridos/sangre , Triglicéridos/metabolismo , Fructosa/efectos adversos
8.
Int J Biol Macromol ; 267(Pt 1): 131471, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599419

RESUMEN

The conversion of glucose into fructose can transform cellulose into high-value chemicals. This study introduces an innovative synthesis method for creating an MgO-based ordered mesoporous carbon (MgO@OMC) catalyst, aimed at the efficient isomerization of glucose into fructose. Throughout the synthesis process, lignin serves as the exclusive carbon precursor, while Mg2+ functions as both a crosslinking agent and a metallic active center. This enables a one-step synthesis of MgO@OMC via a solvent-induced evaporation self-assembly (EISA) method. The synthesized MgO@OMCs exhibit an impeccable 2D hexagonal ordered mesoporous structure, in addition to a substantial specific surface area (378.2 m2/g) and small MgO nanoparticles (1.52 nm). Furthermore, this catalyst was shown active, selective, and reusable in the isomerization of glucose to fructose. It yields 41 % fructose with a selectivity of up to 89.3 % at a significant glucose loading of 7 wt% in aqueous solution over MgO0.5@OMC-600. This performance closely rivals the current maximum glucose isomerization yield achieved with solid base catalysts. Additionally, the catalyst retains a fructose selectivity above 60 % even after 4 cycles, a feature attributable to its extended ordered mesoporous structure and the spatial confinement effect of the OMCs, bestowing it with high catalytic efficiency.


Asunto(s)
Carbono , Fructosa , Glucosa , Lignina , Óxido de Magnesio , Fructosa/química , Lignina/química , Glucosa/química , Carbono/química , Porosidad , Óxido de Magnesio/química , Catálisis , Isomerismo
9.
Food Funct ; 15(9): 5063-5072, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38656306

RESUMEN

As the correlation between high fructose intake and metabolism-related diseases (e.g., obesity, fatty liver, and type 2 diabetes) has been increasingly reported, the health benefits of consuming ice wine high in fructose have been called into question. In this study, 6-week-old male C57BL/6J mice were divided into control (pure water), fructose (130 g L-1 fructose solution), alcohol (11% alcohol solution), low-dose (50% diluted ice wine) and high-dose ice wine (100% ice wine) groups to investigate the effects and mechanisms of short-term (4 weeks) ice wine intake on hepatic glycolipid metabolism in mice. The results showed that short-term consumption of ice wine suppressed the elevation of low-density lipoprotein cholesterol content and did not cause hepatic lipid accumulation compared with those of the fructose group. Meanwhile, ice wine had no significant effect on lipogenesis although it inhibited fatty acid oxidation via the PPARα/CPT-1α pathway. Compared with the control group, ice wine interfered with the elevation of fasting glucose and the insulin resistance index in a dose-dependent manner, and led to an increase in plasma uric acid levels, which may further contribute to the disruption of glucolipid metabolism. Overall, short-term moderate intake of ice wine over a 4-week period may not significantly affect hepatic glycolipid metabolism in C57BL/6J mice for the time being.


Asunto(s)
Glucolípidos , Hígado , Ratones Endogámicos C57BL , Vino , Animales , Masculino , Hígado/metabolismo , Vino/análisis , Ratones , Glucolípidos/metabolismo , Resistencia a la Insulina , Fructosa , Metabolismo de los Lípidos/efectos de los fármacos
10.
Molecules ; 29(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38611734

RESUMEN

Intracellular protein complexes, known as inflammasomes, activate caspase-1 and induce the secretion of pro-inflammatory cytokines, namely interleukin (IL)-1ß and -18. Korean Red Ginseng extract (RGE) is a known immunomodulator and a potential candidate for the regulation of inflammasomes. The saponins, such as ginsenosides, of RGE inhibit inflammasome signaling, while non-saponin substances containing amino sugars promote the priming step, up-regulating inflammasome components (pro-IL-1ß, NLRP3, caspase-1, and Asc). In this study, the amino sugar-enriched fraction (ASEF), which increases only non-saponin components, including amino sugars, without changing the concentration of saponin substances, was used to investigate whether saponin or non-saponin components of RGE would have a greater impact on the priming step. When murine macrophages were treated with ASEF, the gene expression of inflammatory cytokines (IL-1α, TNFα, IL-6, and IL-10) increased. Additionally, ASEF induced the priming step but did not affect the inflammasome activation step, such as the secretion of IL-1ß, cleavage of caspase-1, and formation of Asc pyroptosome. Furthermore, the upregulation of gene expression of inflammasome components by ASEF was blocked by inhibitors of Toll-like receptor 4 signaling. Maltol, the main constituent of ASEF, promoted the priming step but inhibited the activation step of the inflammasome, while arginine, sugars, arginine-fructose-glucose, and fructose-arginine, the other main constituents of ASEF, had no effect on either step. Thus, certain amino sugars in RGE, excluding maltol, are believed to be the components that induce the priming step. The priming step that prepares the NLRP3 inflammasome for activation appears to be induced by amino sugars in RGE, thereby contributing to the immune-boosting effects of RGE.


Asunto(s)
Ginsenósidos , Inflamasomas , Animales , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Amino Azúcares , Arginina , Caspasa 1 , Fructosa , Interleucina-1alfa , Interleucina-1beta , Extractos Vegetales/farmacología
11.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612868

RESUMEN

Natural rare sugars are an alternative category of sweeteners with positive physiologic and metabolic effects both in in vitro and animal models. D-allulose is a D-fructose epimer that combines 70% sucrose sweetness with the advantage of an extremely low energy content. However, there are no data about the effect of D-allulose against adipose dysfunction; thus, it remains to be confirmed whether D-allulose is useful in the prevention and in treatment of adipose tissue alterations. With this aim, we evaluated D-allulose's preventive effects on lipid accumulation in 3T3-L1 murine adipocytes exposed to palmitic acid (PA), a trigger for hypertrophic adipocytes. D-allulose in place of glucose prevented adipocyte hypertrophy and the activation of adipogenic markers C/EBP-ß and PPARγ induced by high PA concentrations. Additionally, D-allulose pretreatment inhibited the NF-κB pathway and endoplasmic reticulum stress caused by PA, through activation of the Nrf2 pathway. Interestingly, these effects were also observed as D-allulose post PA treatment. Although our data need to be confirmed through in vivo models, our findings suggest that incorporating D-allulose as a glucose substitute in the diet might have a protective role in adipocyte function and support a unique mechanism of action in this sugar as a preventive or therapeutic compound against PA lipotoxicity through the modulation of pathways connected to lipid transport and metabolism.


Asunto(s)
Fructosa , Ácido Palmítico , Animales , Ratones , Ácido Palmítico/toxicidad , Células 3T3-L1 , Adipocitos , Hipertrofia , Estrés del Retículo Endoplásmico , Glucosa
12.
Nutrients ; 16(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612947

RESUMEN

We aimed to investigate how dietary fructose and sodium impact blood pressure and risk of hypertensive target organ damage 10 years later. Data from n = 3116 individuals were obtained from the Coronary Artery Risk Development in Young Adults (CARDIA) study. Four groups were identified based on the four possible combinations of the lower and upper 50th percentile for sodium (in mg) and fructose (expressed as percent of total daily calories). Differences among groups were ascertained and logistic regression analyses were used to assess the risk of hypertensive target organ damage (diastolic dysfunction, coronary calcification and albuminuria). Individuals in the low-fructose + low-sodium group were found to have lower SBP compared to those in the low-fructose + high-sodium and high-fructose + high-sodium groups (p < 0.05). The highest risk for hypertensive target organ damage was found for albuminuria only in the high-fructose + high-sodium group (OR = 3.328, p = 0.006) while female sex was protective across all groups against coronary calcification. Our findings highlight that sodium alone may not be the culprit for hypertension and hypertensive target organ damage, but rather when combined with an increased intake of dietary fructose, especially in middle-aged individuals.


Asunto(s)
Calcinosis , Hipertensión , Persona de Mediana Edad , Adulto Joven , Femenino , Humanos , Vasos Coronarios , Sodio , Albuminuria , Hipertensión/epidemiología , Hipertensión/etiología , Dieta Hiposódica , Fructosa/efectos adversos
13.
Nutrients ; 16(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612973

RESUMEN

Worldwide, childhood obesity cases continue to rise, and its prevalence is known to increase the risk of non-communicable diseases typically found in adults, such as cardiovascular disease and type 2 diabetes mellitus. Thus, comprehending its multiple causes to build healthier approaches and revert this scenario is urgent. Obesity development is strongly associated with high fructose intake since the excessive consumption of this highly lipogenic sugar leads to white fat accumulation and causes white adipose tissue (WAT) inflammation, oxidative stress, and dysregulated adipokine release. Unfortunately, the global consumption of fructose has increased dramatically in recent years, which is associated with the fact that fructose is not always evident to consumers, as it is commonly added as a sweetener in food and sugar-sweetened beverages (SSB). Therefore, here, we discuss the impact of excessive fructose intake on adipose tissue biology, its contribution to childhood obesity, and current strategies for reducing high fructose and/or free sugar intake. To achieve such reductions, we conclude that it is important that the population has access to reliable information about food ingredients via food labels. Consumers also need scientific education to understand potential health risks to themselves and their children.


Asunto(s)
Diabetes Mellitus Tipo 2 , Obesidad Infantil , Niño , Adulto , Humanos , Obesidad Infantil/epidemiología , Obesidad Infantil/etiología , Obesidad Infantil/prevención & control , Tejido Adiposo , Tejido Adiposo Blanco , Fructosa/efectos adversos
14.
Nutrients ; 16(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612992

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic condition whose impact on human health is increasingly significant. The imbalance of the gut microbiome, linked to insulin resistance, heightened intestinal permeability, and pro-inflammatory reactions, may be the linchpin in the development of NAFLD. In our research, the impact of Lactiplantibacillus plantarum ZDY2013 administration for 12 weeks on gut microbiota dysbiosis induced by a high-fat, high-fructose, high-cholesterol (FHHC) diet in male C57BL/6n mice was investigated. Research results presented that the intervention of L. plantarum ZDY2013 in mice fed with the FHHC diet could restore their liver function and regulate oxidative stress. Compared to mice in the model group, the intervention of L. plantarum ZDY2013 significantly regulated the gut microbiota, inhibited the LPS/NF-κB pathway, and led to a lower level of colonic inflammation in the mice administered with L. plantarum ZDY2013. It also improved insulin resistance to regulate the PI3K/Akt pathway and lipid metabolism, thereby resulting in reduced fat accumulation in the liver. The above results suggest that the intervention of L. plantarum ZDY2013 can hinder the progression of diet-induced NAFLD by reducing inflammation to regulate the PI3K/Akt pathway and regulating gut microbiota disturbance.


Asunto(s)
Microbioma Gastrointestinal , Hipercolesterolemia , Resistencia a la Insulina , Lactobacillus plantarum , Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Fructosa , Inflamación/tratamiento farmacológico
15.
BMC Gastroenterol ; 24(1): 143, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654193

RESUMEN

BACKGROUND: Food malabsorption and intolerance is implicated in gastrointestinal symptoms among patients with irritable bowel syndrome (IBS). Key triggers include fructose and fructan. Prior studies examined fructose and fructan malabsorption separately in IBS patients. None have concurrently assessed both within the same patient group. We aimed to investigate the association between fructose and fructan malabsorption in the same patients with IBS using hydrogen breath testing (HBT). METHODS: We retrospectively identified patients with IBS who underwent fructose and fructan HBTs and abstracted their results from the electronic medical record. Fructose and fructan HBTs were performed by administering a 25 g fructose solution or 10 g fructan solution, followed by breath hydrogen readings every 30 min for 3 h. Patients were positive for fructose or fructan malabsorption if breath hydrogen levels exceeded 20 ppm. RESULTS: Of 186 IBS patients, 71 (38.2%) were positive for fructose malabsorption and 91 (48.9%) were positive for fructan malabsorption. Of these patients, 42 (22.6%) were positive for fructose malabsorption and fructan malabsorption. Positive fructose HBT readings were significantly associated with positive fructan HBT readings (p = 0.0283). Patients positive for fructose malabsorption or fructan malabsorption had 1.951 times higher odds of testing positive for the other carbohydrate. CONCLUSIONS: Our results reveal a clinically significant association between fructose malabsorption and fructan malabsorption in patients with IBS. Fructan malabsorption should be assessed in patients with fructose malabsorption, and vice versa. Further studies are required to identify the mechanisms underlying our findings.


Asunto(s)
Pruebas Respiratorias , Fructanos , Fructosa , Síndrome del Colon Irritable , Síndromes de Malabsorción , Humanos , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/complicaciones , Fructosa/metabolismo , Femenino , Masculino , Estudios Retrospectivos , Síndromes de Malabsorción/metabolismo , Síndromes de Malabsorción/etiología , Síndromes de Malabsorción/complicaciones , Fructanos/metabolismo , Adulto , Persona de Mediana Edad , Hidrógeno/análisis , Hidrógeno/metabolismo
16.
Sci Rep ; 14(1): 8720, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622258

RESUMEN

This article examined the effect of geographical (different climate conditions) and floral origins on some quality parameters of honey including the activity of diastase enzyme. Moreover, some non-quality parameters were investigated such as the pH, fructose, glucose, ratio of fructose/glucose and invertase. The honey samples were collected from Asir (cold climate) and Jazan (hot climate) regions at the southwestern part of Saudi Arabia. The geographical origin significantly affected the mean value moisture of the Acacia honey (p-value = 0.02), conductivity of the polyfloral honey (p-value = 0.03), sucrose of the Acacia honey (p-value = 0.02), diastase activity of the Acacia (p-value = 0.001), Ziziphus (p-value = 0.046) and polyfloral honey (p-value ≤ 0.001), fructose of the Acacia honey (p-value = 0.01), glucose of the Ziziphus honey (p-value = 0.03), fructose/ glucose ratio of the Ziziphus honey (p-value = 0.035), and invertase activity of the polyfloral honey (p-value ≤ 0.001). Regarding the effect of the floral origin of the honey from Asir region, the sucrose percentage of the Acacia honey was significantly more than that of the polyfloral honey (p- value = 0.003), the diastase activity of the Acacia honey was significantly more than its activity in the Ziziphus honey (p- value = 0.044), glucose percentage of the Ziziphus honey was significantly more the glucose percentage of the Acacia honey (p-value = 0.009) and the fructose/ glucose ratio of the Ziziphus honey was significantly more than that of the Acacia and polyforal honeys (p-value = 0.011 and p-value = 0.045, respectively). Concerning the significant effects of the floral origin on the quality parameters of the honey samples from Jazan region, the moisture of the Ziziphus honey was significantly increased when compared to the moisture of the Acacia honey (p-value = 0.038), the acidity of the polfloral honey was significantly more than the acidity of the Acacia honey (p-value = 0.049), the sum of fructose and glucose of the polyfloral honey was significantly increased compared to that of the Acacia honey (p-value = 0.015), the pH of the Ziziphus hiney was significantly more than the pH of the polyfloral honey (0.011) and the fructose of the polfloral honey was significantly more than that of the Acacia honey (p-value = 0.031). The effect of the geographical origin of the honey samples on their quality parameters depends on their floral origin and the effect of their floral origin differs according to their geographical origin. This article suggests considering collectively the geographical and floral origins effect when developing honey standards. However, the Codex standards for honey started considering this issue when it changed the standard concentration of HMF in honey from not more than 80-40 mg/Kg for honeys from cold climate and 80 mg/Kg for honeys from hot climates.


Asunto(s)
Acacia , Miel , Arabia Saudita , beta-Fructofuranosidasa , Fructosa , Glucosa , Sacarosa , Amilasas
17.
Front Immunol ; 15: 1375453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596671

RESUMEN

The overconsumption of dietary fructose has been proposed as a major culprit for the rise of many metabolic diseases in recent years, yet the relationship between a high fructose diet and neurological dysfunction remains to be explored. Although fructose metabolism mainly takes place in the liver and intestine, recent studies have shown that a hyperglycemic condition could induce fructose metabolism in the brain. Notably, microglia, which are tissue-resident macrophages (Mφs) that confer innate immunity in the brain, also express fructose transporters (GLUT5) and are capable of utilizing fructose as a carbon fuel. Together, these studies suggest the possibility that a high fructose diet can regulate the activation and inflammatory response of microglia by metabolic reprogramming, thereby altering the susceptibility of developing neurological dysfunction. In this review, the recent advances in the understanding of microglia metabolism and how it supports its functions will be summarized. The results from both in vivo and in vitro studies that have investigated the mechanistic link between fructose-induced metabolic reprogramming of microglia and its function will then be reviewed. Finally, areas of controversies and their associated implications, as well as directions that warrant future research will be highlighted.


Asunto(s)
Fructosa , Microglía , Fructosa/metabolismo , Microglía/metabolismo , Metabolismo de los Hidratos de Carbono , Hígado/metabolismo , Encéfalo/metabolismo
18.
Cryo Letters ; 45(2): 134-138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38557992

RESUMEN

BACKGROUND: Examining semen cryopreservation in Calomys laucha offers valuable insights for reproductive research and species conservation. OBJECTIVE: To determine the most effective sugar for the cryopreservation of C. laucha semen. MATERIALS AND METHODS: Using 36 epididymides from C. laucha, semen samples were diluted in a 3% skimmed milk medium supplemented with one of four sugars (glucose, fructose, lactose, or sucrose) at a concentration of 0.3 M. These mixtures underwent a conditioning phase at 37 degree C for 10 min, cooled to -80 degree C for another 10 min, and were subsequently stored in liquid nitrogen. RESULTS: Upon thawing, samples treated with lactose and glucose solutions show superior sperm motility, achieving 8.2% and 10.0% respectively, in contrast to the fructose (2.0%) and sucrose (4.1%) mixtures. Furthermore, samples preserved in glucose registered the highest sperm penetration rates, reaching 44.9%. CONCLUSION: Our findings suggest that a cryopreservation medium containing 0.3 M glucose can contribute to the safeguarding C. laucha rodent semen. https://doi.org/10.54680/fr24210110612.


Asunto(s)
Preservación de Semen , Semen , Animales , Masculino , Criopreservación , Lactosa , Roedores , Motilidad Espermática , Glucosa/farmacología , Fructosa , Sacarosa/farmacología , Espermatozoides , Crioprotectores
19.
Appl Microbiol Biotechnol ; 108(1): 279, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564031

RESUMEN

A novel L-rhamnose isomerase was identified and cloned from an extreme-temperature aquatic habitat metagenome. The deduced amino acid sequence homology suggested the possible source of this metagenomic sequence to be Chloroflexus islandicus. The gene expression was performed in a heterologous host, Escherichia coli, and the recombinant protein L-rhamnose isomerase (L-RIM) was extracted and purified. The catalytic function of L-RIM was characterized for D-allulose to D-allose bioconversion. D-Allose is a sweet, rare sugar molecule with anti-tumour, anti-hypertensive, cryoprotective, and antioxidative properties. The characterization experiments showed L-RIM to be a Co++- or Mn++-dependent metalloenzyme. L-RIM was remarkably active (~ 80%) in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges. Optimal L-RIM activity with D-allulose as the substrate occurred at pH 7.0 and 75 °C. The enzyme was found to be excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively. L-RIM catalysis conducted at slightly acidic pH of 6.0 and 70 °C achieved biosynthesis of about 30 g L-1 from 100 g L-1 D-allulose in 3 h. KEY POINTS: • The present study explored an extreme temperature metagenome to identify a novel gene that encodes a thermostable l-rhamnose isomerase (L-RIM) • L-RIM exhibits substantial (80% or more) activity in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges • L-RIM is excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively.


Asunto(s)
Isomerasas Aldosa-Cetosa , Fructosa , Glucosa , Antihipertensivos , Escherichia coli/genética
20.
Arch Ital Urol Androl ; 96(1): 12186, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38572723

RESUMEN

OBJECTIVE: Various factors, such as obstructive azoospermia, cause infertility in men. Biochemical examination of ejaculate, especially measurement of fructose, can be an additional investigation that can be used for this diagnosis in reproductive health. Examination of fructose is carried out after routine ejaculate analysis, resulting in prolonging the examination time so that it will affect the measurement of fructose level in the ejaculate and the accuracy of the diagnosis. This study aims to determine the best timing and procedure for measurement of fructose using a semiautomatic method. METHODS: This research is an analytic observational study conducted at Dr. Soetomo General Hospital, Surabaya. A total of 13 ejaculate samples from infertile male patients who met the inclusion criteria were evaluated. Each ejaculate was divided into eight aliquots that were examined for fructose using a semiautomated method after different intervals of time and centrifugation modalities. RESULTS: This study showed a significant difference in fructose levels when aliquots were centrifuged and examined immediately or after different interval of time (p=0.036). In addition, aliquots left standing for more than 60 minutes (p=0.012) and 120 minutes (p<0.001) before centrifugation, showed significantly lower levels compared to aliquots that were centrifuged and then immediately examined. CONCLUSIONS: We suggest that measuring fructose immediately after centrifugation is more reliable than measuring fructose left standing before or after centrifugation. Leaving the ejaculate standing will reduce the fructose level so that it does not resemble its real level.


Asunto(s)
Azoospermia , Infertilidad Masculina , Humanos , Masculino , Fructosa , Infertilidad Masculina/diagnóstico , Infertilidad Masculina/etiología , Centrifugación , Espermatozoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA