Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 908
Filtrar
1.
J Biol Chem ; 300(6): 107352, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723750

RESUMEN

In Escherichia coli, the master transcription regulator catabolite repressor activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli's central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fructoquinasas/metabolismo , Fructoquinasas/genética , Fructosa/metabolismo , Fructosadifosfatos/metabolismo , Fructosafosfatos/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
J Am Chem Soc ; 146(22): 15155-15166, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38775806

RESUMEN

Fructose-1,6-bisphosphate (FBP), a cellular endogenous sugar metabolite in the glycolytic pathway, has recently been reported to act as a signaling molecule to regulate various cellular events through the engagement of important proteins. Though tremendous progress has been made in identifying specific FBP-protein interactions, the comprehensive identification of FBP-interacting proteins and their regulatory mechanisms remains largely unexplored. Here, we describe a concise synthetic approach for the scalable preparation of a photoaffinity FBP probe that enables the quantitative chemoproteomic profiling of FBP-protein interactions based on photoaffinity labeling (PAL) directly in living cells. Using such a protocol, we captured known FBP targets including PKM2 and MDH2. Furthermore, among unknown FBP-interacting proteins, we identified a mitochondrial metabolic enzyme aldehyde dehydrogenase 2 (ALDH2), against which FBP showed inhibitory activity and resulted in cellular ROS upregulation accompanied by mitochondrial fragmentation. Our findings disclosed a new mode of glucose signaling mediating by the FBP-ALDH2-ROS axis.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial , Fructosadifosfatos , Proteómica , Humanos , Fructosadifosfatos/metabolismo , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo
3.
ACS Infect Dis ; 10(6): 1896-1903, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38735064

RESUMEN

Glucose is widely used in the reconstitution of intravenous medications, which often include antimicrobials. How glucose affects antimicrobial activity has not been comprehensively studied. The present work reports that glucose added to bacteria growing in a rich medium suppresses the bactericidal but not the bacteriostatic activity of several antimicrobial classes, thereby revealing a phenomenon called glucose-mediated antimicrobial tolerance. Glucose, at concentrations corresponding to blood-sugar levels of humans, increased survival of Escherichia coli treated with quinolones, aminoglycosides, and cephalosporins with little effect on minimal inhibitory concentration. Glucose suppressed a ROS surge stimulated by ciprofloxacin. Genes involved in phosphorylated fructose metabolism contributed to glucose-mediated tolerance, since a pfkA deficiency, which blocks the formation of fructose-1,6-bisphosphate, eliminated protection by glucose. Disrupting the pentose phosphate pathway or the TCA cycle failed to alter glucose-mediated tolerance, consistent with an upstream involvement of phosphorylated fructose. Exogenous sodium pyruvate or sodium citrate reversed glucose-mediated antimicrobial tolerance. Both metabolites bypass the effects of fructose-1,6-bisphosphate, a compound known to scavenge hydroxyl radical and chelate iron, activities that suppress ROS accumulation. Treatment with these two compounds constitutes a novel way to mitigate the glucose-mediated antimicrobial tolerance that may exist during intravenous antimicrobial therapy, especially for diabetes patients.


Asunto(s)
Antibacterianos , Escherichia coli , Glucosa , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno , Glucosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Antibacterianos/farmacología , Humanos , Viabilidad Microbiana/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Fructosadifosfatos/farmacología , Fructosadifosfatos/metabolismo
4.
BMC Microbiol ; 24(1): 151, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702601

RESUMEN

BACKGROUND: Fluoride-resistant Streptococcus mutans (S. mutans) strains have developed due to the wide use of fluoride in dental caries prevention. However, the metabolomics of fluoride-resistant S. mutans remains unclear. OBJECTIVE: This study aimed to identify metabolites that discriminate fluoride-resistant from wild-type S. mutans. MATERIALS AND METHODS: Cell supernatants from fluoride-resistant and wild-type S. mutans were collected and analyzed by liquid chromatography-mass spectrometry. Principal components analysis and partial least-squares discriminant analysis were performed for the statistical analysis by variable influence on projection (VIP > 2.0) and p value (Mann-Whitney test, p < 0.05). Metabolites were assessed qualitatively using the Human Metabolome Database version 2.0 ( http://www.hmdb.ca ), or Kyoto Encyclopedia of Genes and Genomes ( http://www.kegg.jp ), and Metaboanalyst 6.0 ( https://www.metaboanalyst.ca ). RESULTS: Fourteen metabolites differed significantly between fluoride-resistant and wild-type strains in the early log phase. Among these metabolites, 5 were identified. There were 32 differential metabolites between the two strains in the stationary phase, 13 of which were identified. The pyrimidine metabolism for S. mutans FR was matched with the metabolic pathway. CONCLUSIONS: The fructose-1,6-bisphosphate concentration increased in fluoride-resistant strains under acidic conditions, suggesting enhanced acidogenicity and acid tolerance. This metabolite may be a promising target for elucidating the cariogenic and fluoride resistant mechanisms of S. mutans.


Asunto(s)
Farmacorresistencia Bacteriana , Fluoruros , Fructosadifosfatos , Metabolómica , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Metabolómica/métodos , Fluoruros/metabolismo , Fluoruros/farmacología , Fructosadifosfatos/metabolismo , Humanos , Metaboloma/efectos de los fármacos , Caries Dental/microbiología , Cromatografía Liquida
5.
Int J Parasitol ; 54(7): 367-378, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492780

RESUMEN

Lactate dehydrogenase (LDH) from Schistosoma mansoni has peculiar properties for a eukaryotic LDH. Schistosomal LDH (SmLDH) isolated from schistosomes, and the recombinantly expressed protein, are strongly inhibited by ATP, which is neutralized by fructose-1,6-bisphosphate (FBP). In the conserved FBP/anion binding site we identified two residues in SmLDH (Val187 and Tyr190) that differ from the conserved residues in LDHs of other eukaryotes, but are identical to conserved residues in FBP-sensitive prokaryotic LDHs. Three-dimensional (3D) models were generated to compare the structure of SmLDH with other LDHs. These models indicated that residues Val187, and especially Tyr190, play a crucial role in the interaction of FBP with the anion pocket of SmLDH. These 3D models of SmLDH are also consistent with a competitive model of SmLDH inhibition in which ATP (inhibitor) and FBP (activator) compete for binding in a well-defined anion pocket. The model of bound ATP predicts a distortion of the nearby key catalytic residue His195, resulting in enzyme inhibition. To investigate a possible physiological role of this allosteric regulation of LDH in schistosomes we made a kinetic model in which the allosteric regulation of the glycolytic enzymes can be varied. The model showed that inhibition of LDH by ATP prevents fermentation to lactate in the free-living stages in water and ensures complete oxidation via the Krebs cycle of the endogenous glycogen reserves. This mechanism of allosteric inhibition by ATP prevents the untimely depletion of these glycogen reserves, the only fuel of the free-living cercariae. Neutralization by FBP of this ATP inhibition of LDH prevents accumulation of glycolytic intermediates when S. mansoni schistosomula are confronted with the sudden large increase in glucose availability upon penetration of the final host. It appears that the LDH of S. mansoni is special and well suited to deal with the variations in glucose availability the parasite encounters during its life cycle.


Asunto(s)
Adenosina Trifosfato , L-Lactato Deshidrogenasa , Modelos Moleculares , Schistosoma mansoni , Schistosoma mansoni/enzimología , Schistosoma mansoni/metabolismo , Animales , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/genética , Cinética , Adenosina Trifosfato/metabolismo , Fructosadifosfatos/metabolismo , Ratones , Secuencia de Aminoácidos , Biomphalaria/parasitología , Sitios de Unión
6.
Adv Sci (Weinh) ; 10(7): e2203528, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36642839

RESUMEN

Metabolites are important for cell fate determination. Fructose-1,6-bisphosphate (F1,6P) is the rate-limiting product in glycolysis and the rate-limiting substrate in gluconeogenesis. Here, it is discovered that the nuclear-accumulated F1,6P impairs cancer cell viability by directly binding to high mobility group box 1 (HMGB1), the most abundant non-histone chromosome structural protein with paradoxical roles in tumor development. F1,6P disrupts the association between the HMGB1 A-box and C-tail by targeting K43/K44 residues, inhibits HMGB1 oligomerization, and stabilizes P53 protein by increasing P53-HMGB1 interaction. Moreover, F1,6P lowers the affinity of HMGB1 for DNA and DNA adducts, which sensitizes cancer cells to chemotherapeutic drug(s)-induced DNA replication stress and DNA damage. Concordantly, F1,6P resensitizes cancer cells with chemotherapy resistance, impairs tumor growth and enhances chemosensitivity in mice, and impedes the growth of human tumor organoids. These findings reveal a novel role for nuclear-accumulated F1,6P and underscore the potential utility of F1,6P as a drug for cancer therapy.


Asunto(s)
Fructosadifosfatos , Proteína HMGB1 , Neoplasias , Animales , Humanos , Ratones , Daño del ADN , Glucólisis , Proteína HMGB1/química , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Neoplasias/metabolismo , Proteína p53 Supresora de Tumor/genética , Fructosadifosfatos/metabolismo
7.
Nat Cell Biol ; 23(10): 1085-1094, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616026

RESUMEN

Cells respond to stress by blocking translation, rewiring metabolism and forming transient messenger ribonucleoprotein assemblies called stress granules (SGs). After stress release, re-establishing homeostasis and disassembling SGs requires ATP-consuming processes. However, the molecular mechanisms whereby cells restore ATP production and disassemble SGs after stress remain poorly understood. Here we show that upon stress, the ATP-producing enzyme Cdc19 forms inactive amyloids, and that their rapid re-solubilization is essential to restore ATP production and disassemble SGs in glucose-containing media. Cdc19 re-solubilization is initiated by the glycolytic metabolite fructose-1,6-bisphosphate, which directly binds Cdc19 amyloids, allowing Hsp104 and Ssa2 chaperone recruitment and aggregate re-solubilization. Fructose-1,6-bisphosphate then promotes Cdc19 tetramerization, which boosts its activity to further enhance ATP production and SG disassembly. Together, these results describe a molecular mechanism that is critical for stress recovery and directly couples cellular metabolism with SG dynamics via the regulation of reversible Cdc19 amyloids.


Asunto(s)
Amiloide/química , Proteínas de Ciclo Celular/química , Gránulos Citoplasmáticos/química , Piruvato Quinasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fructosadifosfatos/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Piruvato Quinasa/química , Piruvato Quinasa/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
8.
Nat Commun ; 12(1): 4371, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34272364

RESUMEN

Metabolic programming and mitochondrial dynamics along with T cell differentiation affect T cell fate and memory development; however, how to control metabolic reprogramming and mitochondrial dynamics in T cell memory development is unclear. Here, we provide evidence that the SUMO protease SENP1 promotes T cell memory development via Sirt3 deSUMOylation. SENP1-Sirt3 signalling augments the deacetylase activity of Sirt3, promoting both OXPHOS and mitochondrial fusion. Mechanistically, SENP1 activates Sirt3 deacetylase activity in T cell mitochondria, leading to reduction of the acetylation of mitochondrial metalloprotease YME1L1. Consequently, deacetylation of YME1L1 suppresses its activity on OPA1 cleavage to facilitate mitochondrial fusion, which results in T cell survival and promotes T cell memory development. We also show that the glycolytic intermediate fructose-1,6-bisphosphate (FBP) as a negative regulator suppresses AMPK-mediated activation of the SENP1-Sirt3 axis and reduces memory development. Moreover, glucose limitation reduces FBP production and activates AMPK during T cell memory development. These data show that glucose limitation activates AMPK and the subsequent SENP1-Sirt3 signalling for T cell memory development.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Linfocitos T CD8-positivos/inmunología , Cisteína Endopeptidasas/metabolismo , Memoria Inmunológica , Mitocondrias/metabolismo , Sirtuina 3/metabolismo , Linfocitos T/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Acetilación , Aloinjertos , Animales , Línea Celular Tumoral , Supervivencia Celular/genética , Neoplasias del Colon/inmunología , Fructosadifosfatos/metabolismo , GTP Fosfohidrolasas/metabolismo , Glucosa/deficiencia , Memoria Inmunológica/genética , Metabolómica , Metaloendopeptidasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Mitocondrias/genética , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Sirtuina 3/antagonistas & inhibidores , Sirtuina 3/genética , Sumoilación , Linfocitos T/inmunología
9.
Annu Rev Biochem ; 90: 31-55, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-34153217

RESUMEN

My graduate and postdoctoral training in metabolism and enzymology eventually led me to study the short- and long-term regulation of glucose and lipid metabolism. In the early phase of my career, my trainees and I identified, purified, and characterized a variety of phosphofructokinase enzymes from mammalian tissues. These studies led us to discover fructose 2,6-P2, the most potent activator of phosphofructokinase and glycolysis. The discovery of fructose 2,6-P2 led to the identification and characterization of the tissue-specific bifunctional enzyme 6-phosphofructo-2-kinase:fructose 2,6-bisphosphatase. We discovered a glucose signaling mechanism by which the liver maintains glucose homeostasis by regulating the activities of this bifunctional enzyme. With a rise in glucose, a signaling metabolite, xylulose 5-phosphate, triggers rapid activation of a specific protein phosphatase (PP2ABδC), which dephosphorylates the bifunctional enzyme, thereby increasing fructose 2,6-P2 levels and upregulating glycolysis. These endeavors paved the way for us to initiate the later phase of my career in which we discovered a new transcription factor termed the carbohydrate response element binding protein (ChREBP). Now ChREBP is recognized as the masterregulator controlling conversion of excess carbohydrates to storage of fat in the liver. ChREBP functions as a central metabolic coordinator that responds to nutrients independently of insulin. The ChREBP transcription factor facilitates metabolic adaptation to excess glucose, leading to obesity and its associated diseases.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Bioquímica/historia , Fructosadifosfatos/metabolismo , Fosfofructoquinasa-2/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Gluconeogénesis/fisiología , Glucosa/metabolismo , Glucólisis , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Masculino , Ratones , Fosfofructoquinasa-2/química , Fosfofructoquinasas/química , Fosfofructoquinasas/metabolismo , Fosforilación , Estados Unidos
10.
Trends Endocrinol Metab ; 32(8): 540-543, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34016523

RESUMEN

We propose that fructose-1,6-bisphosphate (F-1,6-BP) promotes a feedback loop between phosphofructokinase-1 (PFK1), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), and PFK2/PFKFB3, which enhances aerobic glycolysis and sustains effector T (Teff) cell activation, while oxidative metabolism is concomitantly downregulated. This regulation, promoted by low citrate and mitochondrial ATP synthesis, also sustains the Warburg effect in cancer cells.


Asunto(s)
Fructosadifosfatos/metabolismo , Glucólisis , Fosfofructoquinasa-1 , Linfocitos T , Adenosina Trifosfato/biosíntesis , Ácido Cítrico , Activación de Linfocitos , Mitocondrias , Neoplasias , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfofructoquinasa-1/genética , Fosfofructoquinasa-1/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Linfocitos T/metabolismo
11.
Cell Chem Biol ; 28(11): 1554-1568.e8, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33915105

RESUMEN

RNA-based sensors for intracellular metabolites are a promising solution to the emerging issue of metabolic heterogeneity. However, their development, i.e., the conversion of an aptamer into an in vivo-functional intracellular metabolite sensor, still harbors challenges. Here, we accomplished this for the glycolytic flux-signaling metabolite, fructose-1,6-bisphosphate (FBP). Starting from in vitro selection of an aptamer, we constructed device libraries with a hammerhead ribozyme as actuator. Using high-throughput screening in yeast with fluorescence-activated cell sorting (FACS), next-generation sequencing, and genetic-environmental perturbations to modulate the intracellular FBP levels, we identified a sensor that generates ratiometric fluorescent readout. An abrogated response in sensor mutants and occurrence of two sensor conformations-revealed by RNA structural probing-indicated in vivo riboswitching activity. Microscopy showed that the sensor can differentiate cells with different glycolytic fluxes within yeast populations, opening research avenues into metabolic heterogeneity. We demonstrate the possibility to generate RNA-based sensors for intracellular metabolites for which no natural metabolite-binding RNA element exits.


Asunto(s)
Técnicas Biosensibles , Fructosadifosfatos/química , ARN/análisis , Fructosadifosfatos/metabolismo , Glucólisis , ARN/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Front Endocrinol (Lausanne) ; 12: 797025, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095764

RESUMEN

Background: Glycolysis dysfunction is an important pathogenesis of podocyte injury in diabetic kidney disease (DKD). Foot process fusion of podocytes and increased albuminuria are markers of early DKD. Moreover, cytoskeletal remodeling has been found to be involved in the foot process fusion of podocytes. However, the connections between cytoskeletal remodeling and alterations of glycolysis in podocytes in DKD have not been clarified. Methods: mRNA sequencing of glomeruli obtained from db/db and db/m mice with albuminuria was performed to analyze the expression profiling of genes in glucose metabolism. Expressions of phosphofructokinase platelet type (PFKP) in the glomeruli of DKD patients were detected. Clotrimazole (CTZ) was used to explore the renal effects of PFKP inhibition in diabetic mice. Using Pfkp siRNA or recombinant plasmid to manipulate PFKP expression, the effects of PFKP on high glucose (HG) induced podocyte damage were assessed in vitro. The levels of fructose-1,6-bisphosphate (FBP) were measured. Targeted metabolomics was performed to observe the alterations of the metabolites in glucose metabolism after HG stimulation. Furthermore, aldolase type b (Aldob) siRNA or recombinant plasmid were applied to evaluate the influence of FBP level alteration on podocytes. FBP was directly added to podocyte culture media. Db/db mice were treated with FBP to investigate its effects on their kidney. Results: mRNA sequencing showed that glycolysis enzyme genes were altered, characterized by upregulation of upstream genes (Hk1, and Pfkp) and down-regulation of downstream genes of glycolysis (Pkm, and Ldha). Moreover, the expression of PFKP was increased in glomeruli of DKD patients. The CTZ group presented more severe renal damage. In vitro, the Pfkp siRNA group and ALDOB overexpression group showed much more induced cytoskeletal remodeling in podocytes, while overexpression of PFKP and suppression of ALDOB in vitro rescued podocytes from cytoskeletal remodeling through regulation of FBP levels and inhibition of the RhoA/ROCK1 pathway. Furthermore, targeted metabolomics showed FBP level was significantly increased in HG group compared with the control group. Exogenous FBP addition reduced podocyte cytoskeletal remodeling and renal damage of db/db mice. Conclusions: These findings provide evidence that PFKP may be a potential target for podocyte injury in DN and provide a rationale for applying podocyte glycolysis enhancing agents in patients with DKD.


Asunto(s)
Citoesqueleto/metabolismo , Nefropatías Diabéticas/genética , Fructosadifosfatos/metabolismo , Fosfofructoquinasa-1 Tipo C/genética , Podocitos/metabolismo , ARN Mensajero/metabolismo , Adulto , Albuminuria , Animales , Citoesqueleto/patología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Femenino , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Glucólisis , Hexoquinasa/genética , Hexoquinasa/metabolismo , Humanos , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Fosfofructoquinasa-1 Tipo C/metabolismo , Podocitos/patología , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo
13.
Meat Sci ; 172: 108332, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33038798

RESUMEN

Phosphofructokinase-1 (PFK-1) is the most important enzyme controlling postmortem glycolysis in living skeletal muscle and is the most likely candidate for regulation of postmortem glycolysis. We investigated the regulation of PFK-1 activity by F-2, 6-BP and AMP under simulated postmortem conditions in porcine skeletal muscle. Six pigs were harvested and longissimus lumborum samples were collected immediately post-slaughter. PFK-1 activity was assayed using increasing concentrations of F-2, 6-BP or AMP, added to the buffer adjusted to different pH. Both F-2, 6-BP and AMP increased PFK-1 activity with increasing buffer pH from 5.5 to 7.0. A concentration of 50 µM F-2, 6-BP was required to increase PFK-1 activity which is very high compared to physiological concentration in the porcine skeletal muscle. However, physiological concentrations (50-150 µM) of AMP resulted in increased PFK-1 activity compared to 1-2 µM F-2, 6-BP. Thus, AMP may play a greater role in dictating the rate and extent of postmortem muscle glycolysis and pH decline as compared to F-2, 6-BP.


Asunto(s)
Adenosina Monofosfato/metabolismo , Fructosadifosfatos/metabolismo , Músculo Esquelético/enzimología , Fosfofructoquinasa-1/metabolismo , Animales , Activación Enzimática , Glucólisis , Concentración de Iones de Hidrógeno , Carne de Cerdo/análisis , Porcinos
14.
Arch Biochem Biophys ; 695: 108633, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33075302

RESUMEN

A linked-function theory for allostery allows for a differentiation between those protein-ligand interactions that contribute the most to ligand binding and those protein-ligand interactions that contribute to the allosteric mechanism. This potential distinction is the basis for analogue studies used to determine which chemical moieties on the allosteric effector contribute to allostery. Although less recognized, the same separation of functions is possible for substrate-enzyme interactions. When evaluating allosteric regulation in human liver pyruvate kinase, the use of a range of monovalent cations (K+, NH4+, Rb+, Cs+, cyclohexylammonium+ and Tris+) altered substrate (phosphoenolpyruvate; PEP) affinity, but maintained similar allosteric responses to the allosteric activator, fructose-1,6-bisphosphate (Fru-1,6-BP). Because crystal structures indicate that the active site monovalent cation interacts directly with the phosphate moiety of the bound PEP substrate, we questioned if the phosphate moiety might contribute to substrate binding, but not to the allosteric mechanism. Here, we demonstrate that the binding of oxalate, a non-phosphorylated substrate/product analogue, is allosterically enhanced by Fru-1,6-BP. That observation is consistent with the concept that the phosphate moiety of PEP is not required for the allosteric function, even though that moiety likely contributes to determining substrate affinity.


Asunto(s)
Fructosadifosfatos/química , Hígado/enzimología , Fosfoenolpiruvato/química , Piruvato Quinasa/química , Regulación Alostérica , Fructosadifosfatos/metabolismo , Humanos , Fosfoenolpiruvato/metabolismo , Piruvato Quinasa/metabolismo
15.
Cell Transplant ; 29: 963689720950226, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32841050

RESUMEN

Apoptosis is a vital pathological factor that accounts for the poor prognosis of traumatic spinal cord injury (t-SCI). The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is a critical regulator for energy metabolism and proven to have antiapoptotic effects. This study aimed to investigate the neuroprotective role of PFKFB3 in t-SCI. A compressive clip was introduced to establish the t-SCI model. Herein, we identified that PFKFB3 was extensively distributed in neurons, and PFKFB3 levels significantly increased and peaked 24 h after t-SCI. Additionally, knockdown of PFKFB3 inhibited glycolysis, accompanied by aggravated neuronal apoptosis and white matter injury, while pharmacological activation of PFKFB3 with meclizine significantly enhanced glycolysis, attenuated t-SCI-induced spinal cord injury, and alleviated neurological impairment. The PFKFB3 agonist, meclizine, activated cyclin-dependent kinase 1 (CDK1) and promoted the phosphorylation of p27, ultimately suppressing neuronal apoptosis. However, the neuroprotective effects of meclizine against t-SCI were abolished by the CDK1 antagonist, RO3306. In summary, our data demonstrated that PFKFB3 contributes robust neuroprotection against t-SCI by enhancing glycolysis and modulating CDK1-related antiapoptotic signals. Moreover, targeting PFKFB3 may be a novel and promising therapeutic strategy for t-SCI.


Asunto(s)
Apoptosis , Proteína Quinasa CDC2/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Glucólisis , Neuronas/patología , Fosfofructoquinasa-2/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Animales , Apoptosis/efectos de los fármacos , Fructosadifosfatos/metabolismo , Técnicas de Silenciamiento del Gen , Glucólisis/efectos de los fármacos , Ácido Láctico/metabolismo , Masculino , Meclizina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Modelos Biológicos , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Quinolinas/farmacología , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/fisiopatología , Médula Espinal/ultraestructura , Traumatismos de la Médula Espinal/fisiopatología , Tiazoles/farmacología , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos , Sustancia Blanca/lesiones , Sustancia Blanca/patología
16.
Artículo en Inglés | MEDLINE | ID: mdl-32592750

RESUMEN

The Richardson's ground squirrel (Urocitellus richardsonii) undergoes numerous changes to its core physiological and metabolic processes over the months it spends hibernating during the winter. Winter torpor is characterized by an overall reduction in metabolic rate, a lowering of core body temperature, and a switch to preferential consumption of lipids instead of carbohydrates. The alterations in central metabolic pathways are often accomplished by the regulation of key enzymes within the glycolytic pathway. The regulation of one such enzyme, pyruvate kinase (PK), was characterized in the present study in the liver of torpid ground squirrels. PK was purified from liver tissue of euthermic and hibernating U. richardsonii and subsequently assayed to determine the kinetic parameters of the enzyme at 22° and 5 °C. Additional studies assessed the relative degree of post-translational modifications in PK from control and hibernating ground squirrels. The results from this study demonstrated significantly lowered maximal activity in the hibernating form of the enzyme and decreased sensitivity to the activator FBP when compared to the control. Immunoblotting demonstrated increased relative serine and threonine phosphorylation (~3 fold) in the hibernating PK. Taken together these results suggest that phosphorylation of liver PK is an important step in inhibiting glycolytic activity in the liver of the Richardson's ground squirrel during torpor.


Asunto(s)
Hibernación , Hígado/metabolismo , Procesamiento Proteico-Postraduccional , Piruvato Quinasa/metabolismo , Sciuridae/metabolismo , Animales , Fructosadifosfatos/metabolismo , Glucólisis , Fosforilación , Piruvato Quinasa/química , Estaciones del Año
17.
Sci Rep ; 9(1): 16957, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31740686

RESUMEN

For protein mutagenesis, a common expectation is that important positions will behave like on/off "toggle" switches (i.e., a few substitutions act like wildtype, most abolish function). However, there exists another class of important positions that manifests a wide range of functional outcomes upon substitution: "rheostat" positions. Previously, we evaluated rheostat positions located near the allosteric binding sites for inhibitor alanine (Ala) and activator fructose-1,6-bisphosphate (Fru-1,6-BP) in human liver pyruvate kinase. When substituted with multiple amino acids, many positions demonstrated moderate rheostatic effects on allosteric coupling between effector binding and phosphoenolpyruvate (PEP) binding in the active site. Nonetheless, the combined outcomes of all positions sampled the full range of possible allosteric coupling (full tunability). However, that study only evaluated allosteric tunability of "local" positions, i.e., positions were located near the binding sites of the allosteric ligand being assessed. Here, we evaluated tunability of allosteric coupling when mutated sites were distant from the allosterically-coupled binding sites. Positions near the Ala binding site had rheostatic outcomes on allosteric coupling between Fru-1,6-BP and PEP binding. In contrast, positions in the Fru-1,6-BP site exhibited modest effects on coupling between Ala and PEP binding. Analyzed in aggregate, both PEP/Ala and PEP/Fru-1,6-BP coupling were again fully tunable by amino acid substitutions at this limited set of distant positions. Furthermore, some positions exhibited rheostatic control over multiple parameters and others exhibited rheostatic effects on one parameter and toggle control over a second. These findings highlight challenges in efforts to both predict/interpret mutational outcomes and engineer functions into proteins.


Asunto(s)
Alanina/metabolismo , Fructosadifosfatos/metabolismo , Fosfoenolpiruvato/metabolismo , Piruvato Quinasa/metabolismo , Sitio Alostérico , Sitios de Unión , Humanos , Piruvato Quinasa/genética
18.
PLoS One ; 14(9): e0222202, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31509566

RESUMEN

Pulmonary fibrosis (PF) is the result of chronic injury where fibroblasts become activated and secrete large amounts of extracellular matrix (ECM), leading to impaired fibroblasts degradation followed by stiffness and loss of lung function. Fructose-1,6-bisphosphate (FBP), an intermediate of glycolytic pathway, decreases PF development, but the underlying mechanism is unknown. To address this issue, PF was induced in vivo using a mouse model, and pulmonary fibroblasts were isolated from healthy and fibrotic animals. In PF model mice, lung function was improved by FBP as revealed by reduced collagen deposition and downregulation of ECM gene expression such as collagens and fibronectin. Fibrotic lung fibroblasts (FLF) treated with FBP for 3 days in vitro showed decreased proliferation, contraction, and migration, which are characteristic of myofibroblast to fibroblast phenotype reversal. ECM-related genes and proteins such as collagens, fibronectin and α-smooth muscle actin, were also downregulated in FBP-treated FLF. Moreover, matrix metalloproteinase (MMP) 1, responsible for ECM degradation, was produced only in fibroblasts obtained from healthy lungs (HLF) and FBP did not alter its expression. On the other hand, tissue inhibitor of metalloproteinase (TIMP)-1, a MMP1 inhibitor, and MMP2, related to fibroblast tissue-invasion, were predominantly produced by FLF and FBP was able to downregulate its expression. These results demonstrate that FBP may prevent bleomycin-induced PF development through reduced expression of collagen and other ECM components mediated by a reduced TIMP-1 and MMP2 expression.


Asunto(s)
Fructosadifosfatos/metabolismo , Miofibroblastos/metabolismo , Fibrosis Pulmonar/prevención & control , Animales , Bleomicina/efectos adversos , Colágeno/metabolismo , Modelos Animales de Enfermedad , Matriz Extracelular/fisiología , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Fibrosis , Fructosa/metabolismo , Pulmón/patología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/fisiología , Fibrosis Pulmonar/inducido químicamente , Transducción de Señal/efectos de los fármacos , Inhibidor Tisular de Metaloproteinasa-1/metabolismo
19.
Sci Rep ; 9(1): 11670, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406177

RESUMEN

The glycolytic rate in neurons is low in order to allow glucose to be metabolized through the pentose-phosphate pathway (PPP), which regenerates NADPH to preserve the glutathione redox status and survival. This is controlled by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), the pro-glycolytic enzyme that forms fructose-2,6-bisphosphate, a powerful allosteric activator of 6-phosphofructo-1-kinase. In neurons, PFKFB3 protein is physiologically inactive due to its proteasomal degradation. However, upon an excitotoxic stimuli, PFKFB3 becomes stabilized to activate glycolysis, thus hampering PPP mediated protection of redox status leading to neurodegeneration. Here, we show that selective inhibition of PFKFB3 activity by the small molecule AZ67 prevents the NADPH oxidation, redox stress and apoptotic cell death caused by the activation of glycolysis triggered upon excitotoxic and oxygen-glucose deprivation/reoxygenation models in mouse primary neurons. Furthermore, in vivo administration of AZ67 to mice significantly alleviated the motor discoordination and brain infarct injury in the middle carotid artery occlusion ischemia/reperfusion model. These results show that pharmacological inhibition of PFKFB3 is a suitable neuroprotective therapeutic strategy in excitotoxic-related disorders such as stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fosfofructoquinasa-2/genética , Piridinas/farmacología , Pirrolidinas/farmacología , Daño por Reperfusión/prevención & control , Células A549 , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Fructosadifosfatos/metabolismo , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Glucólisis/efectos de los fármacos , Humanos , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Vía de Pentosa Fosfato/efectos de los fármacos , Fosfofructoquinasa-1/genética , Fosfofructoquinasa-1/metabolismo , Fosfofructoquinasa-2/antagonistas & inhibidores , Fosfofructoquinasa-2/metabolismo , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología
20.
Phys Biol ; 16(6): 066007, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31469100

RESUMEN

The glycolytic enzyme pyruvate kinase M2 (PKM2) exists in both catalytically inactive dimeric and active tetrameric forms. In cancer cells, PKM2 dimer predominance contributes to tumor growth by triggering glycolytic reprogramming. However, the mechanism that promotes PKM2 dimer predominance over tetramer in cancer cells remains elusive. Here, we show that pulsatile phosphofructokinase (PFK-1) activity results in PKM2 dimer predominance. Mathematical simulations predict that pulsatile PFK-1 activity prevents the formation of PKM2 tetramer even under high levels of fructose-1,6-bisphosphate (FBP), a PKM2 tetramer-promoting metabolite produced by PFK-1. We experimentally confirm these predictions at the single-molecule level by providing evidence for pulsatile PFK-1 activity-induced synchronized dissociation of PKM2 tetramers and the subsequent accumulation of PKM2 dimers under high levels of FBP in HeLa cells. Moreover, we show that pulsatile PFK-1 activity-induced PKM2 dimer predominance also controls cell proliferation. Thus, our study reveals the significance of pulsatile PFK-1 activity in cancer cell metabolism.


Asunto(s)
Proteínas Portadoras/genética , Fructosadifosfatos/metabolismo , Glucólisis , Proteínas de la Membrana/genética , Fosfofructoquinasa-1 Tipo Muscular/genética , Hormonas Tiroideas/genética , Proteínas Portadoras/metabolismo , Reprogramación Celular , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Fosfofructoquinasa-1 Tipo Muscular/metabolismo , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...