Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
FEBS J ; 289(18): 5571-5598, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35338694

RESUMEN

Mycobacteria express enzymes from both the de novo and purine-salvage pathways. However, the regulation of these processes and the roles of individual metabolic enzymes have not been sufficiently detailed. Both Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis (Msm) possess three guaB genes, but information is only available on guaB2, which encodes an essential inosine 5'-monophosphate dehydrogenase (IMPDH) involved in de novo purine biosynthesis. This study shows that guaB1, annotated in databases as a putative IMPDH, encodes a guanosine 5'-monophosphate reductase (GMPR), which recycles guanosine monophosphate to inosine monophosphate within the purine-salvage pathway and contains a cystathionine-ß-synthase domain (CBS), which is essential for enzyme activity. GMPR activity is allosterically regulated by the ATP/GTP ratio in a pH-dependent manner. Bioinformatic analysis has indicated the presence of GMPRs containing CBS domains across the entire Actinobacteria phylum.


Asunto(s)
Cistationina , Mycobacterium tuberculosis , Adenosina Trifosfato , Cistationina betasintasa/genética , GMP-Reductasa/genética , GMP-Reductasa/metabolismo , Guanosina Monofosfato/metabolismo , Guanosina Trifosfato , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Inosina , Inosina Monofosfato/metabolismo , Mycobacterium tuberculosis/metabolismo
2.
Cell Chem Biol ; 29(6): 970-984.e6, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35148834

RESUMEN

Signal transduction pathways post-translationally regulating nucleotide metabolism remain largely unknown. Guanosine monophosphate reductase (GMPR) is a nucleotide metabolism enzyme that decreases GTP pools by converting GMP to IMP. We observed that phosphorylation of GMPR at Tyr267 is critical for its activity and found that this phosphorylation by ephrin receptor tyrosine kinase EPHA4 decreases GTP pools in cell protrusions and levels of GTP-bound RAC1. EPHs possess oncogenic and tumor-suppressor activities, although the mechanisms underlying switches between these two modes are poorly understood. We demonstrated that GMPR plays a key role in EPHA4-mediated RAC1 suppression. This supersedes GMPR-independent activation of RAC1 by EPHA4, resulting in a negative overall effect on melanoma cell invasion and tumorigenicity. Accordingly, EPHA4 levels increase during melanoma progression and inversely correlate with GMPR levels in individual melanoma tumors. Therefore, phosphorylation of GMPR at Tyr267 is a metabolic signal transduction switch controlling GTP biosynthesis and transformed phenotypes.


Asunto(s)
Melanoma , Receptor EphA4/metabolismo , GMP-Reductasa/genética , GMP-Reductasa/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Melanoma/metabolismo , Nucleótidos/metabolismo , Fosforilación
3.
Biochemistry ; 59(25): 2359-2370, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32479091

RESUMEN

The remarkable power and specificity of enzyme catalysis rely on the dynamic alignment of the enzyme, substrates, and cofactors, yet the role of dynamics has usually been approached from the perspective of the protein. We have been using an underappreciated NMR technique, subtesla high-resolution field cycling 31P NMR relaxometry, to investigate the dynamics of the enzyme-bound substrates and cofactor on guanosine-5'-monophosphate reductase (GMPR). GMPR forms two dead end, yet catalytically competent, complexes that mimic distinct steps in the catalytic cycle: E·IMP·NADP+ undergoes a partial hydride transfer reaction, while E·GMP·NADP+ undergoes a partial deamination reaction. A different cofactor conformation is required for each partial reaction. Here we report the effects of mutations designed to perturb cofactor conformation and ammonia binding with the goal of identifying the structural features that contribute to the distinct dynamic signatures of the hydride transfer and deamination complexes. These experiments suggest that Asp129 is a central cog in a dynamic network required for both hydride transfer and deamination. In contrast, Lys77 modulates the conformation and mobility of substrates and cofactors in a reaction-specific manner. Thr105 and Tyr318 are part of a deamination-specific dynamic network that includes the 2'-OH of GMP. These residues have comparatively little effect on the dynamic properties of the hydride transfer complex. These results further illustrate the potential of high-resolution field cycling NMR relaxometry for the investigation of ligand dynamics. In addition, exchange experiments indicate that NH3/NH4+ has a high affinity for the deamination complex but a low affinity for the hydride transfer complex, suggesting that the movement of ammonia may gate the cofactor conformational change. Collectively, these experiments reinforce the view that the enzyme, substrates, and cofactor are linked in intricate, reaction-specific, dynamic networks and demonstrate that distal portions of the substrates and cofactors are critical features in these networks.


Asunto(s)
Coenzimas , GMP-Reductasa , NADP , Humanos , Amoníaco/metabolismo , Biocatálisis , Coenzimas/química , Coenzimas/metabolismo , GMP-Reductasa/genética , GMP-Reductasa/metabolismo , Guanosina Monofosfato/química , Cinética , Conformación Molecular , Mutación , NADP/química , NADP/metabolismo , Unión Proteica
4.
Clin Genet ; 97(2): 276-286, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31600844

RESUMEN

Autosomal dominant progressive external ophthalmoplegia (adPEO) is a late-onset, Mendelian mitochondrial disorder characterised by paresis of the extraocular muscles, ptosis, and skeletal-muscle restricted multiple mitochondrial DNA (mtDNA) deletions. Although dominantly inherited, pathogenic variants in POLG, TWNK and RRM2B are among the most common genetic defects of adPEO, identification of novel candidate genes and the underlying pathomechanisms remains challenging. We report the clinical, genetic and molecular investigations of a patient who presented in the seventh decade of life with PEO. Oxidative histochemistry revealed cytochrome c oxidase-deficient fibres and occasional ragged red fibres showing subsarcolemmal mitochondrial accumulation in skeletal muscle, while molecular studies identified the presence of multiple mtDNA deletions. Negative candidate screening of known nuclear genes associated with PEO prompted diagnostic exome sequencing, leading to the prioritisation of a novel heterozygous c.547G>C variant in GMPR (NM_006877.3) encoding guanosine monophosphate reductase, a cytosolic enzyme required for maintaining the cellular balance of adenine and guanine nucleotides. We show that the novel c.547G>C variant causes aberrant splicing, decreased GMPR protein levels in patient skeletal muscle, proliferating and quiescent cells, and is associated with subtle changes in nucleotide homeostasis protein levels and evidence of disturbed mtDNA maintenance in skeletal muscle. Despite confirmation of GMPR deficiency, demonstrating marked defects of mtDNA replication or nucleotide homeostasis in patient cells proved challenging. Our study proposes that GMPR is the 19th locus for PEO and highlights the complexities of uncovering disease mechanisms in late-onset PEO phenotypes.


Asunto(s)
ADN Mitocondrial/genética , GMP-Reductasa/genética , Enfermedades de Inicio Tardío/genética , Músculo Esquelético/enzimología , Oftalmoplejía/genética , Adenina/metabolismo , Anciano , Células Cultivadas , Deficiencia de Citocromo-c Oxidasa/metabolismo , Replicación del ADN , ADN Mitocondrial/metabolismo , Femenino , Fibroblastos/enzimología , GMP-Reductasa/deficiencia , GMP-Reductasa/metabolismo , Guanina/metabolismo , Células HEK293 , Células HeLa , Heterocigoto , Humanos , Enfermedades de Inicio Tardío/metabolismo , Enfermedades de Inicio Tardío/patología , Músculo Esquelético/patología , Oftalmoplejía/enzimología , Oftalmoplejía/fisiopatología , Fosforilación Oxidativa , Empalme del ARN , Eliminación de Secuencia , Secuenciación del Exoma
5.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30217843

RESUMEN

Purine nucleoside antibiotic pairs, concomitantly produced by a single strain, are an important group of microbial natural products. Here, we report a target-directed genome mining approach to elucidate the biosynthesis of the purine nucleoside antibiotic pair aristeromycin (ARM) and coformycin (COF) in Micromonospora haikouensis DSM 45626 (a new producer for ARM and COF) and Streptomyces citricolor NBRC 13005 (a new COF producer). We also provide biochemical data that MacI and MacT function as unusual phosphorylases, catalyzing an irreversible reaction for the tailoring assembly of neplanocin A (NEP-A) and ARM. Moreover, we demonstrate that MacQ is shown to be an adenosine-specific deaminase, likely relieving the potential "excess adenosine" for producing cells. Finally, we report that MacR, an annotated IMP dehydrogenase, is actually an NADPH-dependent GMP reductase, which potentially plays a salvage role for the efficient supply of the precursor pool. Hence, these findings illustrate a fine-tuned pathway for the biosynthesis of ARM and also open the way for the rational search for purine antibiotic pairs.IMPORTANCE ARM and COF are well known for their prominent biological activities and unusual chemical structures; however, the logic of their biosynthesis has long been poorly understood. Actually, the new insights into the ARM and COF pathway will not only enrich the biochemical repertoire for interesting enzymatic reactions but may also lay a solid foundation for the combinatorial biosynthesis of this group of antibiotics via a target-directed genome mining strategy.


Asunto(s)
Actinobacteria/metabolismo , Adenosina/análogos & derivados , Antibacterianos/metabolismo , Coformicina/biosíntesis , Nucleósidos de Purina/biosíntesis , Actinobacteria/genética , Adenosina/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , GMP-Reductasa/genética , GMP-Reductasa/metabolismo
6.
Sci Rep ; 8(1): 2759, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426890

RESUMEN

Alzheimer's disease (AD) is a severe neurodegenerative disorder for which identification of differentially expressed genes is one way to find new therapeutic targets. Here, we conducted analysis to identify age-independent, AD-specific genes. We found that the MET, WIF1, and NPTX2 genes are downregulated in AD. WIF1 and MET are implicated in Wnt and MET signaling and regulate GSK3ß activity and are thus linked with AD. Importantly, we found that the GMPR gene exhibited a gradual increase in AD progression. A logistic model based on GMPR has good ability to classify AD cases. GMPR's product GMPR1 is in the AMPK and adenosine receptor pathways and is thus associated with Tau phosphorylation in AD. This allows GMPR1 to be a therapeutic target. Therefore, we screened five possible inhibitors to GMPR1 by docking GMPR1 with 1,174 approved drugs. Among them, lumacaftor is ideal. We then tested the effects of lumacaftor on AD model mice. After 20 days of oral administration, we observed that ß-Amyloid accumulation was slowed down, and phosphorylation of Tau was almost eliminated in the treated mice. We highlight the elevated expression level of GMPR in AD and propose a therapeutic strategy of inhibiting GMPR1 with lumacaftor.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Aminopiridinas/uso terapéutico , Péptidos beta-Amiloides/metabolismo , Benzodioxoles/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , GMP-Reductasa/antagonistas & inhibidores , Terapia Molecular Dirigida , Proteínas tau/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aminopiridinas/farmacología , Animales , Benzodioxoles/farmacología , Proteína C-Reactiva/genética , Proteína C-Reactiva/metabolismo , Bases de Datos Genéticas , Modelos Animales de Enfermedad , GMP-Reductasa/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Vía de Señalización Wnt/genética
7.
Parasitol Int ; 66(5): 537-544, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28366788

RESUMEN

Trypanosoma congolense is one of the most prevalent pathogens which causes trypanosomosis in African animals, resulting in a significant economic loss. In its life cycle, T. congolense is incapable of synthesizing purine nucleotides via a de novo pathway, and thus relies on a salvage pathway to survive. In this study, we identified a gene from T. congolense, TcIL3000_5_1940, as a guanosine 5'-monophosphate reductase (GMPR), an enzyme that modulates the concentration of intracellular guanosine in the pathogen. The recombinant protein was expressed in Escherichia coli, and the gene product was enzymatically confirmed as a unique GMPR, designated as rTcGMPR. This enzyme was constitutively expressed in glycosomes at all of the parasite's developmental stages similar to other purine nucleotide metabolic enzymes. Mycophenolic acid (MPA) was found to inhibit rTcGMPR activity. Hence, it is a potential lead compound for the design of trypanocidal agents, specifically GMPR inhibitor.


Asunto(s)
GMP-Reductasa/antagonistas & inhibidores , GMP-Reductasa/genética , Tripanocidas/farmacología , Trypanosoma congolense/efectos de los fármacos , Trypanosoma congolense/enzimología , Animales , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , GMP-Reductasa/aislamiento & purificación , Guanosina/metabolismo , Ácido Micofenólico/farmacología , Purinas/metabolismo , Proteínas Recombinantes/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología
8.
Oncogene ; 36(1): 84-96, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27181209

RESUMEN

Melanoma progression is associated with increased invasion and, often, decreased levels of microphthalmia-associated transcription factor (MITF). Accordingly, downregulation of MITF induces invasion in melanoma cells; however, little is known about the underlying mechanisms. Here, we report for the first time that depletion of MITF results in elevation of intracellular GTP levels and increased amounts of active (GTP-bound) RAC1, RHO-A and RHO-C. Concomitantly, MITF-depleted cells display larger number of invadopodia and increased invasion. We further demonstrate that the gene for guanosine monophosphate reductase (GMPR) is a direct MITF target, and that the partial repression of GMPR accounts mostly for the above phenotypes in MITF-depleted cells. Reciprocally, transactivation of GMPR is required for MITF-dependent suppression of melanoma cell invasion, tumorigenicity and lung colonization. Moreover, loss of GMPR accompanies downregulation of MITF in vemurafenib-resistant BRAFV600E-melanoma cells and underlies the increased invasion in these cells. Our data uncover novel mechanisms linking MITF-dependent inhibition of invasion to suppression of guanylate metabolism.


Asunto(s)
Guanosina Trifosfato/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Expresión Génica Ectópica , Matriz Extracelular/metabolismo , Femenino , GMP-Reductasa/genética , GMP-Reductasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Espacio Intracelular/metabolismo , Melanocitos/metabolismo , Melanoma/metabolismo , Melanoma/patología , Melanoma Experimental , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias/genética , Proteínas de Unión al GTP rho/metabolismo
9.
J Biol Chem ; 291(44): 22988-22998, 2016 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-27613871

RESUMEN

Guanosine-5'-monophosphate reductase (GMPR) catalyzes the reduction of GMP to IMP and ammonia with concomitant oxidation of NADPH. Here we investigated the structure and dynamics of enzyme-bound substrates and cofactors by measuring 31P relaxation rates over a large magnetic field range using high resolution field cycling NMR relaxometry. Surprisingly, these experiments reveal differences in the low field relaxation profiles for the monophosphate of GMP compared with IMP in their respective NADP+ complexes. These complexes undergo partial reactions that mimic different steps in the overall catalytic cycle. The relaxation profiles indicate that the substrate monophosphates have distinct interactions in E·IMP·NADP+ and E·GMP·NADP+ complexes. These findings were not anticipated by x-ray crystal structures, which show identical interactions for the monophosphates of GMP and IMP in several inert complexes. In addition, the motion of the cofactor is enhanced in the E·GMP·NADP+ complex. Last, the motions of the substrate and cofactor are coordinately regulated; the cofactor has faster local motions than GMP in the deamination complex but is more constrained than IMP in that complex, leading to hydride transfer. These results show that field cycling can be used to investigate the dynamics of protein-bound ligands and provide new insights into how portions of the substrate remote from the site of chemical transformation promote catalysis.


Asunto(s)
Coenzimas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , GMP-Reductasa/química , Biocatálisis , Coenzimas/metabolismo , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GMP-Reductasa/genética , GMP-Reductasa/metabolismo , Nucleótidos de Guanina/química , Nucleótidos de Guanina/metabolismo , Inosina Monofosfato/química , Inosina Monofosfato/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , NADP/química , NADP/metabolismo , Unión Proteica
10.
Mol Biochem Parasitol ; 208(2): 74-83, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27343371

RESUMEN

Purine acquisition is an essential nutritional process for Leishmania. Although purine salvage into adenylate nucleotides has been investigated in detail, little attention has been focused on the guanylate branch of the purine pathway. To characterize guanylate nucleotide metabolism in Leishmania and create a cell culture model in which the pathways for adenylate and guanylate nucleotide synthesis can be genetically uncoupled for functional studies in intact cells, we created and characterized null mutants of L. donovani that were deficient in either GMP reductase alone (Δgmpr) or in both GMP reductase and its paralog IMP dehydrogenase (Δgmpr/Δimpdh). Whereas wild type parasites were capable of utilizing virtually any purine nucleobase/nucleoside, the Δgmpr and Δgmpr/Δimpdh null lines exhibited highly restricted growth phenotypes. The Δgmpr single mutant could not grow in xanthine, guanine, or their corresponding nucleosides, while no purine on its own could support the growth of Δgmpr/Δimpdh cells. Permissive growth conditions for the Δgmpr/Δimpdh necessitated both xanthine, guanine, or the corresponding nucleosides, and additionally, a second purine that could serve as a source for adenylate nucleotide synthesis. Interestingly, GMPR, like its paralog IMPDH, is compartmentalized to the leishmanial glycosome, a process mediated by its COOH-terminal peroxisomal targeting signal. The restricted growth phenotypes displayed by the L. donovani Δgmpr and Δgmpr/Δimpdh null mutants confirms the importance of GMPR in the purine interconversion processes of this parasite.


Asunto(s)
Adenosina Monofosfato/metabolismo , GMP-Reductasa/genética , GMP-Reductasa/metabolismo , Guanosina Monofosfato/metabolismo , Leishmania donovani/genética , Leishmania donovani/metabolismo , Técnicas de Silenciamiento del Gen , Genotipo , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/metabolismo , Leishmania donovani/crecimiento & desarrollo , Mutación , Fenotipo , Transporte de Proteínas , Purinas/metabolismo , Interferencia de ARN
11.
Mol Microbiol ; 100(5): 824-40, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26853689

RESUMEN

The Leishmania guanosine 5'-monophosphate reductase (GMPR) and inosine 5'-monophosphate dehydrogenase (IMPDH) are purine metabolic enzymes that function maintaining the cellular adenylate and guanylate nucleotide. Interestingly, both enzymes contain a cystathionine-ß-synthase domain (CBS). To investigate this metabolic regulation, the Leishmania GMPR was cloned and shown to be sufficient to complement the guaC (GMPR), but not the guaB (IMPDH), mutation in Escherichia coli. Kinetic studies confirmed that the Leishmania GMPR catalyzed a strict NADPH-dependent reductive deamination of GMP to produce IMP. Addition of GTP or high levels of GMP induced a marked increase in activity without altering the Km values for the substrates. In contrast, the binding of ATP decreased the GMPR activity and increased the GMP Km value 10-fold. These kinetic changes were correlated with changes in the GMPR quaternary structure, induced by the binding of GMP, GTP, or ATP to the GMPR CBS domain. The capacity of these CBS domains to mediate the catalytic activity of the IMPDH and GMPR provides a regulatory mechanism for balancing the intracellular adenylate and guanylate pools.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cistationina betasintasa/genética , GMP-Reductasa/genética , Regulación de la Expresión Génica , IMP Deshidrogenasa/genética , Leishmania donovani/enzimología , Leishmania major/enzimología , Catálisis , Escherichia coli/genética , GMP-Reductasa/aislamiento & purificación , GMP-Reductasa/metabolismo , Prueba de Complementación Genética , Guanosina Monofosfato/metabolismo , IMP Deshidrogenasa/metabolismo , Cinética , Leishmania donovani/efectos de los fármacos , Leishmania donovani/genética , Leishmania major/efectos de los fármacos , Leishmania major/genética , Modelos Moleculares , NADP/metabolismo , Nucleótidos/metabolismo
12.
PLoS Negl Trop Dis ; 10(1): e0004339, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26731263

RESUMEN

The metabolic pathway of purine nucleotides in parasitic protozoa is a potent drug target for treatment of parasitemia. Guanosine 5'-monophosphate reductase (GMPR), which catalyzes the deamination of guanosine 5'-monophosphate (GMP) to inosine 5'-monophosphate (IMP), plays an important role in the interconversion of purine nucleotides to maintain the intracellular balance of their concentration. However, only a few studies on protozoan GMPR have been reported at present. Herein, we identified the GMPR in Trypanosoma brucei, a causative protozoan parasite of African trypanosomiasis, and found that the GMPR proteins were consistently localized to glycosomes in T. brucei bloodstream forms. We characterized its recombinant protein to investigate the enzymatic differences between GMPRs of T. brucei and its host animals. T. brucei GMPR was distinct in having an insertion of a tandem repeat of the cystathionine ß-synthase (CBS) domain, which was absent in mammalian and bacterial GMPRs. The recombinant protein of T. brucei GMPR catalyzed the conversion of GMP to IMP in the presence of NADPH, and showed apparent affinities for both GMP and NADPH different from those of its mammalian counterparts. Interestingly, the addition of monovalent cations such as K+ and NH4+ to the enzymatic reaction increased the GMPR activity of T. brucei, whereas none of the mammalian GMPR's was affected by these cations. The monophosphate form of the purine nucleoside analog ribavirin inhibited T. brucei GMPR activity, though mammalian GMPRs showed no or only a little inhibition by it. These results suggest that the mechanism of the GMPR reaction in T. brucei is distinct from that in the host organisms. Finally, we demonstrated the inhibitory effect of ribavirin on the proliferation of trypanosomes in a dose-dependent manner, suggesting the availability of ribavirin to develop a new therapeutic agent against African trypanosomiasis.


Asunto(s)
GMP-Reductasa/metabolismo , Trypanosoma brucei brucei/enzimología , Secuencia de Aminoácidos , Animales , Antimetabolitos/farmacología , GMP-Reductasa/genética , Regulación Enzimológica de la Expresión Génica , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Proteínas Recombinantes , Ribavirina/farmacología , Especificidad de la Especie , Temperatura , Tripanocidas/farmacología , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
13.
Cell Rep ; 5(2): 493-507, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24139804

RESUMEN

Melanoma is one of the most aggressive types of human cancers, and the mechanisms underlying melanoma invasive phenotype are not completely understood. Here, we report that expression of guanosine monophosphate reductase (GMPR), an enzyme involved in de novo biosynthesis of purine nucleotides, was downregulated in the invasive stages of human melanoma. Loss- and gain-of-function experiments revealed that GMPR downregulates the amounts of several GTP-bound (active) Rho-GTPases and suppresses the ability of melanoma cells to form invadopodia, degrade extracellular matrix, invade in vitro, and grow as tumor xenografts in vivo. Mechanistically, we demonstrated that GMPR partially depletes intracellular GTP pools. Pharmacological inhibition of de novo GTP biosynthesis suppressed whereas addition of exogenous guanosine increased invasion of melanoma cells as well as cells from other cancer types. Our data identify GMPR as a melanoma invasion suppressor and establish a link between guanosine metabolism and Rho-GTPase-dependent melanoma cell invasion.


Asunto(s)
GMP-Reductasa/metabolismo , Melanoma/enzimología , Nucleósidos de Purina/biosíntesis , Animales , Línea Celular Tumoral , Movimiento Celular , Matriz Extracelular/metabolismo , GMP-Reductasa/antagonistas & inhibidores , GMP-Reductasa/genética , Guanosina Trifosfato/metabolismo , Células HCT116 , Humanos , IMP Deshidrogenasa/metabolismo , Melanoma/metabolismo , Melanoma/patología , Ratones , Fenotipo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Trasplante Heterólogo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo
14.
Breast Cancer Res Treat ; 137(1): 127-37, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23208589

RESUMEN

UNLABELLED: Basal-like tumours (BP) are a poor prognostic class of breast cancer but remain a biologically and clinically heterogeneous group. We have previously identified two novel genes PPARα (positive) and GMPR2 (negative) whose expression was significantly associated with BP at the transcriptome level. In this study, using a large and well-characterised series of operable invasive breast carcinomas (1,043 cases) prepared as TMAs, we assessed these targets at the protein level using immunohistochemistry and investigated associations with clinicopathological variables and patient outcome. RESULTS: Lack of PPARα and GMPR2 protein expression was associated with BP, as defined by the expression of cytokeratin (CK) 5/6 and/or CK14, (p = 0.023, p = 0.001, respectively) or as triple-negative (ER-, PR-, HER2-) phenotype (p < 0.001 for both proteins). Positive expression of both markers was associated ER and PR positive status (p < 0.05) and with the good Nottingham Prognostic Index group (p = 0.012, p < 0.001, respectively). Univariate survival analysis showed an association between lack of expression of PPARα and GMPR2 and poor outcome in terms of shorter disease-free survival and shorter breast cancer-specific survival, respectively. However, multivariate analysis showed that these associations were not independent of other prognostic variables, namely tumour size, grade, and nodal stage. In conclusion, this study demonstrates that loss of expression of GMPR2 and PPARα is associated with BP at the protein level; indicating that they may play a role in carcinogenesis of this molecularly complex and clinically important subtype. Further studies into their relevance in further classification of BP are warranted.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , GMP-Reductasa/metabolismo , Neoplasias Basocelulares/metabolismo , PPAR alfa/metabolismo , Biomarcadores de Tumor/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/mortalidad , Carcinoma Ductal de Mama/secundario , Supervivencia sin Enfermedad , Femenino , GMP-Reductasa/genética , Expresión Génica , Humanos , Estimación de Kaplan-Meier , Metástasis Linfática , Persona de Mediana Edad , Análisis Multivariante , Neoplasias Basocelulares/mortalidad , Neoplasias Basocelulares/secundario , PPAR alfa/genética , Fenotipo , Modelos de Riesgos Proporcionales
15.
Mol Biosyst ; 7(4): 1289-305, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21298178

RESUMEN

Guanosine monophosphate (GMP) reductase catalyzes the reductive deamination of GMP to inosine monophosphate (IMP). GMP reductase plays an important role in the conversion of nucleoside and nucleotide derivatives of guanine to adenine nucleotides. In addition, as a member of the purine salvage pathway, it also participates in the reutilization of free intracellular bases. Here we present cloning, expression and purification of Escherichia coli guaC-encoded GMP reductase to determine its kinetic mechanism, as well as chemical and thermodynamic features of this reaction. Initial velocity studies and isothermal titration calorimetry demonstrated that GMP reductase follows an ordered bi-bi kinetic mechanism, in which GMP binds first to the enzyme followed by NADPH binding, and NADP(+) dissociates first followed by IMP release. The isothermal titration calorimetry also showed that GMP and IMP binding are thermodynamically favorable processes. The pH-rate profiles showed groups with apparent pK values of 6.6 and 9.6 involved in catalysis, and pK values of 7.1 and 8.6 important to GMP binding, and a pK value of 6.2 important for NADPH binding. Primary deuterium kinetic isotope effects demonstrated that hydride transfer contributes to the rate-limiting step, whereas solvent kinetic isotope effects arise from a single protonic site that plays a modest role in catalysis. Multiple isotope effects suggest that protonation and hydride transfer steps take place in the same transition state, lending support to a concerted mechanism. Pre-steady-state kinetic data suggest that product release does not contribute to the rate-limiting step of the reaction catalyzed by E. coli GMP reductase.


Asunto(s)
Escherichia coli/enzimología , GMP-Reductasa , Ligandos , Proteínas Recombinantes , Termodinámica , Secuencia de Aminoácidos , Catálisis , Clonación Molecular , Escherichia coli/genética , GMP-Reductasa/química , GMP-Reductasa/genética , GMP-Reductasa/metabolismo , Regulación Bacteriana de la Expresión Génica , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA