Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.769
Filtrar
1.
Eur J Cardiothorac Surg ; 66(2)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39120890

RESUMEN

OBJECTIVES: Pharmacological postconditioning can protect against myocardial ischaemia-reperfusion injury during cardiac surgery with extracorporeal circulation. The aim of this study was to observe the protective effects of fructose-1,6-bisphosphate (FDP) postconditioning on myocardial ischaemia-reperfusion injury in patients undergoing cardiac valve replacement with extracorporeal circulation. METHODS: Patients undergoing elective mitral valve replacement and/or aortic valve replacement were divided into normal saline postconditioning group (NS group) and FDP postconditioning group (FDP group). The primary outcome was the plasma concentration of creatine kinase-MB (CK-MB). The secondary outcomes were the plasma concentrations of lactate dehydrogenase, CK, high-sensitivity C-reactive protein, alpha-hydroxybutyrate dehydrogenase and cardiac troponin I, the spontaneous cardiac rhythm recovery profile, the extracorporeal circulation time and duration of surgery, intensive care unit and postoperative hospitalization. RESULTS: Forty patients were randomly assigned to receive intervention and included in the analysis. The serum concentrations of CK-MB, lactate dehydrogenase, CK, cardiac troponin I, alpha-hydroxybutyrate dehydrogenase and high-sensitivity C-reactive protein at T1∼4 were lower in the FDP group than in the NS group (P < 0.001). Compared with the NS group, the dosage of dopamine administered 1-90 min after cardiac resuscitation, the spontaneous cardiac rhythm recovery time and the incidence of ventricular fibrillation were lower in the FDP group (P < 0.001, P < 0.001 and P = 0.040, respectively). The values of ST- changes were increased more significantly in the NS group than in the FDP group (median [standard deviation] 1.3 [0.3] mm vs 0.7 [0.2] mm; P < 0.001). Compared with the NS group, the time of recovery of ST-segment deviations was shorter in the FDP group (50.3 [12.3] min vs 34.6 [6.9] min; P < 0.001). CONCLUSIONS: The FDP postconditioning could improve both myocardial ischaemia-reperfusion injury and the spontaneous cardiac rhythm recovery during cardiac valve surgery with extracorporeal circulation.


Asunto(s)
Implantación de Prótesis de Válvulas Cardíacas , Daño por Reperfusión Miocárdica , Humanos , Masculino , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/etiología , Femenino , Método Doble Ciego , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Implantación de Prótesis de Válvulas Cardíacas/métodos , Persona de Mediana Edad , Fructosadifosfatos/uso terapéutico , Fructosadifosfatos/administración & dosificación , Poscondicionamiento Isquémico/métodos , Válvula Mitral/cirugía , Forma MB de la Creatina-Quinasa/sangre , Anciano , Adulto , Circulación Extracorporea/métodos , Válvula Aórtica/cirugía
2.
Talanta ; 279: 126657, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39111218

RESUMEN

Zr4+-doped polydopamine (Zr@PDA) nanozyme with phosphatase-like activity was synthesized by a one-pot hydrothermal method for the first time. Compared with previous representative phosphatase-mimicking nanozymes (i.e., CeO2 NPs, ZrO2 NPs and UiO-66), Zr@PDA not only exhibited higher dispersion stability in water, but also higher catalytical efficiency. Kcat/Km of Zr@PDA is 35 and 12 times that of UiO-66 and ZrO2 NPs, respectively, which would endow the Zr@PDA-based analytical methods with high sensitivity. As a demonstration, a novel colorimetric method based on Zr@PDA nanozyme was developed for sensitive detection of the drug fructose 1,6-diphosphate. The linear range is 1-15 µM with a detection limit as low as 0.38 µM.


Asunto(s)
Colorimetría , Fructosadifosfatos , Indoles , Polímeros , Circonio , Circonio/química , Indoles/química , Polímeros/química , Fructosadifosfatos/análisis , Fructosadifosfatos/química , Colorimetría/métodos , Límite de Detección , Materiales Biomiméticos/química
3.
Nucleic Acids Res ; 52(12): 7305-7320, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38842936

RESUMEN

The SorC family of transcriptional regulators plays a crucial role in controlling the carbohydrate metabolism and quorum sensing. We employed an integrative approach combining X-ray crystallography and cryo-electron microscopy to investigate architecture and functional mechanism of two prototypical representatives of two sub-classes of the SorC family: DeoR and CggR from Bacillus subtilis. Despite possessing distinct DNA-binding domains, both proteins form similar tetrameric assemblies when bound to their respective DNA operators. Structural analysis elucidates the process by which the CggR-regulated gapA operon is derepressed through the action of two effectors: fructose-1,6-bisphosphate and newly confirmed dihydroxyacetone phosphate. Our findings provide the first comprehensive understanding of the DNA binding mechanism of the SorC-family proteins, shedding new light on their functional characteristics.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Microscopía por Crioelectrón , Modelos Moleculares , Proteínas Represoras , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Unión Proteica , Multimerización de Proteína , ADN/química , ADN/metabolismo , Sitios de Unión , Regulación Bacteriana de la Expresión Génica , ADN Bacteriano/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Operón/genética , Fructosadifosfatos
4.
J Biol Chem ; 300(6): 107352, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723750

RESUMEN

In Escherichia coli, the master transcription regulator catabolite repressor activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli's central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fructoquinasas/metabolismo , Fructoquinasas/genética , Fructosa/metabolismo , Fructosadifosfatos/metabolismo , Fructosafosfatos/metabolismo , Regulación Bacteriana de la Expresión Génica
5.
J Am Chem Soc ; 146(22): 15155-15166, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775806

RESUMEN

Fructose-1,6-bisphosphate (FBP), a cellular endogenous sugar metabolite in the glycolytic pathway, has recently been reported to act as a signaling molecule to regulate various cellular events through the engagement of important proteins. Though tremendous progress has been made in identifying specific FBP-protein interactions, the comprehensive identification of FBP-interacting proteins and their regulatory mechanisms remains largely unexplored. Here, we describe a concise synthetic approach for the scalable preparation of a photoaffinity FBP probe that enables the quantitative chemoproteomic profiling of FBP-protein interactions based on photoaffinity labeling (PAL) directly in living cells. Using such a protocol, we captured known FBP targets including PKM2 and MDH2. Furthermore, among unknown FBP-interacting proteins, we identified a mitochondrial metabolic enzyme aldehyde dehydrogenase 2 (ALDH2), against which FBP showed inhibitory activity and resulted in cellular ROS upregulation accompanied by mitochondrial fragmentation. Our findings disclosed a new mode of glucose signaling mediating by the FBP-ALDH2-ROS axis.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial , Fructosadifosfatos , Proteómica , Humanos , Fructosadifosfatos/metabolismo , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo
6.
ACS Infect Dis ; 10(6): 1896-1903, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38735064

RESUMEN

Glucose is widely used in the reconstitution of intravenous medications, which often include antimicrobials. How glucose affects antimicrobial activity has not been comprehensively studied. The present work reports that glucose added to bacteria growing in a rich medium suppresses the bactericidal but not the bacteriostatic activity of several antimicrobial classes, thereby revealing a phenomenon called glucose-mediated antimicrobial tolerance. Glucose, at concentrations corresponding to blood-sugar levels of humans, increased survival of Escherichia coli treated with quinolones, aminoglycosides, and cephalosporins with little effect on minimal inhibitory concentration. Glucose suppressed a ROS surge stimulated by ciprofloxacin. Genes involved in phosphorylated fructose metabolism contributed to glucose-mediated tolerance, since a pfkA deficiency, which blocks the formation of fructose-1,6-bisphosphate, eliminated protection by glucose. Disrupting the pentose phosphate pathway or the TCA cycle failed to alter glucose-mediated tolerance, consistent with an upstream involvement of phosphorylated fructose. Exogenous sodium pyruvate or sodium citrate reversed glucose-mediated antimicrobial tolerance. Both metabolites bypass the effects of fructose-1,6-bisphosphate, a compound known to scavenge hydroxyl radical and chelate iron, activities that suppress ROS accumulation. Treatment with these two compounds constitutes a novel way to mitigate the glucose-mediated antimicrobial tolerance that may exist during intravenous antimicrobial therapy, especially for diabetes patients.


Asunto(s)
Antibacterianos , Escherichia coli , Glucosa , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno , Glucosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Antibacterianos/farmacología , Humanos , Viabilidad Microbiana/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Fructosadifosfatos/farmacología , Fructosadifosfatos/metabolismo
7.
BMC Microbiol ; 24(1): 151, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702601

RESUMEN

BACKGROUND: Fluoride-resistant Streptococcus mutans (S. mutans) strains have developed due to the wide use of fluoride in dental caries prevention. However, the metabolomics of fluoride-resistant S. mutans remains unclear. OBJECTIVE: This study aimed to identify metabolites that discriminate fluoride-resistant from wild-type S. mutans. MATERIALS AND METHODS: Cell supernatants from fluoride-resistant and wild-type S. mutans were collected and analyzed by liquid chromatography-mass spectrometry. Principal components analysis and partial least-squares discriminant analysis were performed for the statistical analysis by variable influence on projection (VIP > 2.0) and p value (Mann-Whitney test, p < 0.05). Metabolites were assessed qualitatively using the Human Metabolome Database version 2.0 ( http://www.hmdb.ca ), or Kyoto Encyclopedia of Genes and Genomes ( http://www.kegg.jp ), and Metaboanalyst 6.0 ( https://www.metaboanalyst.ca ). RESULTS: Fourteen metabolites differed significantly between fluoride-resistant and wild-type strains in the early log phase. Among these metabolites, 5 were identified. There were 32 differential metabolites between the two strains in the stationary phase, 13 of which were identified. The pyrimidine metabolism for S. mutans FR was matched with the metabolic pathway. CONCLUSIONS: The fructose-1,6-bisphosphate concentration increased in fluoride-resistant strains under acidic conditions, suggesting enhanced acidogenicity and acid tolerance. This metabolite may be a promising target for elucidating the cariogenic and fluoride resistant mechanisms of S. mutans.


Asunto(s)
Farmacorresistencia Bacteriana , Fluoruros , Fructosadifosfatos , Metabolómica , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Metabolómica/métodos , Fluoruros/metabolismo , Fluoruros/farmacología , Fructosadifosfatos/metabolismo , Humanos , Metaboloma/efectos de los fármacos , Caries Dental/microbiología , Cromatografía Liquida
8.
Int J Parasitol ; 54(7): 367-378, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492780

RESUMEN

Lactate dehydrogenase (LDH) from Schistosoma mansoni has peculiar properties for a eukaryotic LDH. Schistosomal LDH (SmLDH) isolated from schistosomes, and the recombinantly expressed protein, are strongly inhibited by ATP, which is neutralized by fructose-1,6-bisphosphate (FBP). In the conserved FBP/anion binding site we identified two residues in SmLDH (Val187 and Tyr190) that differ from the conserved residues in LDHs of other eukaryotes, but are identical to conserved residues in FBP-sensitive prokaryotic LDHs. Three-dimensional (3D) models were generated to compare the structure of SmLDH with other LDHs. These models indicated that residues Val187, and especially Tyr190, play a crucial role in the interaction of FBP with the anion pocket of SmLDH. These 3D models of SmLDH are also consistent with a competitive model of SmLDH inhibition in which ATP (inhibitor) and FBP (activator) compete for binding in a well-defined anion pocket. The model of bound ATP predicts a distortion of the nearby key catalytic residue His195, resulting in enzyme inhibition. To investigate a possible physiological role of this allosteric regulation of LDH in schistosomes we made a kinetic model in which the allosteric regulation of the glycolytic enzymes can be varied. The model showed that inhibition of LDH by ATP prevents fermentation to lactate in the free-living stages in water and ensures complete oxidation via the Krebs cycle of the endogenous glycogen reserves. This mechanism of allosteric inhibition by ATP prevents the untimely depletion of these glycogen reserves, the only fuel of the free-living cercariae. Neutralization by FBP of this ATP inhibition of LDH prevents accumulation of glycolytic intermediates when S. mansoni schistosomula are confronted with the sudden large increase in glucose availability upon penetration of the final host. It appears that the LDH of S. mansoni is special and well suited to deal with the variations in glucose availability the parasite encounters during its life cycle.


Asunto(s)
Adenosina Trifosfato , L-Lactato Deshidrogenasa , Modelos Moleculares , Schistosoma mansoni , Schistosoma mansoni/enzimología , Schistosoma mansoni/metabolismo , Animales , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Cinética , Adenosina Trifosfato/metabolismo , Fructosadifosfatos/metabolismo , Ratones , Secuencia de Aminoácidos , Biomphalaria/parasitología , Sitios de Unión
9.
Adv Sci (Weinh) ; 10(7): e2203528, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642839

RESUMEN

Metabolites are important for cell fate determination. Fructose-1,6-bisphosphate (F1,6P) is the rate-limiting product in glycolysis and the rate-limiting substrate in gluconeogenesis. Here, it is discovered that the nuclear-accumulated F1,6P impairs cancer cell viability by directly binding to high mobility group box 1 (HMGB1), the most abundant non-histone chromosome structural protein with paradoxical roles in tumor development. F1,6P disrupts the association between the HMGB1 A-box and C-tail by targeting K43/K44 residues, inhibits HMGB1 oligomerization, and stabilizes P53 protein by increasing P53-HMGB1 interaction. Moreover, F1,6P lowers the affinity of HMGB1 for DNA and DNA adducts, which sensitizes cancer cells to chemotherapeutic drug(s)-induced DNA replication stress and DNA damage. Concordantly, F1,6P resensitizes cancer cells with chemotherapy resistance, impairs tumor growth and enhances chemosensitivity in mice, and impedes the growth of human tumor organoids. These findings reveal a novel role for nuclear-accumulated F1,6P and underscore the potential utility of F1,6P as a drug for cancer therapy.


Asunto(s)
Fructosadifosfatos , Proteína HMGB1 , Neoplasias , Animales , Humanos , Ratones , Daño del ADN , Glucólisis , Proteína HMGB1/química , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Neoplasias/metabolismo , Proteína p53 Supresora de Tumor/genética , Fructosadifosfatos/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(31): e2204407119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881794

RESUMEN

Cellular metabolism is regulated over space and time to ensure that energy production is efficiently matched with consumption. Fluorescent biosensors are useful tools for studying metabolism as they enable real-time detection of metabolite abundance with single-cell resolution. For monitoring glycolysis, the intermediate fructose 1,6-bisphosphate (FBP) is a particularly informative signal as its concentration is strongly correlated with flux through the whole pathway. Using GFP insertion into the ligand-binding domain of the Bacillus subtilis transcriptional regulator CggR, we developed a fluorescent biosensor for FBP termed HYlight. We demonstrate that HYlight can reliably report the real-time dynamics of glycolysis in living cells and tissues, driven by various metabolic or pharmacological perturbations, alone or in combination with other physiologically relevant signals. Using this sensor, we uncovered previously unknown aspects of ß-cell glycolytic heterogeneity and dynamics.


Asunto(s)
Técnicas Biosensibles , Fructosa , Glucólisis , Análisis de la Célula Individual , Fluorescencia , Fructosa/análisis , Fructosadifosfatos/análisis , Humanos , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Análisis de la Célula Individual/métodos
11.
Aging (Albany NY) ; 14(7): 3233-3258, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35404841

RESUMEN

Metabolic reprogramming and elevated glycolysis levels are associated with tumor progression. However, despite cancer cells selectively inhibiting or expressing certain metabolic enzymes, it is unclear whether differences in gene profiles influence patient outcomes. Therefore, identifying the differences in enzyme action may facilitate discovery of gene ontology variations to characterize tumors. Fructose-1,6-bisphosphate (F-1,6-BP) is an important intermediate in glucose metabolism, particularly in cancer. Gluconeogenesis and glycolysis require fructose-1,6-bisphosphonates 1 (FBP1) and fructose-bisphosphate aldolase A (ALDOA), which participate in F-1,6-BP conversion. Increased expression of ALDOA and decreased expression of FBP1 are associated with the progression of various forms of cancer in humans. However, the exact molecular mechanism by which ALDOA and FBP1 are involved in the switching of F-1,6-BP is not yet known. As a result of their pancancer pattern, the relationship between ALDOA and FBP1 in patient prognosis is reversed, particularly in lung adenocarcinoma (LUAD) and liver hepatocellular carcinoma (LIHC). Using The Cancer Genome Atlas (TCGA), we observed that FBP1 expression was low in patients with LUAD and LIHC tumors, which was distinct from ALDOA. A similar trend was observed in the analysis of Cancer Cell Line Encyclopedia (CCLE) datasets. By dissecting downstream networks and possible upstream regulators, using ALDOA and FBP1 as the core, we identified common signatures and interaction events regulated by ALDOA and FBP1. Notably, the identified effectors dominated by ALDOA or FBP1 were distributed in opposite patterns and can be considered independent prognostic indicators for patients with LUAD and LIHC. Therefore, uncovering the effectors between ALDOA and FBP1 will lead to novel therapeutic strategies for cancer patients.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma Hepatocelular , Fructosa-Bifosfato Aldolasa , Neoplasias Pulmonares , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Fructosa , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosadifosfatos , Gluconeogénesis/genética , Glucólisis/genética , Humanos , Neoplasias Pulmonares/genética , Pronóstico
12.
Sci Rep ; 12(1): 304, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997135

RESUMEN

To evaluate the effects of fructose diphosphate (FDP) on routine coagulation tests in vitro, we added FDP into the mixed normal plasma to obtain the final concentration of 0, 1, 2, 3, 4, 5, 6, 10, 15, 20, 25, 30 and 35 mg/mL of drug. Prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen (FBG) and thrombin time (TT) of samples were analyzed with blood coagulation analyzers from four different manufacturers(Sysmex, Stago, SEKISUI and Werfen) and their corresponding reagents, respectively. Before the experiment, we also observed whether there were significant differences in coagulation test results of different lots of reagents produced by each manufacturer. At the same time as the four routine clotting tests, the Sysmex blood coagulation analyzer and its proprietary analysis software were used to detect the change of maximum platelet aggregation rate in platelet-rich plasma after adding FDP (0, 1, 2, 3, 4, 5 and 6 mg/mL). The results of PT, aPTT and TT showed a FDP (0-35 mg/mL) concentration-dependent increase and a FBG concentration-dependent decrease. The degree of change (increase or decrease) varied depending on the assay system, with PT and aPTT being more affected by the Sysmex blood coagulation testing instrument reagent system and less affected by CEKISUI, TT less affected by CEKISUI and more affected by Stago, and FBG less affected by Stago and more affected by Sysmex. The results of PT, aPTT and TT were statistically positively correlated with their FDP concentrations, while FBG was negatively correlated. The correlation coefficients between FDP and the coagulation testing systems of Sysmex, Stago, Werfen and SEKISUI were 0.975, 0.988, 0.967, 0.986 for PT, and 0.993, 0.989, 0.990 and 0.962 for aPTT, 0.994, 0.960, 0.977 and 0.982 for TT, - 0.990, - 0.983, - 0.989 and - 0.954 for FBG, respectively. Different concentrations of FDP (0, 1, 2, 3, 4, 5 and 6 mg/mL) had different effects on the maximum aggregation rate of platelet induced by the agonists of adenosine diphosphate (ADP, 5 µmol/L), arachidonic acid (Ara, 1 mmol/L), collagen (Col, 2.5 µg/mL) and epinephrine (Epi,10 µmol/L), but the overall downward trend was consistent, that is, with the increase of FDP concentration, the platelet aggregation rate decreased significantly. Our experimental study demonstrated a possible effect of FDP on the assays of coagulation and Platelet aggregation, which may arise because the drug interferes with the coagulation and platelet aggregation detection system, or it may affect our in vivo coagulation system and Platelet aggregation function, the real mechanism of which remains to be further verified and studied.


Asunto(s)
Pruebas de Coagulación Sanguínea , Coagulación Sanguínea/efectos de los fármacos , Fructosadifosfatos/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Tiempo de Tromboplastina Parcial , Agregación Plaquetaria/efectos de los fármacos , Pruebas de Función Plaquetaria , Tiempo de Protrombina , Tiempo de Trombina
13.
Cell Chem Biol ; 28(11): 1539-1541, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34798034

RESUMEN

Conversion of in vitro selected aptamers into functional metabolic sensors is hampered by reduced in vivo aptamer binding and limited tunability of cellular metabolite levels. In this issue of Cell Chemical Biology, Ortega et al. (2021) construct RNA sensors of fructose-6-bisphosphate (FBP) that report on metabolite levels within single yeast cells.


Asunto(s)
Fructosadifosfatos , Glucólisis , Colorantes , ARN , Sensación
14.
Nat Cell Biol ; 23(10): 1085-1094, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616026

RESUMEN

Cells respond to stress by blocking translation, rewiring metabolism and forming transient messenger ribonucleoprotein assemblies called stress granules (SGs). After stress release, re-establishing homeostasis and disassembling SGs requires ATP-consuming processes. However, the molecular mechanisms whereby cells restore ATP production and disassemble SGs after stress remain poorly understood. Here we show that upon stress, the ATP-producing enzyme Cdc19 forms inactive amyloids, and that their rapid re-solubilization is essential to restore ATP production and disassemble SGs in glucose-containing media. Cdc19 re-solubilization is initiated by the glycolytic metabolite fructose-1,6-bisphosphate, which directly binds Cdc19 amyloids, allowing Hsp104 and Ssa2 chaperone recruitment and aggregate re-solubilization. Fructose-1,6-bisphosphate then promotes Cdc19 tetramerization, which boosts its activity to further enhance ATP production and SG disassembly. Together, these results describe a molecular mechanism that is critical for stress recovery and directly couples cellular metabolism with SG dynamics via the regulation of reversible Cdc19 amyloids.


Asunto(s)
Amiloide/química , Proteínas de Ciclo Celular/química , Gránulos Citoplasmáticos/química , Piruvato Quinasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fructosadifosfatos/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Piruvato Quinasa/química , Piruvato Quinasa/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
15.
Epilepsy Behav ; 122: 108223, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34388666

RESUMEN

Glucose metabolism is altered in epilepsy, and this may contribute to seizure generation. Recent research has shown that metabolic therapies including the ketogenic diet and medium chain triglycerides can improve energy metabolism in the brain. Fructose 1,6-bisphosphate (F16BP) is an intermediate of glycolysis and when administered exogenously is anticonvulsant in several rodent seizure models and may alter glucose metabolism. Here, we showed that F16BP elevated the seizure threshold in the acute 6-Hz mouse seizure model and investigated if F16BP could restore impairments in glucose metabolism occurring in the chronic stage of the pilocarpine mouse model of epilepsy. Two weeks after the pilocarpine injections, mice that experienced status epilepticus (SE, "epileptic") and did not experience SE (no SE, "nonepileptic") were injected with vehicle (0.9% saline) or F16BP (1 g/kg in 0.9% saline) daily for 5 consecutive days. At 3 weeks, mice were injected with [U-13C6]-glucose and the % enrichment of 13C in key metabolites in addition to the total levels of each metabolite was measured in the hippocampal formation and liver. Fructose 1,6-bisphosphate increased total GABA in the hippocampal formation, regardless of whether mice had experienced SE. In the hippocampal formation, F16BP prevented reductions in the % 13C enrichment of citrate, succinate, malate, glutamate, GABA and aspartate that occurred in the chronic stage of the pilocarpine model. Interestingly, % 13C enrichment in glucose-derived metabolites was reduced in the liver in the chronic stage of the pilocarpine model. Fructose 1,6-bisphosphate was also beneficial in the liver, preventing reductions in % 13C enrichment of lactate and alanine that were associated with SE. This study confirmed that F16BP is anticonvulsant and can improve elements of glucose metabolism that are dysregulated in the chronic stage of the pilocarpine model, which may be due to reduction of spontaneous seizures. Our results highlight that F16BP may be therapeutically beneficial for epilepsies refractory to treatment.


Asunto(s)
Epilepsia , Estado Epiléptico , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Epilepsia/tratamiento farmacológico , Fructosa/uso terapéutico , Fructosadifosfatos , Glucosa/metabolismo , Hipocampo , Hígado , Ratones , Estrés Oxidativo , Pilocarpina/toxicidad , Estado Epiléptico/tratamiento farmacológico
16.
Nat Commun ; 12(1): 4371, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272364

RESUMEN

Metabolic programming and mitochondrial dynamics along with T cell differentiation affect T cell fate and memory development; however, how to control metabolic reprogramming and mitochondrial dynamics in T cell memory development is unclear. Here, we provide evidence that the SUMO protease SENP1 promotes T cell memory development via Sirt3 deSUMOylation. SENP1-Sirt3 signalling augments the deacetylase activity of Sirt3, promoting both OXPHOS and mitochondrial fusion. Mechanistically, SENP1 activates Sirt3 deacetylase activity in T cell mitochondria, leading to reduction of the acetylation of mitochondrial metalloprotease YME1L1. Consequently, deacetylation of YME1L1 suppresses its activity on OPA1 cleavage to facilitate mitochondrial fusion, which results in T cell survival and promotes T cell memory development. We also show that the glycolytic intermediate fructose-1,6-bisphosphate (FBP) as a negative regulator suppresses AMPK-mediated activation of the SENP1-Sirt3 axis and reduces memory development. Moreover, glucose limitation reduces FBP production and activates AMPK during T cell memory development. These data show that glucose limitation activates AMPK and the subsequent SENP1-Sirt3 signalling for T cell memory development.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Linfocitos T CD8-positivos/inmunología , Cisteína Endopeptidasas/metabolismo , Memoria Inmunológica , Mitocondrias/metabolismo , Sirtuina 3/metabolismo , Linfocitos T/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Acetilación , Aloinjertos , Animales , Línea Celular Tumoral , Supervivencia Celular/genética , Neoplasias del Colon/inmunología , Fructosadifosfatos/metabolismo , GTP Fosfohidrolasas/metabolismo , Glucosa/deficiencia , Memoria Inmunológica/genética , Metabolómica , Metaloendopeptidasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Mitocondrias/genética , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Sirtuina 3/antagonistas & inhibidores , Sirtuina 3/genética , Sumoilación , Linfocitos T/inmunología
17.
Annu Rev Biochem ; 90: 31-55, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-34153217

RESUMEN

My graduate and postdoctoral training in metabolism and enzymology eventually led me to study the short- and long-term regulation of glucose and lipid metabolism. In the early phase of my career, my trainees and I identified, purified, and characterized a variety of phosphofructokinase enzymes from mammalian tissues. These studies led us to discover fructose 2,6-P2, the most potent activator of phosphofructokinase and glycolysis. The discovery of fructose 2,6-P2 led to the identification and characterization of the tissue-specific bifunctional enzyme 6-phosphofructo-2-kinase:fructose 2,6-bisphosphatase. We discovered a glucose signaling mechanism by which the liver maintains glucose homeostasis by regulating the activities of this bifunctional enzyme. With a rise in glucose, a signaling metabolite, xylulose 5-phosphate, triggers rapid activation of a specific protein phosphatase (PP2ABδC), which dephosphorylates the bifunctional enzyme, thereby increasing fructose 2,6-P2 levels and upregulating glycolysis. These endeavors paved the way for us to initiate the later phase of my career in which we discovered a new transcription factor termed the carbohydrate response element binding protein (ChREBP). Now ChREBP is recognized as the masterregulator controlling conversion of excess carbohydrates to storage of fat in the liver. ChREBP functions as a central metabolic coordinator that responds to nutrients independently of insulin. The ChREBP transcription factor facilitates metabolic adaptation to excess glucose, leading to obesity and its associated diseases.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Bioquímica/historia , Fructosadifosfatos/metabolismo , Fosfofructoquinasa-2/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Gluconeogénesis/fisiología , Glucosa/metabolismo , Glucólisis , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Masculino , Ratones , Fosfofructoquinasa-2/química , Fosfofructoquinasas/química , Fosfofructoquinasas/metabolismo , Fosforilación , Estados Unidos
18.
Trends Endocrinol Metab ; 32(8): 540-543, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34016523

RESUMEN

We propose that fructose-1,6-bisphosphate (F-1,6-BP) promotes a feedback loop between phosphofructokinase-1 (PFK1), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), and PFK2/PFKFB3, which enhances aerobic glycolysis and sustains effector T (Teff) cell activation, while oxidative metabolism is concomitantly downregulated. This regulation, promoted by low citrate and mitochondrial ATP synthesis, also sustains the Warburg effect in cancer cells.


Asunto(s)
Fructosadifosfatos/metabolismo , Glucólisis , Fosfofructoquinasa-1 , Linfocitos T , Adenosina Trifosfato/biosíntesis , Ácido Cítrico , Activación de Linfocitos , Mitocondrias , Neoplasias , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfofructoquinasa-1/genética , Fosfofructoquinasa-1/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Linfocitos T/metabolismo
19.
Cell Chem Biol ; 28(11): 1554-1568.e8, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33915105

RESUMEN

RNA-based sensors for intracellular metabolites are a promising solution to the emerging issue of metabolic heterogeneity. However, their development, i.e., the conversion of an aptamer into an in vivo-functional intracellular metabolite sensor, still harbors challenges. Here, we accomplished this for the glycolytic flux-signaling metabolite, fructose-1,6-bisphosphate (FBP). Starting from in vitro selection of an aptamer, we constructed device libraries with a hammerhead ribozyme as actuator. Using high-throughput screening in yeast with fluorescence-activated cell sorting (FACS), next-generation sequencing, and genetic-environmental perturbations to modulate the intracellular FBP levels, we identified a sensor that generates ratiometric fluorescent readout. An abrogated response in sensor mutants and occurrence of two sensor conformations-revealed by RNA structural probing-indicated in vivo riboswitching activity. Microscopy showed that the sensor can differentiate cells with different glycolytic fluxes within yeast populations, opening research avenues into metabolic heterogeneity. We demonstrate the possibility to generate RNA-based sensors for intracellular metabolites for which no natural metabolite-binding RNA element exits.


Asunto(s)
Técnicas Biosensibles , Fructosadifosfatos/química , ARN/análisis , Fructosadifosfatos/metabolismo , Glucólisis , ARN/metabolismo , Saccharomyces cerevisiae/metabolismo
20.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540748

RESUMEN

Tuberculosis (TB) remains one of the major health concerns worldwide. Mycobacterium tuberculosis (Mtb), the causative agent of TB, can flexibly change its metabolic processes during different life stages. Regulation of key metabolic enzyme activities by intracellular conditions, allosteric inhibition or feedback control can effectively contribute to Mtb survival under different conditions. Phosphofructokinase (Pfk) is one of the key enzymes regulating glycolysis. Mtb encodes two Pfk isoenzymes, Pfk A/Rv3010c and Pfk B/Rv2029c, which are differently expressed upon transition to the hypoxia-induced non-replicating state of the bacteria. While pfkB gene and protein expression are upregulated under hypoxic conditions, Pfk A levels decrease. Here, we present biochemical characterization of both Pfk isoenzymes, revealing that Pfk A and Pfk B display different kinetic properties. Although the glycolytic activity of Pfk A is higher than that of Pfk B, it is markedly inhibited by an excess of both substrates (fructose-6-phosphate and ATP), reaction products (fructose-1,6-bisphosphate and ADP) and common metabolic allosteric regulators. In contrast, synthesis of fructose-1,6-bisphosphatase catalyzed by Pfk B is not regulated by higher levels of substrates, and metabolites. Importantly, we found that only Pfk B can catalyze the reverse gluconeogenic reaction. Pfk B thus can support glycolysis under conditions inhibiting Pfk A function.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Fosfofructoquinasas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Difosfato/farmacología , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Regulación Alostérica , Proteínas Bacterianas/antagonistas & inhibidores , Catálisis , Inducción Enzimática , Retroalimentación Fisiológica , Fructosadifosfatos/biosíntesis , Fructosadifosfatos/farmacología , Fructosafosfatos/metabolismo , Fructosafosfatos/farmacología , Gluconeogénesis , Glucólisis , Hexosafosfatos/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Cinética , L-Lactato Deshidrogenasa/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Oxígeno/farmacología , Fosfofructoquinasas/antagonistas & inhibidores , Piruvato Quinasa/metabolismo , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...