Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
1.
J Agric Food Chem ; 72(40): 22217-22228, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39316733

RESUMEN

Transitioning from batch to continuous industrial production often improves the economic returns and production efficiency. Immobilization is a critical strategy that can facilitate this shift. This study refined the previously established method for synthesizing uridine diphosphate galactose (UDP-Gal) by employing thermophilic enzymes. Three thermophilic enzymes (galactokinase, uridine diphosphate glucose pyrophosphorylase, and inorganic pyrophosphatase) were coimmobilized on the pH-responsive carrier Eudragit S-100, promoting enzyme recovery and reuse while their industrial potential was assessed. The coimmobilization system efficiently catalyzed UDP-Gal production, yielding 13.69 mM in 1.5 h, attaining a UTP conversion rate of 91.2% and a space-time yield (STY) of 5.16 g/L/h. Moreover, the system exhibited exceptional reproducibility, retaining 58.9% of its initial activity after five cycles. This research highlighted promising prospects for coimmobilization in industrial synthesis and proposed a novel methodology for enhancing UDP-Gal production in the industry. In addition, the phase-transition property of Eudragit S-100 paves the way for further exploration with the one-pot synthesis of poorly soluble galactosides.


Asunto(s)
Enzimas Inmovilizadas , Uridina Difosfato Galactosa , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Uridina Difosfato Galactosa/metabolismo , Uridina Difosfato Galactosa/química , Galactoquinasa/genética , Galactoquinasa/metabolismo , Galactoquinasa/química , Pirofosfatasa Inorgánica/metabolismo , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/química , Transición de Fase , Biocatálisis , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , UTP-Glucosa-1-Fosfato Uridililtransferasa/genética , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Ácidos Polimetacrílicos
2.
Microbiol Res ; 289: 127894, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39305781

RESUMEN

Streptococcus thermophilus (S. thermophilus) is a widely used starter culture in dairy fermentation, but most strains are galactose-negative and only metabolize glucose from lactose hydrolysis. In this study, we aimed to uncover the mechanisms underlying the acquisition of a stable galactose-positive (Gal+) phenotype in a mutant strain of S. thermophilus IMAU10636. By treating the wild-type strain with the mutagenic agent N-methyl-N-nitro-N-nitrosoguanidine, we successfully isolated a Gal+ mutant, S. thermophilus IMAU10636Y. Comparative enzyme activity assays revealed that the mutant exhibited higher ß-galactosidase and galactokinase activities, but lower glucokinase and pyruvate kinase activities compared to the wild-type. High-performance liquid chromatography analysis confirmed the mutant's enhanced ability to utilize lactose and galactose, leading to increased glucose secretion. Integrated genome and transcriptomics analyses provided deeper insights into the underlying genetic and metabolic mechanisms. We found that the metabolism regulatory network of the glycolysis / Leloir pathway was altered in the mutant, possibly due to the upregulation of the gene expression in the galR-galK intergenic region. This likely led to increased RNA polymerase binding and transcription of the gal operon, ultimately promoting the Gal+ phenotype. Additionally, we identified a mutation in the scrR gene, encoding a LacI family transcriptional repressor, which also contributed to the Gal+ phenotype. These findings offer new perspectives on the metabolic rewiring and regulatory mechanisms that enable S. thermophilus to acquire the ability to metabolize galactose. This knowledge can inform strategies for engineering and selecting Gal+ strains with desirable fermentation characteristics for dairy applications.


Asunto(s)
Galactosa , Regulación Bacteriana de la Expresión Génica , Glucosa , Lactosa , Mutación , Fenotipo , Streptococcus thermophilus , beta-Galactosidasa , Galactosa/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , Glucosa/metabolismo , Lactosa/metabolismo , Fermentación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Galactoquinasa/genética , Galactoquinasa/metabolismo , Glucoquinasa/genética , Glucoquinasa/metabolismo , Glucólisis , Perfilación de la Expresión Génica
3.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1909-1923, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38914500

RESUMEN

Galactitol, a rare sugar alcohol, has promising potential in the food industry and pharmaceutical field. The available industrial production methods rely on harsh hydrogenation processes, which incur high costs and environmental concerns. It is urgent to develop environmentally friendly and efficient biosynthesis technologies. In this study, a xylose reductase named AnXR derived from Aspergillus niger CBS 513.88 was identified and characterized for the enzymatic properties. AnXR exhibited the highest activity at 25 ℃ and pH 8.0, and it belonged to the NADPH-dependent aldose reductase family. To engineer a strain for galactitol production, we deleted the galactokinase (GAL1) gene in Saccharomyes cerevisiae by using the recombinant gene technology, which significantly reduced the metabolic utilization of D-galactose by host cells. Subsequently, we introduced the gene encoding AnXR into this modified strain, creating an engineered strain capable of catalyzing the conversion of D-galactose into galactitol. Furthermore, we optimized the whole-cell catalysis conditions for the engineered strain, which achieved a maximum galactitol yield of 12.10 g/L. Finally, we tested the reduction ability of the strain for other monosaccharides and discovered that it could produce functional sugar alcohols such as xylitol and arabinitol. The engineered strain demonstrates efficient biotransformation capabilities for galactitol and other functional sugar alcohols, representing a significant advancement in environmentally sustainable production practices.


Asunto(s)
Aldehído Reductasa , Aspergillus niger , Galactitol , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aldehído Reductasa/metabolismo , Aldehído Reductasa/genética , Galactitol/metabolismo , Galactitol/genética , Aspergillus niger/metabolismo , Aspergillus niger/genética , Galactosa/metabolismo , Ingeniería Metabólica/métodos , Fermentación , Microbiología Industrial , Galactoquinasa/genética , Galactoquinasa/metabolismo
4.
Biochimie ; 223: 31-40, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38579894

RESUMEN

Leishmaniasis is a spectrum of conditions caused by infection with the protozoan Leishmania spp. parasites. Leishmaniasis is endemic in 98 countries around the world, and resistance to current anti-leishmanial drugs is rising. Our work has identified and characterised a previously unstudied galactokinase-like protein (GalK) in Leishmania donovani, which catalyses the MgATP-dependent phosphorylation of the C-1 hydroxyl group of d-galactose to galactose-1-phosphate. Here, we report the production of the catalytically active recombinant protein in E. coli, determination of its substrate specificity and kinetic constants, as well as analysis of its molecular envelope using in solution X-ray scattering. Our results reveal kinetic parameters in range with other galactokinases with an average apparent Km value of 76 µM for galactose, Vmax and apparent Kcat values with 4.46376 × 10-9 M/s and 0.021 s-1, respectively. Substantial substrate promiscuity was observed, with galactose being the preferred substrate, followed by mannose, fructose and GalNAc. LdGalK has a highly flexible protein structure suggestive of multiple conformational states in solution, which may be the key to its substrate promiscuity. Our data presents novel insights into the galactose salvaging pathway in Leishmania and positions this protein as a potential target for the development of pharmaceuticals seeking to interfere with parasite substrate metabolism.


Asunto(s)
Leishmania donovani , Proteínas Protozoarias , Proteínas Recombinantes , Leishmania donovani/enzimología , Leishmania donovani/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Especificidad por Sustrato , Galactoquinasa/metabolismo , Galactoquinasa/genética , Galactoquinasa/química , Cinética , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosa/metabolismo
5.
Glycobiology ; 33(8): 651-660, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37283491

RESUMEN

Lysosomal accumulation of the glycosphingolipid globotriaosylceramide Gb3 is linked to the deficient activity of the α-galactosidase A in the Anderson-Fabry disease and an elevated level of deacylated Gb3 is a hallmark of this condition. Localization of Gb3 in the plasma membrane is critical for studying how the membrane organization and its dynamics are affected in this genetic disorder. Gb3 analogs containing a terminal 6-azido-functionalized galactose in its head group globotriose (αGal1, 4ßGal1, and 4Glc) are attractive chemical reporters for bioimaging, as the azido-group may act as a chemical tag for bio-orthogonal click chemistry. We report here the production of azido-Gb3 analogs employing mutants of galactokinase, UTP-glucose-1-phosphate uridylyltransferase, and α-1,4-galactosyltransferase LgtC, which participate in the synthesis of the sugar motif globotriose. Variants of enzymes galactokinase/UTP-glucose-1-phosphate uridylyltransferase generate UDP-6-azido-6-deoxy-d-galactose, which is the galactosyl-donor used by LgtC for transferring the terminal galactose moiety to lactosyl-acceptors. Residues at the galactose-binding site of the 3 enzymes were modified to facilitate the accommodation of azido-functionalized substrates and variants outperforming the wild-type enzymes were characterized. Synthesis of 6-azido-6-deoxy-d-galactose-1-phosphate, UDP-6-azido-6-deoxy-d-galactose, and azido-Gb3 analogs by variants GalK-E37S, GalU-D133V, and LgtC-Q187S, respectively, is 3-6-fold that of their wild-type counterparts. Coupled reactions with these variants permit the production of the pricy, unnatural galactosyl-donor UDP-6-azido-6-deoxy-d-galactose with ~90% conversion yields, and products azido-globotriose and lyso-AzGb3 with substrate conversion of up to 70%. AzGb3 analogs could serve as precursors for the synthesis of other tagged glycosphingolipids of the globo-series.


Asunto(s)
Galactoquinasa , Galactosa , Galactosa/metabolismo , Galactoquinasa/genética , Galactoquinasa/metabolismo , UTP-Glucosa-1-Fosfato Uridililtransferasa/metabolismo , Sitios de Unión , Mutación , Uridina Difosfato
6.
ACS Chem Biol ; 17(1): 159-170, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34931806

RESUMEN

Bio-orthogonal chemistries have revolutionized many fields. For example, metabolic chemical reporters (MCRs) of glycosylation are analogues of monosaccharides that contain a bio-orthogonal functionality, such as azides or alkynes. MCRs are metabolically incorporated into glycoproteins by living systems, and bio-orthogonal reactions can be subsequently employed to install visualization and enrichment tags. Unfortunately, most MCRs are not selective for one class of glycosylation (e.g., N-linked vs O-linked), complicating the types of information that can be gleaned. We and others have successfully created MCRs that are selective for intracellular O-GlcNAc modification by altering the structure of the MCR and thus biasing it to certain metabolic pathways and/or O-GlcNAc transferase (OGT). Here, we attempt to do the same for the core GalNAc residue of mucin O-linked glycosylation. The most widely applied MCR for mucin O-linked glycosylation, GalNAz, can be enzymatically epimerized at the 4-hydroxyl to give GlcNAz. This results in a mixture of cell-surface and O-GlcNAc labeling. We reasoned that replacing the 4-hydroxyl of GalNAz with a fluorine would lock the stereochemistry of this position in place, causing the MCR to be more selective. After synthesis, we found that 4FGalNAz labels a variety of proteins in mammalian cells and does not perturb endogenous glycosylation pathways unlike 4FGalNAc. However, through subsequent proteomic and biochemical characterization, we found that 4FGalNAz does not widely label cell-surface glycoproteins but instead is primarily a substrate for OGT. Although these results are somewhat unexpected, they once again highlight the large substrate flexibility of OGT, with interesting and important implications for intracellular protein modification by a potential range of abiotic and native monosaccharides.


Asunto(s)
Acetilglucosamina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Acetilglucosamina/genética , Animales , Células CHO , Cricetinae , Cricetulus , Galactoquinasa/genética , Galactoquinasa/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Regulación de la Expresión Génica , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , N-Acetilglucosaminiltransferasas/genética , Proteínas Recombinantes , Especificidad por Sustrato , Azúcares de Uridina Difosfato
7.
PLoS Genet ; 17(12): e1009950, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34871303

RESUMEN

Chromatin structure and underlying DNA accessibility is modulated by the incorporation of histone variants. H2A.Z, a variant of the H2A core histone family, plays a distinct and essential role in a diverse set of biological functions including gene regulation and maintenance of heterochromatin-euchromatin boundaries. Although it is currently unclear how the replacement of H2A with H2A.Z can regulate gene expression, the variance in their amino acid sequence likely contributes to their functional differences. To tease apart regions of H2A.Z that confer its unique identity, a set of plasmids expressing H2A-H2A.Z hybrids from the native H2A.Z promoter were examined for their ability to recapitulate H2A.Z function. First, we found that the H2A.Z M6 region was necessary and sufficient for interaction with the SWR1-C chromatin remodeler. Remarkably, the combination of only 9 amino acid changes, the H2A.Z M6 region, K79 and L81 (two amino acids in the α2-helix), were sufficient to fully rescue growth phenotypes of the htz1Δ mutant. Furthermore, combining three unique H2A.Z regions (K79 and L81, M6, C-terminal tail) was sufficient for expression of H2A.Z-dependent heterochromatin-proximal genes and GAL1 derepression. Surprisingly, hybrid constructs that restored the transcription of H2A.Z-dependent genes, did not fully recapitulate patterns of H2A.Z-specific enrichment at the tested loci. This suggested that H2A.Z function in transcription regulation may be at least partially independent of its specific localization in chromatin. Together, this work has identified three regions that can confer specific H2A.Z-identity to replicative H2A, furthering our understanding of what makes a histone variant a variant.


Asunto(s)
Adenosina Trifosfatasas/genética , Cromatina/genética , Galactoquinasa/genética , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenosina Trifosfato/genética , Ensamble y Desensamble de Cromatina/genética , Regulación Fúngica de la Expresión Génica/genética , Variación Genética/genética , Heterocromatina/genética , Humanos , Nucleosomas/genética , Fenotipo , Saccharomyces cerevisiae/genética
8.
EMBO J ; 40(21): e108439, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34569643

RESUMEN

Upon replication stress, budding yeast checkpoint kinase Mec1ATR triggers the downregulation of transcription, thereby reducing the level of RNA polymerase (RNAP) on chromatin to facilitate replication fork progression. Here, we identify a hydroxyurea-induced phosphorylation site on Mec1, Mec1-S1991, that contributes to the eviction of RNAPII and RNAPIII during replication stress. The expression of the non-phosphorylatable mec1-S1991A mutant reduces replication fork progression genome-wide and compromises survival on hydroxyurea. This defect can be suppressed by destabilizing chromatin-bound RNAPII through a TAP fusion to its Rpb3 subunit, suggesting that lethality in mec1-S1991A mutants arises from replication-transcription conflicts. Coincident with a failure to repress gene expression on hydroxyurea in mec1-S1991A cells, highly transcribed genes such as GAL1 remain bound at nuclear pores. Consistently, we find that nuclear pore proteins and factors controlling RNAPII and RNAPIII are phosphorylated in a Mec1-dependent manner on hydroxyurea. Moreover, we show that Mec1 kinase also contributes to reduced RNAPII occupancy on chromatin during an unperturbed S phase by promoting degradation of the Rpb1 subunit.


Asunto(s)
Replicación del ADN , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Polimerasa III/genética , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/química , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Galactoquinasa/genética , Galactoquinasa/metabolismo , Regulación Fúngica de la Expresión Génica , Hidroxiurea/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Fosfoproteínas , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa III/metabolismo , Fase S/efectos de los fármacos , Fase S/genética , Saccharomyces cerevisiae/genética , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transcripción Genética
9.
Front Immunol ; 12: 668602, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335569

RESUMEN

Caspases are a family of cysteine proteases that play an essential role in inflammation, apoptosis, cell death, and development. Here we delve into the effects caused by heterologous expression of human caspase-1 in the yeast Saccharomyces cerevisiae and compare them to those of caspase-8. Overexpression of both caspases in the heterologous model led to their activation and caused mitochondrial hyperpolarization, damage to different organelles, and cell death. All these effects were dependent on their protease activity, and caspase-8 was more aggressive than caspase-1. Growth arrest could be at least partially explained by dysfunction of the actin cytoskeleton as a consequence of the processing of the yeast Bni1 formin, which we identify here as a likely direct substrate of both caspases. Through the modulation of the GAL1 promoter by using different galactose:glucose ratios in the culture medium, we have established a scenario in which caspase-1 is sufficiently expressed to become activated while yeast growth is not impaired. Finally, we used the yeast model to explore the role of death-fold domains (DD) of both caspases in their activity. Peculiarly, the DDs of either caspase showed an opposite involvement in its intrinsic activity, as the deletion of the caspase activation and recruitment domain (CARD) of caspase-1 enhanced its activity, whereas the deletion of the death effector domain (DED) of caspase-8 diminished it. We show that caspase-1 is able to efficiently process its target gasdermin D (GSDMD) when co-expressed in yeast. In sum, we propose that S. cerevisiae provides a manageable tool to explore caspase-1 activity and structure-function relationships.


Asunto(s)
Caspasa 1/biosíntesis , Caspasa 8/biosíntesis , Mitocondrias/enzimología , Saccharomyces cerevisiae/enzimología , Citoesqueleto de Actina/enzimología , Citoesqueleto de Actina/genética , Caspasa 1/genética , Caspasa 8/genética , Activación Enzimática , Inducción Enzimática , Galactoquinasa/genética , Galactoquinasa/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Viabilidad Microbiana , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Mitocondrias/genética , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
10.
Mol Cell Biol ; 41(11): e0012221, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34424055

RESUMEN

The aggregation of huntingtin fragments with expanded polyglutamine repeat regions (HttpolyQ) that cause Huntington's disease depends on the presence of a prion with an amyloid conformation in yeast. As a result of this relationship, HttpolyQ aggregation indirectly depends on Hsp104 due to its essential role in prion propagation. We find that HttQ103 aggregation is directly affected by Hsp104 with and without the presence of [RNQ+] and [PSI+] prions. When we inactivate Hsp104 in the presence of prion, yeast cells have only one or a few large HttQ103 aggregates rather than numerous smaller aggregates. When we inactivate Hsp104 in the absence of prion, there is no significant aggregation of HttQ103, whereas with active Hsp104, HttQ103 aggregates accumulate slowly due to the severing of spontaneously nucleated aggregates by Hsp104. We do not observe either effect with HttQ103P, which has a polyproline-rich region downstream of the polyglutamine region, because HttQ103P does not spontaneously nucleate and Hsp104 does not efficiently sever the prion-nucleated HttQ103P aggregates. Therefore, the only role of Hsp104 in HttQ103P aggregation is to propagate yeast prion. In conclusion, because Hsp104 efficiently severs the HttQ103 aggregates but not HttQ103P aggregates, it has a marked effect on the aggregation of HttQ103 but not HttQ103P.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Proteína Huntingtina/metabolismo , Péptidos/metabolismo , Priones/química , Agregación Patológica de Proteínas/patología , Proteínas de Saccharomyces cerevisiae/metabolismo , Cobre/farmacología , Galactoquinasa/genética , Humanos , Enfermedad de Huntington/genética , Placa Amiloide/patología , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
BMJ Case Rep ; 14(6)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34088690

RESUMEN

Congenital cataract can be caused by several systemic diseases and differential diagnosis should be done between infections, genetic or metabolic diseases. We present a case of a 12-month-old girl with bilateral nuclear cataracts that was referred for investigation. Since she did not present a family history of congenital cataracts or metabolic diseases, and her physical examination was normal, a systemic evaluation was performed. Biochemical studies disclosed abnormal galactose metabolism signs. The diagnosis of galactokinase (GALK1) deficiency was considered and the study of the GALK1 gene allowed identifying a pathogenic genetic variant and a predictably pathogenic missense mutation, previously not described. Dietary measures were imposed with a good evolution.


Asunto(s)
Catarata , Galactosemias , Catarata/genética , Femenino , Galactoquinasa/genética , Galactosemias/complicaciones , Galactosemias/genética , Humanos , Lactante , Mutación Missense
12.
Science ; 372(6539): 292-295, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33859035

RESUMEN

Gene-regulatory networks achieve complex mappings of inputs to outputs through mechanisms that are poorly understood. We found that in the galactose-responsive pathway in Saccharomyces cerevisiae, the decision to activate the transcription of genes encoding pathway components is controlled independently from the expression level, resulting in behavior resembling that of a mechanical dimmer switch. This was not a direct result of chromatin regulation or combinatorial control at galactose-responsive promoters; rather, this behavior was achieved by hierarchical regulation of the expression and activity of a single transcription factor. Hierarchical regulation is ubiquitous, and thus dimmer switch regulation is likely a key feature of many biological systems. Dimmer switch gene regulation may allow cells to fine-tune their responses to multi-input environments on both physiological and evolutionary time scales.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Galactosa/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Galactoquinasa/genética , Galactoquinasa/metabolismo , Redes Reguladoras de Genes , Aptitud Genética , Glucosa/metabolismo , Redes y Vías Metabólicas/genética , Modelos Genéticos , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Transcripción Genética
13.
PLoS One ; 16(3): e0243517, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33684107

RESUMEN

Deuterium (D), the second most abundant isotope of hydrogen is present in natural waters at an approximate concentration of 145-155 ppm (ca. 1.5E-4 atom/atom). D is known to influence various biological processes due to its physical and chemical properties, which significantly differ from those of hydrogen. For example, increasing D-concentration to >1000-fold above its natural abundance has been shown to increase the frequency of genetic mutations in several species. An interesting deterministic hypothesis, formulated with the intent of explaining the mechanism of D-mutagenicity is based on the calculation that the theoretical probability of base pairs to comprise two adjacent D-bridges instead of H-bridges is 2.3E-8, which is equal to the mutation rate of certain species. To experimentally challenge this hypothesis, and to infer the mutagenicity of D present at natural concentrations, we investigated the effect of a nearly 100-fold reduction of D concentration on the bacterial mutation rate. Using fluctuation tests, we measured the mutation rate of three Escherichia coli genes (cycA, ackA and galK) in media containing D at either <2 ppm or 150 ppm concentrations. Out of 15 pair-wise fluctuation analyses, nine indicated a significant decrease, while three marked the significant increase of the mutation/culture value upon D-depletion. Overall, growth in D-depleted minimal medium led to a geometric mean of 0.663-fold (95% confidence interval: 0.483-0.911) change in the mutation rate. This falls nowhere near the expected 10,000-fold reduction, indicating that in our bacterial systems, the effect of D abundance on the formation of point mutations is not deterministic. In addition, the combined results did not display a statistically significant change in the mutation/culture value, the mutation rate or the mutant frequency upon D-depletion. The potential mutagenic effect of D present at natural concentrations on E. coli is therefore below the limit of detection using the indicated methods.


Asunto(s)
Deuterio/toxicidad , Escherichia coli/efectos de los fármacos , Sistemas de Transporte de Aminoácidos/genética , Deuterio/química , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Galactoquinasa/genética , Tasa de Mutación
14.
Science ; 371(6527): 415-419, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33479156

RESUMEN

Metabolic pathways differ across species but are expected to be similar within a species. We discovered two functional, incompatible versions of the galactose pathway in Saccharomyces cerevisiae We identified a three-locus genetic interaction for growth in galactose, and used precisely engineered alleles to show that it arises from variation in the galactose utilization genes GAL2, GAL1/10/7, and phosphoglucomutase (PGM1), and that the reference allele of PGM1 is incompatible with the alternative alleles of the other genes. Multiloci balancing selection has maintained the two incompatible versions of the pathway for millions of years. Strains with alternative alleles are found primarily in galactose-rich dairy environments, and they grow faster in galactose but slower in glucose, revealing a trade-off on which balancing selection may have acted.


Asunto(s)
Galactosa/metabolismo , Redes y Vías Metabólicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Selección Genética , Alelos , Galactoquinasa/genética , Proteínas de Transporte de Monosacáridos/genética , Fosfoglucomutasa/genética , Transactivadores/genética
15.
Genet Med ; 23(1): 202-210, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32807972

RESUMEN

PURPOSE: Galactokinase (GALK1) deficiency is a rare hereditary galactose metabolism disorder. Beyond cataract, the phenotypic spectrum is questionable. Data from affected patients included in the Galactosemias Network registry were collected to better characterize the phenotype. METHODS: Observational study collecting medical data of 53 not previously reported GALK1 deficient patients from 17 centers in 11 countries from December 2014 to April 2020. RESULTS: Neonatal or childhood cataract was reported in 15 and 4 patients respectively. The occurrence of neonatal hypoglycemia and infection were comparable with the general population, whereas bleeding diathesis (8.1% versus 2.17-5.9%) and encephalopathy (3.9% versus 0.3%) were reported more often. Elevated transaminases were seen in 25.5%. Cognitive delay was reported in 5 patients. Urinary galactitol was elevated in all patients at diagnosis; five showed unexpected Gal-1-P increase. Most patients showed enzyme activities ≤1%. Eleven different genotypes were described, including six unpublished variants. The majority was homozygous for NM_000154.1:c.82C>A (p.Pro28Thr). Thirty-five patients were diagnosed following newborn screening, which was clearly beneficial. CONCLUSION: The phenotype of GALK1 deficiency may include neonatal elevation of transaminases, bleeding diathesis, and encephalopathy in addition to cataract. Potential complications beyond the neonatal period are not systematically surveyed and a better delineation is needed.


Asunto(s)
Catarata , Galactoquinasa/deficiencia , Galactosemias , Galactoquinasa/genética , Galactosemias/epidemiología , Galactosemias/genética , Homocigoto , Humanos , Recién Nacido , Sistema de Registros
16.
Curr Genet ; 67(2): 267-281, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33159551

RESUMEN

Controlling chromatin state constitutes a major regulatory step in gene expression regulation across eukaryotes. While global cellular features or processes are naturally impacted by chromatin state alterations, little is known about how chromatin regulatory genes interact in networks to dictate downstream phenotypes. Using the activity of the canonical galactose network in yeast as a model, here, we measured the impact of the disruption of key chromatin regulatory genes on downstream gene expression, genetic noise and fitness. Using Trichostatin A and nicotinamide, we characterized how drug-based modulation of global histone deacetylase activity affected these phenotypes. Performing epistasis analysis, we discovered phenotype-specific genetic interaction networks of chromatin regulators. Our work provides comprehensive insights into how the galactose network activity is affected by protein interaction networks formed by chromatin regulators.


Asunto(s)
Cromatina/genética , Epistasis Genética , Galactoquinasa/genética , Histona Desacetilasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Cromatina/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/genética , Genes Reguladores/genética , Ácidos Hidroxámicos/farmacología , Niacinamida/farmacología , Saccharomyces cerevisiae/genética
17.
ACS Synth Biol ; 9(12): 3254-3266, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33232598

RESUMEN

The use of optogenetics in metabolic engineering for light-controlled microbial chemical production raises the prospect of utilizing control and optimization techniques routinely deployed in traditional chemical manufacturing. However, such mechanisms require well-characterized, customizable tools that respond fast enough to be used as real-time inputs during fermentations. Here, we present OptoINVRT7, a new rapid optogenetic inverter circuit to control gene expression in Saccharomyces cerevisiae. The circuit induces gene expression in only 0.6 h after switching cells from light to darkness, which is at least 6 times faster than previous OptoINVRT optogenetic circuits used for chemical production. In addition, we introduce an engineered inducible GAL1 promoter (PGAL1-S), which is stronger than any constitutive or inducible promoter commonly used in yeast. Combining OptoINVRT7 with PGAL1-S achieves strong and light-tunable levels of gene expression with as much as 132.9 ± 22.6-fold induction in darkness. The high performance of this new optogenetic circuit in controlling metabolic enzymes boosts production of lactic acid and isobutanol by more than 50% and 15%, respectively. The strength and controllability of OptoINVRT7 and PGAL1-S open the door to applying process control tools to engineered metabolisms to improve robustness and yields in microbial fermentations for chemical production.


Asunto(s)
Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Butanoles/metabolismo , Galactoquinasa/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Ácido Láctico/metabolismo , Luz , Optogenética , Plásmidos/genética , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética
18.
Life Sci Alliance ; 3(12)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33037058

RESUMEN

The yeast galactose switch operated by the Gal4p-Gal80p-Gal3p regulatory module is a textbook model of transcription regulation in eukaryotes. The Gal80 protein inhibits Gal4p-mediated transcription activation by binding to the transcription activation domain. In Saccharomyces cerevisiae, inhibition is relieved by formation of an alternative Gal80-Gal3 complex. In yeasts lacking a Gal3p ortholog, such as Kluyveromyces lactis, the Gal1 protein (KlGal1p) combines regulatory and enzymatic activity. The data presented here reveal a yet unknown role of the KlGal80 N terminus in the mechanism of Gal4p activation. The N terminus contains an NLS, which is responsible for nuclear accumulation of KlGal80p and KlGal1p and for KlGal80p-mediated galactokinase inhibition. Herein, we present a model where the N terminus of KlGal80p reaches the catalytic center of KlGal1p causing enzyme inhibition in the nucleus and stabilization of the KlGal1-KlGal80p complex. We corroborate this model by genetic analyses and structural modelling and provide a rationale for the divergent evolution of the mechanism activating Gal4p.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Núcleo Celular/metabolismo , Galactoquinasa/genética , Galactosa/metabolismo , Kluyveromyces/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Activación Transcripcional
19.
Biosci Rep ; 40(9)2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32794578

RESUMEN

Apoptosis is a form of programmed cell death which is essential for the growth of dividing human cells whereas, in contrast, it is deleterious for post-mitotic cells such as neurons. Bax and α-synuclein are two human proteins which play a role in the induction of neuronal apoptosis in neurodegenerative diseases like Alzheimer's and Parkinson's. Human Bax and α-synuclein also induce cell death when expressed in baker's yeast, Saccharomyces cerevisiae. Quite unexpectedly, the human α-synuclein gene had been identified as an inhibitor of pro-apoptotic Bax using a yeast-based screen of a human hippocampal cDNA library. Plasmids were constructed with different promoters, which allow expression of wildtype and Parkinson's disease (PD)-related mutant α-synuclein genes, from (i) multi-copy 2µ (episomal) plasmids and (ii) integrative plasmids that compel expression of genes from chromosomal sites in varying copy numbers (1-3). All α-synuclein-containing plasmids were introduced, through transformation, into a yeast strain which already contained a chromosomally integrated copy of Bax. It is for the first time that it was observed that, depending on gene dosage, only wildtype α-synuclein is anti-apoptotic while mutant α-synuclein is not. The results also indicate that wildtype α-synuclein has a remarkable ability to manifest two contrasting effects depending on its level of expression: (i) normally, it would negate apoptosis but (ii) when overexpressed, it tends to induce apoptosis which is probably what happens in PD.


Asunto(s)
Apoptosis/fisiología , Saccharomyces cerevisiae/citología , alfa-Sinucleína/genética , Proteína X Asociada a bcl-2/metabolismo , Variaciones en el Número de Copia de ADN , Galactoquinasa/genética , Dosificación de Gen , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Humanos , Potencial de la Membrana Mitocondrial , Microorganismos Modificados Genéticamente , Mutación , Enfermedad de Parkinson/genética , Plásmidos , Regiones Promotoras Genéticas , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , alfa-Sinucleína/metabolismo , Proteína X Asociada a bcl-2/genética
20.
Curr Genet ; 66(6): 1029-1035, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32686056

RESUMEN

Transcriptional reinduction memory is a phenomenon whereby cells "remember" their transcriptional response to a previous stimulus such that subsequent encounters with the same stimulus can result in altered gene expression kinetics. Chromatin structure is thought to play a role in certain transcriptional memory mechanisms, leading to questions as to whether and how memory can be actively maintained and inherited to progeny through cell division. Here we summarize efforts towards dissecting chromatin-based transcriptional memory inheritance of GAL genes in Saccharomyces cerevisiae. We focus on methods and analyses of GAL (as well as MAL and INO) memory in single cells and discuss the challenges in unraveling the underlying mechanisms in yeast and higher eukaryotes.


Asunto(s)
Galactoquinasa/genética , Galactosa/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética , Cromatina/genética , Regulación Fúngica de la Expresión Génica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análisis de la Célula Individual , Azúcares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...