Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 715
Filtrar
1.
Infect Immun ; 89(11): e0030621, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34370506

RESUMEN

A mitochondrion, as a highly dynamic organelle, continuously changes morphology and position during its life cycle. Mitochondrial dynamics, including fission and fusion, play a critical role in maintaining functional mitochondria for ATP production, which is directly linked to host defense against Mycobacterium tuberculosis infection. However, how macrophages regulate mitochondrial dynamics during M. tuberculosis infection remains elusive. In this study, we found that M. tuberculosis infection induced mitochondrial fusion by enhancing the expression of mitofusin 1 (MFN1), which resulted in increased ATP production. Silencing of MFN1 inhibited mitochondrial fusion and subsequently reduced ATP production, which, in turn, severely impaired macrophages' mycobactericidal activity by inhibiting autophagy. Impairment of mycobactericidal activity and autophagy was replicated using oligomycin, an inhibitor of ATP synthase. In summary, our study revealed that MFN1-mediated mitochondrial fusion is essential for macrophages' mycobactericidal activity through the regulation of ATP-dependent autophagy. The MFN1-mediated metabolism pathway might be a target for the development of a host direct therapy (HDT) strategy against tuberculosis.


Asunto(s)
Autofagia/fisiología , GTP Fosfohidrolasas/fisiología , Macrófagos/inmunología , Dinámicas Mitocondriales/fisiología , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Tuberculosis/inmunología , Adenosina Trifosfato/biosíntesis , Humanos , Células THP-1 , Tuberculosis/tratamiento farmacológico
2.
Infect Immun ; 89(11): e0020221, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34338548

RESUMEN

Gamma interferon (IFN-γ)-induced immunity-related GTPases (IRGs) confer cell-autonomous immunity to the intracellular protozoan pathogen Toxoplasma gondii. Effector IRGs are loaded onto the Toxoplasma-containing parasitophorous vacuole (PV), where they recruit ubiquitin ligases, ubiquitin-binding proteins, and IFN-γ-inducible guanylate-binding proteins (Gbps), prompting PV lysis and parasite destruction. Host cells lacking the regulatory IRGs Irgm1 and Irgm3 fail to load effector IRGs, ubiquitin, and Gbps onto the PV and are consequently defective for cell-autonomous immunity to Toxoplasma. However, the role of the third regulatory IRG, Irgm2, in cell-autonomous immunity to Toxoplasma has remained unexplored. Here, we report that Irgm2 unexpectedly plays a limited role in the targeting of effector IRGs, ubiquitin, and Gbps to the Toxoplasma PV. Instead, Irgm2 is instrumental in the decoration of PVs with γ-aminobutyric acid receptor-associated protein-like 2 (GabarapL2). Cells lacking Irgm2 are as defective for cell-autonomous host defense to Toxoplasma as pan-Irgm-/- cells lacking all three Irgm proteins, and Irgm2-/- mice succumb to Toxoplasma infections as readily as pan-Irgm-/- mice. These findings demonstrate that, relative to Irgm1 and Irgm3, Irgm2 plays a distinct but critically important role in host resistance to Toxoplasma.


Asunto(s)
GTP Fosfohidrolasas/fisiología , Proteínas de Unión al GTP/fisiología , Toxoplasmosis/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/fisiología , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/fisiología , Ubiquitina/fisiología , Vacuolas/fisiología
3.
FASEB J ; 35(7): e21678, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34133045

RESUMEN

Hypertension is associated with excessive reactive oxygen species (ROS) production in vascular cells. Mitochondria undergo fusion and fission, a process playing a role in mitochondrial function. OPA1 is essential for mitochondrial fusion. Loss of OPA1 is associated with ROS production and cell dysfunction. We hypothesized that mitochondria fusion could reduce oxidative stress that defect in fusion would exacerbate hypertension. Using (a) Opa1 haploinsufficiency in isolated resistance arteries from Opa1+/- mice, (b) primary vascular cells from Opa1+/- mice, and (c) RNA interference experiments with siRNA against Opa1 in vascular cells, we investigated the role of mitochondria fusion in hypertension. In hypertension, Opa1 haploinsufficiency induced altered mitochondrial cristae structure both in vascular smooth muscle and endothelial cells but did not modify protein level of long and short forms of OPA1. In addition, we demonstrated an increase of mitochondrial ROS production, associated with a decrease of superoxide dismutase 1 protein expression. We also observed an increase of apoptosis in vascular cells and a decreased VSMCs proliferation. Blood pressure, vascular contractility, as well as endothelium-dependent and -independent relaxation were similar in Opa1+/- , WT, L-NAME-treated Opa1+/- and WT mice. Nevertheless, chronic NO-synthase inhibition with L-NAME induced a greater hypertension in Opa1+/- than in WT mice without compensatory arterial wall hypertrophy. This was associated with a stronger reduction in endothelium-dependent relaxation due to excessive ROS production. Our results highlight the protective role of mitochondria fusion in the vasculature during hypertension by limiting mitochondria ROS production.


Asunto(s)
GTP Fosfohidrolasas/fisiología , Hipertensión/prevención & control , Dinámicas Mitocondriales , Sustancias Protectoras/administración & dosificación , Animales , Apoptosis , Inhibidores Enzimáticos/toxicidad , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , NG-Nitroarginina Metil Éster/toxicidad , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
4.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072974

RESUMEN

This study investigates whether reduced optic atrophy 1 (Opa1) level promotes apoptosis and retinal vascular lesions associated with diabetic retinopathy (DR). Four groups of mice: wild type (WT) control mice, streptozotocin (STZ)-induced diabetic mice, Opa1+/- mice, and diabetic Opa1+/- mice were used in this study. 16 weeks after diabetes onset, retinas were assessed for Opa1 and Bax levels by Western blot analysis, and retinal networks were examined for acellular capillaries (AC) and pericyte loss (PL). Apoptotic cells were detected in retinal capillaries using TUNEL assay, and caspase-3 activity was assessed using fluorometric analysis. Opa1 expression was significantly downregulated in retinas of diabetic and Opa1+/- mice compared with those of WT mice. Inducing diabetes further decreased Opa1 expression in retinas of Opa1+/- mice. Increased cytochrome c release concomitant with increased level of pro-apoptotic Bax and elevated caspase-3 activity were observed in retinas of diabetic and Opa1+/- mice; the number of TUNEL-positive cells and AC/PL was also significantly increased. An additional decrease in the Opa1 level in retinas of diabetic Opa1+/- mice exacerbated the development of apoptotic cells and AC/PL compared with those of diabetic mice. Diabetes-induced Opa1 downregulation contributes, at least in part, to the development of retinal vascular lesions characteristic of DR.


Asunto(s)
Capilares , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/metabolismo , GTP Fosfohidrolasas/fisiología , Vasos Retinianos , Animales , Apoptosis , Capilares/metabolismo , Capilares/patología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Retinopatía Diabética/etiología , Retinopatía Diabética/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/patología
5.
Commun Biol ; 4(1): 548, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972668

RESUMEN

Mitochondrial function and innate immunity are intimately linked; however, the mechanisms how mitochondrion-shaping proteins regulate innate host defense remains largely unknown. Herein we show that mitofusin-2 (MFN2), a mitochondrial fusion protein, promotes innate host defense through the maintenance of aerobic glycolysis and xenophagy via hypoxia-inducible factor (HIF)-1α during intracellular bacterial infection. Myeloid-specific MFN2 deficiency in mice impaired the antimicrobial and inflammatory responses against mycobacterial and listerial infection. Mechanistically, MFN2 was required for the enhancement of inflammatory signaling through optimal induction of aerobic glycolysis via HIF-1α, which is activated by mitochondrial respiratory chain complex I and reactive oxygen species, in macrophages. MFN2 did not impact mitophagy during infection; however, it promoted xenophagy activation through HIF-1α. In addition, MFN2 interacted with the late endosomal protein Rab7, to facilitate xenophagy during mycobacterial infection. Our findings reveal the mechanistic regulations by which MFN2 tailors the innate host defense through coordinated control of immunometabolism and xenophagy via HIF-1α during bacterial infection.


Asunto(s)
Infecciones Bacterianas/inmunología , GTP Fosfohidrolasas/fisiología , Glucólisis , Inmunidad Innata/inmunología , Macroautofagia , Macrófagos/inmunología , Mitocondrias/inmunología , Animales , Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/microbiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
6.
J Invest Dermatol ; 141(12): 2932-2943.e12, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34048729

RESUMEN

Melanoma cells are relatively resistant to endoplasmic reticulum (ER) stress, which contributes to tumor progression under stressful conditions and renders tolerance to ER stress‒inducing therapeutic agents. Mitochondria are tightly interconnected with ER. However, whether mitochondria play a role in regulating ER stress resistance in melanoma remains elusive. In this study, we reported that the XBP1‒MARCH5‒MFN2 axis conferred ER stress resistance by coordinating mitochondrial fission and mitophagy in melanoma. Our integrative bioinformatics first revealed that the downregulation of mitochondrial genes was highly correlated with unfolded protein response activation in melanoma. Then we proved that mitochondrial fission and mitophagy were prominently induced to contribute to ER stress resistance both in vitro and in vivo by maintaining mitochondrial function. Mechanistically, the activation of IRE1α/ATF6-XBP1 branches of unfolded protein response promoted the transcription of E3 ligase MARCH5 to facilitate the ubiquitination and degradation of MFN2, which thereby triggered mitochondrial fission and mitophagy under ER stress. Together, our findings show a regulatory axis that links mitochondrial fission and mitophagy to the resistance to ER stress. Targeting mitochondrial quality control machinery can be exploited as an approach to reinforce the efficacy of ER stress‒inducing agents against cancer.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , GTP Fosfohidrolasas/fisiología , Melanoma/metabolismo , Proteínas de la Membrana/fisiología , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/fisiología , Mitofagia/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Proteína 1 de Unión a la X-Box/fisiología , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Respuesta de Proteína Desplegada
7.
J Biol Chem ; 296: 100620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33811862

RESUMEN

Mouse models of various neuropsychiatric disorders, such as schizophrenia, often display an immature dentate gyrus, characterized by increased numbers of immature neurons and neuronal progenitors and a dearth of mature neurons. We previously demonstrated that the CRMP5-associated GTPase (CRAG), a short splice variant of Centaurin-γ3/AGAP3, is highly expressed in the dentate gyrus. CRAG promotes cell survival and antioxidant defense by inducing the activation of serum response factors at promyelocytic leukemia protein bodies, which are nuclear stress-responsive domains, during neuronal development. However, the physiological role of CRAG in neuronal development remains unknown. Here, we analyzed the role of CRAG using dorsal forebrain-specific CRAG/Centaurin-γ3 knockout mice. The mice revealed maturational abnormality of the hippocampal granule cells, including increased doublecortin-positive immature neurons and decreased calbindin-positive mature neurons, a typical phenotype of immature dentate gyri. Furthermore, the mice displayed hyperactivity in the open-field test, a common measure of exploratory behavior, suggesting that these mice may serve as a novel model for neuropsychiatric disorder associated with hyperactivity. Thus, we conclude that CRAG is required for the maturation of neurons in the dentate gyrus, raising the possibility that its deficiency might promote the development of psychiatric disorders in humans.


Asunto(s)
Giro Dentado/patología , GTP Fosfohidrolasas/fisiología , Células-Madre Neurales/patología , Neurogénesis , Neuronas/patología , Prosencéfalo/patología , Agitación Psicomotora/patología , Animales , Giro Dentado/metabolismo , Conducta Exploratoria , Femenino , Masculino , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Prosencéfalo/metabolismo , Agitación Psicomotora/etiología , Agitación Psicomotora/metabolismo
8.
Life Sci Alliance ; 4(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33579760

RESUMEN

Isoprenylcysteine carboxyl methyltransferase (ICMT) is the third of three enzymes that sequentially modify the C-terminus of CaaX proteins, including RAS. Although all four RAS proteins are substrates for ICMT, each traffics to membranes differently by virtue of their hypervariable regions that are differentially palmitoylated. We found that among RAS proteins, NRAS was unique in requiring ICMT for delivery to the PM, a consequence of having only a single palmitoylation site as its secondary affinity module. Although not absolutely required for palmitoylation, acylation was diminished in the absence of ICMT. Photoactivation and FRAP of GFP-NRAS revealed increase flux at the Golgi, independent of palmitoylation, in the absence of ICMT. Association of NRAS with the prenyl-protein chaperone PDE6δ also required ICMT and promoted anterograde trafficking from the Golgi. We conclude that carboxyl methylation of NRAS is required for efficient palmitoylation, PDE6δ binding, and homeostatic flux through the Golgi, processes that direct delivery to the plasma membrane.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Metiltransferasas/metabolismo , Línea Celular , Membrana Celular/metabolismo , Movimiento Celular/fisiología , GTP Fosfohidrolasas/fisiología , Humanos , Lipoilación/fisiología , Proteínas de la Membrana/fisiología , Proteína Metiltransferasas/fisiología , Transporte de Proteínas/fisiología , Proteínas ras
9.
Commun Biol ; 4(1): 92, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469160

RESUMEN

Immunity-related GTPase B10 (IRGB10) belongs to the interferon (IFN)-inducible GTPases, a family of proteins critical to host defense. It is induced by IFNs after pathogen infection, and plays a role in liberating pathogenic ligands for the activation of the inflammasome by directly disrupting the pathogen membrane. Although IRGB10 has been intensively studied owing to its functional importance in the cell-autonomous immune response, the molecular mechanism of IRGB10-mediated microbial membrane disruption is still unclear. In this study, we report the structure of mouse IRGB10. Our structural study showed that IRGB10 bound to GDP forms an inactive head-to-head dimer. Further structural analysis and comparisons indicated that IRGB10 might change its conformation to activate its membrane-binding and disruptive functions. Based on this observation, we propose a model of the working mechanism of IRGB10 during pathogen membrane disruption.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Animales , GTP Fosfohidrolasas/fisiología , Interacciones Huésped-Patógeno/fisiología , Inmunidad Celular , Inmunidad Innata/inmunología , Inflamasomas/metabolismo , Interferón gamma/inmunología , Interferones/inmunología , Ligandos , Ratones , Conformación Proteica , Elementos Estructurales de las Proteínas/fisiología
10.
Oncogene ; 40(4): 731-745, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33239755

RESUMEN

Ewing sarcoma (ES) is a type of highly aggressive pediatric tumor in bones and soft tissues and its metastatic spread remains the most powerful predictor of poor outcome. We previously identified that the transcription factor hepatoma-derived growth factor (HDGF) promotes ES tumorigenesis. However, the mechanisms underlying ES metastasis remain unclear. Here, we show that HDGF drives ES metastasis in vitro and in vivo, and HDGF reduces metastasis-free survival (MFS) in two independent large cohorts of human ES patients. Integrative analyses of HDGF ChIP-seq and gene expression profiling in ES cells reveal that HDGF regulates multiple metastasis-associated genes, among which activated leukocyte cell adhesion molecule (ALCAM) emerges as a major HDGF target and a novel metastasis-suppressor in ES. HDGF down-regulates ALCAM, induces expression and activation of the downstream effectors Rho-GTPase Rac1 and Cdc42, and promotes actin cytoskeleton remodeling and cell-matrix adhesion. In addition, repression of ALCAM and activation of Rac1 and Cdc42 are required for the pro-metastatic functions of HDGF in vitro. Moreover, analyses in murine models with ES tumor orthotopic implantation and experimental metastasis, as well as in human ES samples, demonstrate the associations among HDGF, ALCAM, and GTPases expression levels. Furthermore, high HDGF/low ALCAM expression define a subgroup of patients harboring the worst MFS. These findings suggest that the HDGF/ALCAM/GTPases axis represents a promising therapeutic target for limiting ES metastasis.


Asunto(s)
Antígenos CD/fisiología , Neoplasias Óseas/patología , Moléculas de Adhesión Celular Neuronal/fisiología , Proteínas Fetales/fisiología , GTP Fosfohidrolasas/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Sarcoma de Ewing/patología , Citoesqueleto de Actina/química , Adolescente , Adulto , Animales , Línea Celular Tumoral , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Ratones , Persona de Mediana Edad , Metástasis de la Neoplasia , Transducción de Señal/fisiología , Adulto Joven
11.
Infect Immun ; 89(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33257531

RESUMEN

Yersinia pestis is a highly virulent pathogen and the causative agent of bubonic, septicemic, and pneumonic plague. Primary pneumonic plague caused by inhalation of respiratory droplets contaminated with Y. pestis is nearly 100% lethal within 4 to 7 days without antibiotic intervention. Pneumonic plague progresses in two phases, beginning with extensive bacterial replication in the lung with minimal host responsiveness, followed by the abrupt onset of a lethal proinflammatory response. The precise mechanisms by which Y. pestis is able to colonize the lung and survive two very distinct disease phases remain largely unknown. To date, a few bacterial virulence factors, including the Ysc type 3 secretion system, are known to contribute to the pathogenesis of primary pneumonic plague. The bacterial GTPase BipA has been shown to regulate expression of virulence factors in a number of Gram-negative bacteria, including Pseudomonas aeruginosa, Escherichia coli, and Salmonella enterica serovar Typhi. However, the role of BipA in Y. pestis has yet to be investigated. Here, we show that BipA is a Y. pestis virulence factor that promotes defense against early neutrophil-mediated bacterial killing in the lung. This work identifies a novel Y. pestis virulence factor and highlights the importance of early bacterial/neutrophil interactions in the lung during primary pneumonic plague.


Asunto(s)
Proteínas Bacterianas/fisiología , GTP Fosfohidrolasas/fisiología , Peste/inmunología , Peste/fisiopatología , Factores de Virulencia/fisiología , Yersinia pestis/inmunología , Yersinia pestis/patogenicidad , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Animales
12.
Environ Res ; 188: 109824, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32593899

RESUMEN

Exposure to arsenic is a risk factor for nonalcoholic steatohepatitis (NASH). Ferroptosis is a form of regulated cell death defined by the accumulation of lipid peroxidation. In the current study, we observed the occurrence of ferroptosis in arsenic-induced NASH by assessing ferroptosis related hallmarks. In vitro, we found that ferrostatin-1 effectively attenuated the executing of ferroptosis and NASH. Simultaneously, the expression of ACSL4 (acyl-CoA synthetase long-chain family member 4) was upregulated in rat's liver and L-02 cells exposed to arsenic. While, suppression of ACSL4 with rosiglitazone or ACSL4 siRNA remarkably alleviated arsenic-induced NASH and ferroptosis through diminishing 5-hydroxyeicosatetraenoic acid (5-HETE) content. Additionally, Mitofusin 2 (Mfn2), a physical tether between endoplasmic reticulum and mitochondria, has rarely been explored in the ferroptosis. Using Mfn2 siRNA or inositol-requiring enzyme 1 alpha (IRE1α) inhibitor, we found NASH and ferroptosis were obviously mitigated through reducing 5-HETE content. Importantly, Co-IP assay indicated that Mfn2 could interact with IRE1α and promoted the production of 5-HETE, ultimately led to ferroptosis and NASH. Collectively, our data showed that ferroptosis is involved in arsenic-induced NASH. These data provide insightful viewpoints into the mechanism of arsenic-induced NASH.


Asunto(s)
Arsénico , Enfermedad del Hígado Graso no Alcohólico , Animales , Arsénico/toxicidad , Coenzima A Ligasas , Endorribonucleasas/efectos de los fármacos , Endorribonucleasas/fisiología , Ferroptosis , GTP Fosfohidrolasas/efectos de los fármacos , GTP Fosfohidrolasas/fisiología , Proteínas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/fisiología , Complejos Multienzimáticos/efectos de los fármacos , Complejos Multienzimáticos/fisiología , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/fisiología , Ratas
13.
Curr Biol ; 30(14): 2860-2868.e3, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32470363

RESUMEN

Branching morphogenesis is a widely used mechanism for development [1, 2]. In plants, it is initiated by the emergence of a new growth axis, which is of particular importance for plants to explore space and access resources [1]. Branches can emerge either from a single cell or from a group of cells [3-5]. In both cases, the mother cells that initiate branching must undergo dynamic morphological changes and/or adopt oriented asymmetric cell divisions (ACDs) to establish the new growth direction. However, the underlying mechanisms are not fully understood. Here, using the bryophyte moss Physcomitrella patens as a model, we show that side-branch formation in P. patens protonemata requires coordinated polarized cell expansion, directional nuclear migration, and orientated ACD. By combining pharmacological experiments, long-term time-lapse imaging, and genetic analyses, we demonstrate that Rho of plants (ROP) GTPases and actin are essential for cell polarization and local cell expansion (bulging). The growing bulge acts as a prerequisite signal to guide long-distance microtubule (MT)-dependent nuclear migration, which determines the asymmetric positioning of the division plane. MTs play an essential role in nuclear migration but are less involved in bulge formation. Hence, cell polarity and cytoskeletal elements act cooperatively to modulate cell morphology and nuclear positioning during branch initiation. We propose that polarity-triggered nuclear positioning and ACD comprise a fundamental mechanism for increasing multicellularity and tissue complexity during plant morphogenesis.


Asunto(s)
Actinas/fisiología , División Celular Asimétrica/genética , División Celular Asimétrica/fisiología , Bryopsida/crecimiento & desarrollo , Bryopsida/genética , GTP Fosfohidrolasas/fisiología , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Transporte Activo de Núcleo Celular , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Bryopsida/citología , Núcleo Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/fisiología , Microtúbulos/metabolismo
14.
Theranostics ; 10(3): 1415-1432, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31938072

RESUMEN

Rationale: Peripheral nerve injury is common in clinic, which leads to severe atrophy and dysfunction of the denervated muscles, but the underlying mechanism is not fully understood. Recent studies advanced the causative role of mitochondrial dysfunction in muscle atrophy, while the upstream triggers remained unclear. Methods: In the present study, Atrophy of gastrocnemius and tibialis anterior (TA) were evaluated in mice sciatic nerve transection model. Transmission electron microscopy (TEM) was then used to observe the microstructure of atrophic gastrocnemius and mitochondria. Subsequently, small RNA sequencing, luciferase reporter assay and Electrophoretic Mobility Shift (EMSA) were performed to explore the potential signaling pathway involved in skeletal muscle atrophy. The effects of the corresponding pathway on mitochondrial function, mitophagy, apoptosis and muscle atrophy were further determined in C2C12 cells and denervated gastrocnemius. Results: Gastrocnemius and TA atrophied rapidly after denervation. Obvious decrease of mitochondria number and activation of mitophagy was further observed in atrophic gastrocnemius. Further, miR-142a-5p/ mitofusin-1 (MFN1) axis was confirmed to be activated in denervated gastrocnemius, which disrupted the tubular mitochondrial network, and induced mitochondrial dysfunction, mitophagy and apoptosis. Furthermore, the atrophy of gastrocnemius induced by denervation was relieved through targeting miR-142a-5p/MFN1 axis. Conclusions: Collectively, our data revealed that miR-142a-5p was able to function as an important regulator of denervation-induced skeletal muscle atrophy by inducing mitochondrial dysfunction, mitophagy, and apoptosis via targeting MFN1. Our findings provide new insights into the mechanism of skeletal muscle atrophy following denervation and propose a viable target for therapeutic intervention in individuals suffering from muscle atrophy after peripheral nerve injury.


Asunto(s)
GTP Fosfohidrolasas/fisiología , MicroARNs/fisiología , Desnervación Muscular/efectos adversos , Músculo Esquelético , Atrofia Muscular/patología , Nervio Ciático/patología , Animales , Apoptosis , Línea Celular , Desnervación , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/patología , Mitofagia , Músculo Esquelético/inervación , Músculo Esquelético/patología , Mioblastos
15.
Int J Biol Sci ; 15(12): 2615-2626, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31754334

RESUMEN

Background/Aims: Vascular smooth muscle cell (VSMC) hyperplasia plays important roles in the pathogenesis of many vascular diseases, such as atherosclerosis and restenosis. Many microRNAs (miRs) have recently been reported to regulate the proliferation and migration of VSMC. In the current study, we aimed to explore the function of miR-93 in VSMCs and its molecular mechanism. Methods: First, qRT-PCR and immunofluorescence assays were performed to determine miR-93 expression in rat VSMCs following carotid artery injury in vivo and platelet-derived growth factor-BB (PDGF-BB) stimulation in vitro. Next, the biological role of miR-93 in rat VSMC proliferation and migration was examined in vivo and vitro. EdU incorporation assay and MTT assay for measuring cell proliferation, Transwell cell invasion assay and Cell scratch wound assay for measuring cell migration. Then, the targets of miR-93 were identified. Finally, the expression levels of proteins in the Raf-ERK1/2 pathway were measured by western blot. Results: MiR-93 was upregulated in rat VSMCs following carotid artery injury in vivo. Similar results were observed in ex vivo cultured VSMCs after PDGF-BB treatment. MiR-93 inhibition suppressed neointimal formation after carotid artery injury. Moreover, our results demonstrated that a miR-93 inhibitor suppressed the PDGF-BB induced proliferation and migration of in VSMC. This inhibitor also decreased the expression levels of MMP2 and cyclin D1. Mechanistically, we discovered that mitofusin 2(Mfn2) is a direct target of miR-93. Furthermore, an analysis of the signaling events revealed that miR-93-mediated VSMC proliferation and migration occurred via the Raf-ERK1/2 pathway. Conclusions: Our findings suggest that miR-93 promotes VSMCs proliferation and migration by targeting Mfn2. MiR-93 may be a new target for treating in-stent restenosis.


Asunto(s)
Movimiento Celular/genética , Proliferación Celular/genética , GTP Fosfohidrolasas/fisiología , MicroARNs/fisiología , Proteínas Mitocondriales/fisiología , Músculo Liso Vascular/citología , Neointima/genética , Animales , Células Cultivadas , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Mol Biol Cell ; 30(17): 2309-2319, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31188717

RESUMEN

Mitochondrial structure can be maintained at steady state or modified in response to changes in cellular physiology. This is achieved by the coordinated regulation of dynamic properties including mitochondrial fusion, division, and transport. Disease states, including neurodegeneration, are associated with defects in these processes. In vertebrates, two mitofusin paralogues, Mfn1 and Mfn2, are required for efficient mitochondrial fusion. The mitofusins share a high degree of homology and have very similar domain architecture, including an amino terminal GTPase domain and two extended helical bundles that are connected by flexible regions. Mfn1 and Mfn2 are nonredundant and are both required for mitochondrial outer membrane fusion. However, the molecular features that make these proteins functionally distinct are poorly defined. By engineering chimeric proteins composed of Mfn1 and Mfn2, we discovered a region that contributes to isoform-specific function (mitofusin isoform-specific region [MISR]). MISR confers unique fusion activity and mitofusin-specific nucleotide-dependent assembly properties. We propose that MISR functions in higher-order oligomerization either directly, as an interaction interface, or indirectly through conformational changes.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Fibroblastos/metabolismo , GTP Fosfohidrolasas/fisiología , Humanos , Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Proteínas Mitocondriales/fisiología , Mutación , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
17.
Exp Cell Res ; 382(1): 111460, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31194975

RESUMEN

Mitochondria are highly dynamic organelle that undergo frequent fusion and division, and the balance of these opposing processes regulates mitochondrial morphology, distribution, and function. Mitochondrial fission facilitates the replication and distribution of mitochondria during cell division, whereas the fusion process including inner and outer mitochondrial membrane fusion allows the exchange of intramitochondrial material between adjacent mitochondria. Despite several GTPase family proteins have been implicated as key modulators of mitochondrial dynamics, the mechanisms by which these proteins regulate mitochondrial homeostasis and function remain not clearly understood. Neuronal function and survival are closely related to mitochondria dynamics, and disturbed mitochondrial fission/fusion may influence neurotransmission, synaptic maintenance, neuronal survival and function. Recent studies have shown that mitochondrial dysfunction caused by aberrant mitochondrial dynamics plays an essential role in the pathogenesis of both sporadic and familial Parkinson's disease (PD). Collectively, we review the molecular mechanism of known GTPase proteins in regulating mitochondrial fission and fusion, but also highlight the causal role for mitochondrial dynamics in PD pathogenesis.


Asunto(s)
GTP Fosfohidrolasas/fisiología , Dinámicas Mitocondriales , Proteínas Mitocondriales/fisiología , Proteínas del Tejido Nervioso/fisiología , Enfermedad de Parkinson/enzimología , Dinaminas/fisiología , Homeostasis , Humanos , Dinámicas Mitocondriales/fisiología , Membranas Mitocondriales/fisiología , Óxido Nítrico/fisiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Procesamiento Proteico-Postraduccional
18.
FEBS J ; 286(14): 2645-2663, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31116513

RESUMEN

The endoplasmic reticulum (ER) network has central roles in metabolism and cellular organization. The ER undergoes dynamic alterations in morphology, molecular composition and functional specification. Remodelling of the network under fluctuating conditions enables the continual performance of ER functions and minimizes stress. Recent data have revealed that selective autophagy-mediated degradation of ER fragments, or ER-phagy, fundamentally contributes to this remodelling. This review provides a perspective on established views of selective autophagy, comparing these with emerging mechanisms of ER-phagy and related processes. The text discusses the impact of ER-phagy on the function of the ER- and the cell, both in normal physiology and when dysregulated within disease settings. Finally, unanswered questions regarding the mechanisms and significance of ER-phagy are highlighted.


Asunto(s)
Autofagia/fisiología , Retículo Endoplásmico/fisiología , Proteínas Portadoras/fisiología , GTP Fosfohidrolasas/fisiología , Humanos , Inmunidad Innata , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Transducción de Señal/fisiología
19.
Med Sci Monit ; 25: 2419-2428, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30940795

RESUMEN

BACKGROUND Many studies have shown that hypertension may contribute to thoracic aortic dissection (TAD). Among the factors that modulate hypertension are endoplasmic reticulum stress and vascular smooth muscle cell proliferation which are in turn modulated by mitofusion-2 (Mfn2). Specifically, we determined, in the Han Chinese population, whether single nucleotide polymorphisms (SNPs) of Mfn2 influenced the occurrence of TAD. MATERIAL AND METHODS Six tagging SNPs of Mfn2 (rs2236057, rs3766741, rs2236058, rs17037564, rs2295281, and rs2336384) were genotyped using a TaqMan assay in 200 TAD patients and 451 health individuals from the Han Chinese population. RESULTS Logistic regression analysis indicated CC genotype of rs2295281 was highly linked to an increased risk of TAD (TT+CT versus CC, OR=0.540, 95% CI [0.320-0.911], P=0.021), implying that TT genotype and CT genotype of rs2295281 have a lower risk for TAD. Logistic regression analysis also indicated that rs2236058 was highly linked to the risk of TAD based on recessive genetic model, which indicated that the GG genotype was a protective factor against TAD (GG versus (CG+CC), OR=0.545, 95% CI [0.351-0.845], P=0.007). CG genotype and CC genotype of rs2236058 had a higher risk for TAD. In addition, rs2236058 was linked to the risk of TAD in the recessive genetic and homozygous models in the normotensive subgroup (GG versus (CG+CC), OR=0.298, 95% CI [0.112-0.792], P=0.015; GG versus CC, OR=0.528, 95% CI [0.302-0.925], P=0.026) but not in the hypertension subgroup. CONCLUSIONS Our findings showed that the occurrence of TAD in a Han Chinese population was influenced by Mfn2 polymorphisms.


Asunto(s)
Aneurisma de la Aorta Torácica/genética , Disección Aórtica/genética , GTP Fosfohidrolasas/genética , Proteínas Mitocondriales/genética , Adulto , Anciano , Alelos , Pueblo Asiatico/genética , Estudios de Casos y Controles , China , Etnicidad/genética , Femenino , GTP Fosfohidrolasas/fisiología , Frecuencia de los Genes/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/fisiología , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
20.
Protein Cell ; 10(8): 583-594, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30887444

RESUMEN

A change in the metabolic flux of glucose from mitochondrial oxidative phosphorylation (OXPHOS) to aerobic glycolysis is regarded as one hallmark of cancer. However, the mechanisms underlying the metabolic switch between aerobic glycolysis and OXPHOS are unclear. Here we show that the M2 isoform of pyruvate kinase (PKM2), one of the rate-limiting enzymes in glycolysis, interacts with mitofusin 2 (MFN2), a key regulator of mitochondrial fusion, to promote mitochondrial fusion and OXPHOS, and attenuate glycolysis. mTOR increases the PKM2:MFN2 interaction by phosphorylating MFN2 and thereby modulates the effect of PKM2:MFN2 on glycolysis, mitochondrial fusion and OXPHOS. Thus, an mTOR-MFN2-PKM2 signaling axis couples glycolysis and OXPHOS to modulate cancer cell growth.


Asunto(s)
Carcinogénesis/metabolismo , Proteínas Portadoras/fisiología , GTP Fosfohidrolasas/fisiología , Proteínas de la Membrana/fisiología , Proteínas Mitocondriales/fisiología , Serina-Treonina Quinasas TOR/fisiología , Hormonas Tiroideas/fisiología , Animales , Células Cultivadas , Glucólisis , Humanos , Dinámicas Mitocondriales , Fosforilación Oxidativa , Proteínas de Unión a Hormona Tiroide
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...