Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 615(7952): 490-498, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890227

RESUMEN

Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-ß production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.


Asunto(s)
Fumarato Hidratasa , Interferón beta , Macrófagos , Mitocondrias , ARN Mitocondrial , Humanos , Argininosuccinato Sintasa/metabolismo , Ácido Argininosuccínico/metabolismo , Ácido Aspártico/metabolismo , Respiración de la Célula , Citosol/metabolismo , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Fumaratos/metabolismo , Interferón beta/biosíntesis , Interferón beta/inmunología , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Lupus Eritematoso Sistémico/enzimología , Macrófagos/enzimología , Macrófagos/inmunología , Macrófagos/metabolismo , Potencial de la Membrana Mitocondrial , Metabolómica , Mitocondrias/genética , Mitocondrias/metabolismo , ARN Mitocondrial/metabolismo
2.
J Med Chem ; 62(23): 10586-10604, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31517489

RESUMEN

With the growing worldwide prevalence of antibiotic-resistant strains of tuberculosis (TB), new targets are urgently required for the development of treatments with novel modes of action. Fumarate hydratase (fumarase), a vulnerable component of the citric acid cycle in Mycobacterium tuberculosis (Mtb), is a metabolic target that could satisfy this unmet demand. A key challenge in the targeting of Mtb fumarase is its similarity to the human homolog, which shares an identical active site. A potential solution to this selectivity problem was previously found in a high-throughput screening hit that binds in a nonconserved allosteric site. In this work, a structure-activity relationship study was carried out with the determination of further structural biology on the lead series, affording derivatives with sub-micromolar inhibition. Further, the screening of this series against Mtb in vitro identified compounds with potent minimum inhibitory concentrations.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Sistemas de Liberación de Medicamentos , Fumarato Hidratasa/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Sitios de Unión , Fumarato Hidratasa/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Mycobacterium tuberculosis/enzimología , Conformación Proteica , Relación Estructura-Actividad
3.
Artículo en Inglés | MEDLINE | ID: mdl-31332064

RESUMEN

In the last decade, carbon monoxide-releasing molecules (CORMs) have been shown to act against several pathogens and to be promising antimicrobials. However, the understanding of the mode of action and reactivity of these compounds on bacterial cells is still deficient. In this work, we used a metabolomics approach to probe the toxicity of the ruthenium(II) complex Ru(CO)3Cl(glycinate) (CORM-3) on Escherichia coli By resorting to 1H nuclear magnetic resonance, mass spectrometry, and enzymatic activities, we show that CORM-3-treated E. coli accumulates larger amounts of glycolytic intermediates, independently of the oxygen growth conditions. The work provides several evidences that CORM-3 inhibits glutamate synthesis and the iron-sulfur enzymes of the tricarboxylic acid (TCA) cycle and that the glycolysis pathway is triggered in order to establish an energy and redox homeostasis balance. Accordingly, supplementation of the growth medium with fumarate, α-ketoglutarate, glutamate, and amino acids cancels the toxicity of CORM-3. Importantly, inhibition of the iron-sulfur enzymes glutamate synthase, aconitase, and fumarase is only observed for compounds that liberate carbon monoxide. Altogether, this work reveals that the antimicrobial action of CORM-3 results from intracellular glutamate deficiency and inhibition of nitrogen and TCA cycles.


Asunto(s)
Antibacterianos/farmacología , Monóxido de Carbono/farmacología , Ciclo del Ácido Cítrico/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica , Nitrógeno/metabolismo , Compuestos Organometálicos/farmacología , Aconitato Hidratasa/antagonistas & inhibidores , Aconitato Hidratasa/genética , Aconitato Hidratasa/metabolismo , Antibacterianos/química , Monóxido de Carbono/química , Ciclo del Ácido Cítrico/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Fumaratos/metabolismo , Glutamato Sintasa/antagonistas & inhibidores , Glutamato Sintasa/genética , Glutamato Sintasa/metabolismo , Ácido Glutámico/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/genética , Ácidos Cetoglutáricos/metabolismo , Espectroscopía de Resonancia Magnética , Metabolómica/métodos , Compuestos Organometálicos/química , Oxidación-Reducción
4.
Cell Death Dis ; 10(6): 413, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138787

RESUMEN

Gastric cancer (GC) is one of the most common malignancies worldwide. Due to the low rate of early detection, most GC patients were diagnosed as advance stages and had poor response to chemotherapy. Some studies found that Fumarate hydratase (FH) participated in the DNA damage response and its deficiency was associated with tumorigenesis in some cancers. In this study, we investigated the relationship between FH and cisplatin (CDDP) sensitivity in GC cell lines. We found that FH was the most significant gene which induced by CDDP treatment and the suppression of FH could enhance the cytotoxicity of CDDP. Miconazole Nitrate (MN) could inhibit FH activity and enhance the effect of CDDP in vitro and in vivo. We also investigated the significance of expression of FH in GC tissues. The FH expression, which was higher in GC tissues than in noncancerous tissues, was negatively associated with the prognosis of patients. Together, these results revealed that FH is a reliable indicator for response to CDDP treatment in GC and the inhibition of FH may be a potential strategy to improve the effects of CDDP-based chemotherapy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cisplatino/uso terapéutico , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Quimioterapia Combinada , Femenino , Fumarato Hidratasa/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Neoplasias Gástricas/enzimología , Neoplasias Gástricas/genética , Trasplante Heterólogo
5.
Malar J ; 16(1): 247, 2017 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-28606087

RESUMEN

BACKGROUND: Aspartate, which is converted from oxaloacetate (OAA) by aspartate aminotransferase, is considered an important precursor for purine salvage and pyrimidine de novo biosynthesis, and is thus indispensable for the growth of Plasmodium parasites at the asexual blood stages. OAA can be produced in malaria parasites via two routes: (i) from phosphoenolpyruvate (PEP) by phosphoenolpyruvate carboxylase (PEPC) in the cytosol, or (ii) from fumarate by consecutive reactions catalyzed by fumarate hydratase (FH) and malate:quinone oxidoreductase (MQO) in the mitochondria of malaria parasites. Although PEPC-deficient Plasmodium falciparum and Plasmodium berghei (rodent malaria) parasites show a growth defect, the mutant P. berghei can still cause experimental cerebral malaria (ECM) with similar dynamics to wild-type parasites. In contrast, the importance of FH and MQO for parasite viability, growth and virulence is not fully understood because no FH- and MQO-deficient P. falciparum has been established. In this study, the role of FH and MQO in the pathogenicity of asexual-blood-stage Plasmodium parasites causing cerebral malaria was examined. RESULTS: First, FH- and MQO-deficient parasites were generated by inserting a luciferase-expressing cassette into the fh and mqo loci in the genome of P. berghei ANKA strain. Second, the viability of FH-deficient and MQO-deficient parasites that express luciferase was determined by measuring luciferase activity, and the effect of FH or MQO deficiency on the development of ECM was examined. While the viability of FH-deficient P. berghei was comparable to that of control parasites, MQO-deficient parasites exhibited considerably reduced viability. FH activity derived from erythrocytes was also detected. This result and the absence of phenotype in FH-deficient P. berghei parasites suggest that fumarate can be metabolized to malate by host or parasite FH in P. berghei-infected erythrocytes. Furthermore, although the growth of FH- and MQO-deficient parasites was impaired, the development of ECM was suppressed only in mice infected with MQO-deficient parasites. CONCLUSIONS: These findings suggest that MQO-mediated mitochondrial functions are required for development of ECM of asexual-blood-stage Plasmodium parasites.


Asunto(s)
Malaria Cerebral/prevención & control , Mitocondrias/enzimología , Oxidorreductasas/antagonistas & inhibidores , Plasmodium berghei/enzimología , Animales , Barrera Hematoencefálica/metabolismo , Eritrocitos/parasitología , Femenino , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/deficiencia , Fumarato Hidratasa/fisiología , Fumaratos/metabolismo , Malatos/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Ácido Oxaloacético/metabolismo , Oxidorreductasas/deficiencia , Oxidorreductasas/fisiología , Plasmodium berghei/genética , Plasmodium berghei/crecimiento & desarrollo , Organismos Libres de Patógenos Específicos
6.
Int J Biol Macromol ; 102: 42-51, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28359888

RESUMEN

Nifurtimox and benznidazole represent the only treatments options available targeting Chagas disease, the most important parasitic infection in the Americas. However, use of these is problematic as they are toxic and ineffective against the more severe stages of the disease. In this work, we used a multidisciplinary approach to characterise the fumarases from Trypanosoma cruzi, the causative agent of Chagas Disease. We showed this trypanosome expresses cytosolic and mitochondrial fumarases that via an iron-sulfur cluster mediate the reversible conversion of fumarate to S-malate. Based on sequence, biochemical properties and co-factor binding, both T. cruzi proteins share characteristics with class I fumarases, enzymes found in bacteria and some other protozoa but absent from humans, that possess class II isoforms instead. Gene disruption suggested that although the cytosolic or mitochondrial fumarase activities are individually dispensable their combined activity is essential for parasite viability. Finally, based on the mechanistic differences with the human (host) fumarase, we designed and validated a selective inhibitor targeting the parasite enzyme. This study showed that T. cruzi fumarases should be exploited as targets for the development of new chemotherapeutic interventions against Chagas disease.


Asunto(s)
Fumarato Hidratasa/metabolismo , Trypanosoma cruzi/enzimología , Citosol/enzimología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/química , Mitocondrias/enzimología , Transporte de Proteínas , Trypanosoma cruzi/citología
7.
Proc Natl Acad Sci U S A ; 113(27): 7503-8, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27325754

RESUMEN

Enzymes in essential metabolic pathways are attractive targets for the treatment of bacterial diseases, but in many cases, the presence of homologous human enzymes makes them impractical candidates for drug development. Fumarate hydratase, an essential enzyme in the tricarboxylic acid (TCA) cycle, has been identified as one such potential therapeutic target in tuberculosis. We report the discovery of the first small molecule inhibitor, to our knowledge, of the Mycobacterium tuberculosis fumarate hydratase. A crystal structure at 2.0-Å resolution of the compound in complex with the protein establishes the existence of a previously unidentified allosteric regulatory site. This allosteric site allows for selective inhibition with respect to the homologous human enzyme. We observe a unique binding mode in which two inhibitor molecules interact within the allosteric site, driving significant conformational changes that preclude simultaneous substrate and inhibitor binding. Our results demonstrate the selective inhibition of a highly conserved metabolic enzyme that contains identical active site residues in both the host and the pathogen.


Asunto(s)
Fumarato Hidratasa/metabolismo , Mycobacterium tuberculosis/enzimología , Regulación Alostérica , Cristalografía por Rayos X , Fluorescencia , Fumarato Hidratasa/antagonistas & inhibidores
8.
Cancer Res ; 76(19): 5743-5755, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27302170

RESUMEN

Chromatin modification is pivotal to the epithelial-mesenchymal transition (EMT), which confers potent metastatic potential to cancer cells. Here, we report a role for the chromatin remodeling factor lymphoid-specific helicase (LSH) in nasopharyngeal carcinoma (NPC), a prevalent cancer in China. LSH expression was increased in NPC, where it was controlled by the Epstein-Barr virus-encoded protein LMP1. In NPC cells in vitro and in vivo, LSH promoted cancer progression in part by regulating expression of fumarate hydratase (FH), a core component of the tricarboxylic acid cycle. LSH bound to the FH promoter, recruiting the epigenetic silencer factor G9a to repress FH transcription. Clinically, we found that the concentration of TCA intermediates in NPC patient sera was deregulated in the presence of LSH. RNAi-mediated silencing of FH mimicked LSH overexpression, establishing FH as downstream mediator of LSH effects. The TCA intermediates α-KG and citrate potentiated the malignant character of NPC cells, in part by altering IKKα-dependent EMT gene expression. In this manner, LSH furthered malignant progression of NPC by modifying cancer cell metabolism to support EMT. Cancer Res; 76(19); 5743-55. ©2016 AACR.


Asunto(s)
Carcinoma/etiología , Ensamble y Desensamble de Cromatina , ADN Helicasas/fisiología , Fumarato Hidratasa/antagonistas & inhibidores , Neoplasias Nasofaríngeas/etiología , Animales , Carcinoma/enzimología , Línea Celular Tumoral , Ácido Cítrico/farmacología , Ciclo del Ácido Cítrico , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Fumarato Hidratasa/metabolismo , Humanos , Ácidos Cetoglutáricos/farmacología , Ratones , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/enzimología , Proteína de la Zonula Occludens-1/análisis
9.
Bioanalysis ; 8(7): 661-75, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26978279

RESUMEN

BACKGROUND: Fumaric acid is a commonly used excipient in pharmaceutical products. It is not known if its presence may lead to fluctuation of endogenous fumarate levels. An LC-MS/MS method was developed and validated to quantify fumarate in support of a toxicokinetics study. RESULTS: Stability evaluation showed that endogenous fumarate was stable for 6 h at room temperature, while exogenously added fumaric acid was converted to malate within 1 h due to the presence of fumarase. Citric acid, a fumarase inhibitor, prevented the conversion of added fumaric acid in rat plasma. CONCLUSION: The method was validated in citric acid stabilized rat plasma using a surrogate matrix approach. A discrepancy in stability was observed between endogenous fumarate and exogenously added fumaric acid.


Asunto(s)
Cromatografía Líquida de Alta Presión , Fumaratos/sangre , Espectrometría de Masas en Tándem , Animales , Radioisótopos de Carbono/química , Cromatografía Líquida de Alta Presión/normas , Ácido Cítrico/química , Ácido Cítrico/metabolismo , Estabilidad de Medicamentos , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/metabolismo , Fumaratos/normas , Marcaje Isotópico , Malatos/análisis , Malatos/metabolismo , Control de Calidad , Ratas , Espectrometría de Masas en Tándem/normas , Temperatura
10.
J Am Chem Soc ; 137(2): 564-7, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25469852

RESUMEN

Development of cell-permeable small molecules that target enzymes involved in energy metabolism remains important yet challenging. We describe here the discovery of a new class of compounds with a nutrient-dependent cytotoxicity profile that arises from pharmacological inhibition of fumarate hydratase (also known as fumarase). This finding was enabled by a high-throughput screen of a diverse chemical library in a panel of human cancer cell lines cultured under different growth conditions, followed by subsequent structure-activity optimization and target identification. While the highest cytotoxicity was observed under low glucose concentrations, the antiproliferative activities and inhibition of oxygen consumption rates in cells were distinctly different from those displayed by typical inhibitors of mitochondrial oxidative phosphorylation. The use of a photoaffinity labeling strategy identified fumarate hydratase as the principal pharmacological target. Final biochemical studies confirmed dose-dependent, competitive inhibition of this enzyme in vitro, which was fully consistent with the initially observed growth inhibitory activity. Our work demonstrates how the phenotypic observations combined with a successful target identification strategy can yield a useful class of pharmacological inhibitors of an enzyme involved in the operation of tricarboxylic acid cycle.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Fumarato Hidratasa/antagonistas & inhibidores , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Metabolismo Energético/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Fumarato Hidratasa/metabolismo , Glucosa/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos
11.
Mol Cell ; 51(2): 236-48, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23747014

RESUMEN

The tricarboxylic acid cycle enzyme fumarate hydratase (FH) has been identified as a tumor suppressor in a subset of human renal cell carcinomas. Human FH-deficient cancer cells display high fumarate concentration and ROS levels along with activation of HIF-1. The underlying mechanisms by which FH loss increases ROS and HIF-1 are not fully understood. Here, we report that glutamine-dependent oxidative citric acid cycle metabolism is required to generate fumarate and increase ROS and HIF-1 levels. Accumulated fumarate directly bonds the antioxidant glutathione in vitro and in vivo to produce the metabolite succinated glutathione (GSF). GSF acts as an alternative substrate to glutathione reductase to decrease NADPH levels and enhance mitochondrial ROS and HIF-1 activation. Increased ROS also correlates with hypermethylation of histones in these cells. Thus, fumarate serves as a proto-oncometabolite by binding to glutathione which results in the accumulation of ROS.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Fumaratos/metabolismo , Glutatión/metabolismo , Neoplasias Renales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Carcinoma de Células Renales/patología , Cromatografía Liquida , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Glutatión Reductasa/metabolismo , Histona Demetilasas/metabolismo , Histonas/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Immunoblotting , Neoplasias Renales/patología , NADP/metabolismo , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Consumo de Oxígeno , ARN Interferente Pequeño/genética , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Células Tumorales Cultivadas
12.
Biometals ; 25(1): 95-102, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21818585

RESUMEN

Helicobacter pylori causes various gastric diseases, such as gastritis, peptic ulcerations and gastric cancer. Triple therapy combining bismuth compounds with two antibiotics is the cornerstone of the treatment of H. pylori infections. Up to now, the molecular mechanisms by which bismuth inhibits the growth of H. pylori are far from clear. In the bacterial tricarboxylic acid (TCA) cycle, fumarase catalyses the reversible hydration of fumarate to malic acid. Our previous proteomic work indicated that fumarase was capable of bismuth-binding. The interactions as well as the inhibitory effects of bismuth to fumarase have been characterized in this study. The titration of bismuth showed that each fumarase monomer binds one mol equiv of Bi(3+), with negligible secondary structural change. Bismuth-binding results in a near stoichiometric inactivation of the enzyme, leading to an apparent non-competitive mechanism as reflected by the Lineweaver-Burk plots. Our collective data indicate that the TCA cycle is a potential molecular target of bismuth drugs in H. pylori.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bismuto/farmacología , Ciclo del Ácido Cítrico/efectos de los fármacos , Fumarato Hidratasa/antagonistas & inhibidores , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/enzimología , Proteínas Bacterianas/genética , Bismuto/uso terapéutico , Fumarato Hidratasa/química , Fumarato Hidratasa/genética , Infecciones por Helicobacter/tratamiento farmacológico , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína
13.
Appl Biochem Biotechnol ; 164(8): 1461-7, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21416336

RESUMEN

Cytosolic fumarase, a key enzyme for the accumulation of fumaric acid in Rhizopus oryzae, catalyzes the dehydration of L-malic acid to fumaric acid. The effects of carbon-nitrogen ratio on the acid production and activity of cytosolic fumarase were investigated. Under nitrogen limitation stress, the cytosolic fumarase could keep high activity. With the urea concentration decreased from 2.0 to 0.1 g l⁻¹, the cytosolic fumarase activity increased by 300% and the production of fumaric acid increased from 14.4 to 40.3 g l⁻¹ and L-malic acid decreased from 2.1 to 0.3 g l⁻¹. Cytosolic fumarase could be inhibited by substrate analog 3-hydroxybutyric acid. With the addition of 3-hydroxybutyric acid (50 mM) in the fermentation culture, fumaric acid production decreased from 40.3 to 14.1 g l⁻¹ and L-malic acid increased from 0.3 to 5.4 g l⁻¹.


Asunto(s)
Fumaratos/metabolismo , Rhizopus/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Ácido Aspártico/farmacología , Carbono/metabolismo , Citosol/enzimología , Inhibidores Enzimáticos/farmacología , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/metabolismo , Fumaratos/farmacología , Nitrógeno/metabolismo , Ácido Succínico/farmacología
14.
Microbiology (Reading) ; 155(Pt 6): 1840-1846, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19383690

RESUMEN

The tellurium oxyanion tellurite is toxic for most organisms and it seems to alter a number of intracellular targets. In this work the toxic effects of tellurite upon Escherichia coli [4Fe-4S] cluster-containing dehydratases was studied. Reactive oxygen species (ROS)-sensitive fumarase A (FumA) and aconitase B (AcnB) as well as ROS-resistant fumarase C (FumC) and aconitase A (AcnA) were assayed in cell-free extracts from tellurite-exposed cells in both the presence and absence of oxygen. While over 90 % of FumA and AcnB activities were lost in the presence of oxygen, no enzyme inactivation was observed in anaerobiosis. This result was not dependent upon protein biosynthesis, as determined using translation-arrested cells. Enzyme activity of purified FumA and AcnB was inhibited when exposed to an in vitro superoxide-generating, tellurite-reducing system (ITRS). No inhibitory effect was observed when tellurite was omitted from the ITRS. In vivo and in vitro reconstitution experiments with tellurite-damaged FumA and AcnB suggested that tellurite effects involve [Fe-S] cluster disabling. In fact, after exposing FumA to ITRS, released ferrous ion from the enzyme was demonstrated by spectroscopic analysis using the specific Fe(2+) chelator 2,2'-bipyridyl. Subsequent spectroscopic paramagnetic resonance analysis of FumA exposed to ITRS showed the characteristic signal of an oxidatively inactivated [3Fe-4S](+) cluster. These results suggest that tellurite inactivates enzymes of this kind via a superoxide-dependent disabling of their [4Fe-4S] catalytic clusters.


Asunto(s)
Escherichia coli , Hidroliasas/antagonistas & inhibidores , Proteínas Hierro-Azufre/antagonistas & inhibidores , Telurio/efectos adversos , Aconitato Hidratasa/antagonistas & inhibidores , Aerobiosis , Anaerobiosis , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Fumarato Hidratasa/antagonistas & inhibidores , Hidroliasas/química , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/química , Proteínas Hierro-Azufre/química , Análisis Espectral , Superóxidos/metabolismo
15.
Biosci Biotechnol Biochem ; 70(5): 1102-9, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16717409

RESUMEN

Fumarase (EC 4.2.1.2) from Corynebacterium glutamicum (Brevibacterium flavum) ATCC 14067 was purified to homogeneity. Its amino-terminal sequence (residues 1 to 30) corresponded to the sequence (residues 6 to 35) of the deduced product of the fumarase gene of C. glutamicum (GenBank accession no. BAB98403). The molecular mass of the native enzyme was 200 kDa. The protein was a homotetramer, with a 50-kDa subunit molecular mass. The homotetrameric and stable properties indicated that the enzyme belongs to a family of Class II fumarase. Equilibrium constants (K(eq)) for the enzyme reaction were determined at pH 6.0, 7.0, and 8.0, resulting in K(eq)=6.4, 6.1, and 4.6 respectively in phosphate buffer and in 16, 19, and 17 in non-phosphate buffers. Among the amino acids and nucleotides tested, ATP inhibited the enzyme competitively, or in mixed-type, depending on the buffer. Substrate analogs, meso-tartrate, D-tartrate, and pyromellitate, inhibited the enzyme competitively, and D-malate in mixed-type.


Asunto(s)
Proteínas Bacterianas/química , Corynebacterium glutamicum/enzimología , Fumarato Hidratasa/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/aislamiento & purificación , Benzoatos/química , Estabilidad de Enzimas , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/aislamiento & purificación , Concentración de Iones de Hidrógeno , Peso Molecular , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Especificidad por Sustrato , Compuestos de Sulfhidrilo/química , Tartratos/química
16.
Cancer Cell ; 8(2): 143-53, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16098467

RESUMEN

Individuals with hemizygous germline fumarate hydratase (FH) mutations are predisposed to renal cancer. These tumors predominantly exhibit functional inactivation of the remaining wild-type allele, implicating FH inactivation as a tumor-promoting event. Hypoxia-inducible factors are expressed in many cancers and are increased in clear cell renal carcinomas. Under normoxia, the HIFs are labile due to VHL-dependent proteasomal degradation, but stabilization occurs under hypoxia due to inactivation of HIF prolyl hydroxylase (HPH), which prevents HIF hydroxylation and VHL recognition. We demonstrate that FH inhibition, together with elevated intracellular fumarate, coincides with HIF upregulation. Further, we show that fumarate acts as a competitive inhibitor of HPH. These data delineate a novel fumarate-dependent pathway for regulating HPH activity and HIF protein levels.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Proteínas de Unión al ADN/metabolismo , Fumarato Hidratasa/genética , Fumaratos/metabolismo , Neoplasias Renales/metabolismo , Leiomiomatosis/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Adulto , Alelos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carcinoma de Células Renales/enzimología , Carcinoma de Células Renales/genética , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Femenino , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/metabolismo , Fumaratos/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 1 Inducible por Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ácidos Cetoglutáricos/farmacología , Neoplasias Renales/enzimología , Neoplasias Renales/genética , Leiomiomatosis/enzimología , Leiomiomatosis/genética , Masculino , Persona de Mediana Edad , Proteínas Nucleares/análisis , Proteínas Nucleares/genética , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Síndrome , Factores de Transcripción/análisis , Factores de Transcripción/genética , Regulación hacia Arriba
17.
Biochim Biophys Acta ; 1587(1): 31-5, 2002 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-12009421

RESUMEN

Ibuprofen and its major metabolites were incubated with catalase and fumarase, in the presence of protein-modifying biomolecules, to explore the mode of action of ibuprofen in protection against cataract. Both 2 and 10 mM ibuprofen/metabolites protected catalase against fructose-, cyanate- and prednisolone-induced inactivation; the carboxy-metabolite gave the highest protection (31%). The 2 mM ibuprofen/metabolites protected fumarase against fructose- and cyanate-induced inactivation by up to 26%, but had no effect on prednisolone-induced inactivation. Ibuprofen/metabolites did not bind to catalase or fumarase. They penetrated into the lens in vitro. When in the lens, the metabolites may reduce the risk of cataract by protecting lenticular enzymes.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Catalasa/metabolismo , Fumarato Hidratasa/metabolismo , Ibuprofeno/farmacología , Animales , Biotransformación , Catalasa/antagonistas & inhibidores , Catarata/prevención & control , Bovinos , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Fumarato Hidratasa/antagonistas & inhibidores , Ibuprofeno/química , Ibuprofeno/metabolismo , Técnicas In Vitro , Cristalino/química , Cristalino/metabolismo , Estructura Molecular , Permeabilidad
18.
Dev Neurosci ; 22(5-6): 456-62, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11111162

RESUMEN

Malate, specifically labeled with carbon 13 on C(3), was synthesized by chemical means and used to study malate metabolism by primary cultures of mouse cortical astrocytes. 3-(13)C-Malate in combination with glucose as well as 3-(13)C-malate alone were used as substrates; the effect of 3-nitropropionic acid, an inhibitor of succinate dehydrogenase and fumarase was also examined. The consumption of malate was only 0.26 micromol/mg of protein, approx. 25-fold lower than the consumption of glucose. Besides lactate, glutamine and fumarate were the two major metabolites released to the medium. Very low and similar levels of isotopic enrichment were detected on C(2) and C(3) of lactate; glutamine was labeled on C(2) and C(3) to a similar extent as well and labeling on C(4) was only detected when glucose was not added. These labeling studies suggest that cytosolic malic enzyme is not active in primary astrocytes and support the occurrence of pyruvate recycling in astrocytes.


Asunto(s)
Astrocitos/metabolismo , Malatos/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Isótopos de Carbono , Células Cultivadas , Ciclo del Ácido Cítrico/fisiología , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/metabolismo , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/metabolismo , Fumaratos/análisis , Fumaratos/metabolismo , Glucosa/metabolismo , Glutamina/análisis , Glutamina/biosíntesis , Ácido Láctico/análisis , Ácido Láctico/biosíntesis , Espectroscopía de Resonancia Magnética , Ratones , Nitrocompuestos , Propionatos/farmacología , Ácido Pirúvico/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Ácido Succínico/análisis , Ácido Succínico/metabolismo
19.
Proc Natl Acad Sci U S A ; 97(10): 5050-3, 2000 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-10805768

RESUMEN

Beta-cyclodextrin (CD) dimers (n = 11) were synthesized and tested against eight enzymes, seven of which were dimeric or tetrameric, for inhibitor activity. Initial screening showed that only L-lactate dehydrogenase and citrate synthase were inhibited but only by two specific CD dimers in which two beta-CDs were linked on the secondary face by a pyridine-2,6-dicarboxylic group. Further investigation suggested that these CD dimers inhibit the activity of L-lactate dehydrogenase and citrate synthase at least in part by disruption of protein-protein aggregation.


Asunto(s)
Ciclodextrinas/química , Ciclodextrinas/farmacología , Enzimas/química , Adenosina Desaminasa/química , Inhibidores de la Adenosina Desaminasa , Sitios de Unión , Citrato (si)-Sintasa/antagonistas & inhibidores , Citrato (si)-Sintasa/química , Simulación por Computador , Dimerización , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/química , Galactosa Deshidrogenasas/antagonistas & inhibidores , Galactosa Deshidrogenasas/química , Glucosa-6-Fosfato Isomerasa/antagonistas & inhibidores , Glucosa-6-Fosfato Isomerasa/química , Glucosafosfato Deshidrogenasa/antagonistas & inhibidores , Glucosafosfato Deshidrogenasa/química , L-Iditol 2-Deshidrogenasa/antagonistas & inhibidores , L-Iditol 2-Deshidrogenasa/química , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/química , Sustancias Macromoleculares , Modelos Moleculares , Conformación Proteica
20.
Biochemistry ; 37(51): 17651-8, 1998 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-9922130

RESUMEN

Recycling of yeast fumarase to permit repetition of its reaction chemistry requires two proton transfers and two conformational changes, in pathways that are different in detail but thematically similar in the two directions. In the malate --> fumarate direction, simple anions such as acetate accelerate the fumarate-off step producing E(H(f)), a fumarate-specific isoform that retains the C3R-proton of malate. Fumarate specificity is shown with S-2,3-dicarboxyaziridine, which is competitive vs fumarate and noncompetitive with malate as substrate. The steady-state level of E(H(f)), based on Kii (S-2,3-dicarboxyaziridine), is increased by D2O and decreased by imidazole acting as a general acid for conversion of E(H(f)) to E(H(f))H. E(H(f))H is fumarate-specific as shown by the inhibition pattern with ClO4-. The pKa of this step is approximately 7.25 based on the pH dependence of Kii (ClO4-). A conformational change occurs next as shown by high sensitivity of k(cat) but not k(cat)/Km, to the microviscosogen, glycerol, and change to a nonspecific isoform, E(H(mf))H, probably the same species formed in the fumarate --> malate direction from malate-specific intermediates by a different conformational change. Malate enters the cycle by reaction with E(H(mf))H and returns to E(m)H x malate after a second conformational change. When fumarate-off is slow, as in low anion medium, malate itself becomes an activator of malate --> fumarate. This effect occurs with changes in inhibition patterns suggestive of the bypass of the slow E(f) --> E(mf) conversion in favor of direct formation of E(mf) when free fumarate is formed. 3-Nitro-2-hydroxypropionate, a strong inhibitor of fumarase [Porter, D. J. T., and Bright, H. J. (1980) J. Biol. Chem. 255, 4772-4780] in its carbanion form, is competitive with both malate and fumarate. Therefore, 3-nitro-2-hydroxypropionic acid interacts with E(H(mf))H and not with E(m) or E(f) isoforms. Occurrence of two different conformational changes in the recycling process suggests that the reaction chemistry employs a two-step mechanism. The specificity of inhibition for E(H(mf))H is consistent with the expected intermediate of a carbanion mechanism, E(H)H x carbanion-. The proton transfers and conformational changes of recycling occur in the same sequence that is expected for this reaction chemistry. Several examples of ligand-activated conformational changes are reported.


Asunto(s)
Fumarato Hidratasa/metabolismo , Fumaratos/metabolismo , Malatos/metabolismo , Animales , Aniones , Unión Competitiva , Ciclo del Ácido Cítrico/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/química , Fumaratos/química , Isoenzimas/química , Isoenzimas/metabolismo , Lactatos/farmacología , Malatos/química , Conformación Proteica , Saccharomyces cerevisiae , Especificidad por Sustrato/efectos de los fármacos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA