Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Drug Investig ; 44(10): 773-787, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39358661

RESUMEN

BACKGROUND AND OBJECTIVES: Selvigaltin (GB1211), an orally available small molecule galectin-3 inhibitor developed as a treatment for liver fibrosis and cirrhosis, was evaluated to assess the effect of hepatic impairment on its pharmacokinetics and safety to address regulatory requirements. METHODS: GULLIVER-2 was a Phase Ib/IIa three-part study. Parts 1 and 3 had single-dose, open-label designs assessing pharmacokinetics (plasma [total and unbound] and urine), safety, and tolerability of 100 mg oral selvigaltin in participants with moderate (Child-Pugh B, Part 1) or severe (Child-Pugh C, Part 3) hepatic impairment, compared with healthy-matched participants (n = 6 each). RESULTS: All participants received selvigaltin and completed the study. No adverse events were reported. The median time to reach maximum total plasma concentration following drug administration was of 3.49 and 4.00 h post-dose for Child-Pugh B and C participants, respectively; comparable with controls. Total plasma exposure was higher for participants with hepatic impairment compared with controls. Whilst maximum plasma concentration (Cmax) was unaffected in Child-Pugh B participants, area under the plasma concentration-time curve from time zero to infinity (AUC∞) increased by ~ 1.7-fold compared with controls, and half-life was prolonged (geometric mean 28.15 vs 16.38 h). In Child-Pugh C participants, Cmax increased by ~ 1.3-fold, AUC∞ increased by ~ 1.5-fold, and half-life was prolonged (21.05 vs 16.14 h). No trend was observed in plasma unbound fractions or urinary excretion of unchanged selvigaltin in either group. CONCLUSION: Hepatic impairment increased selvigaltin exposure without safety concerns. These data can inform dose recommendations for future clinical programmes. TRIAL REGISTRATION: Clinicaltrials.gov NCT05009680.


Asunto(s)
Galectina 3 , Humanos , Masculino , Femenino , Persona de Mediana Edad , Administración Oral , Anciano , Adulto , Galectina 3/antagonistas & inhibidores , Galectina 3/sangre , Proteínas Sanguíneas/metabolismo , Hepatopatías/metabolismo , Galectinas/antagonistas & inhibidores
2.
Kaohsiung J Med Sci ; 40(10): 916-925, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39230472

RESUMEN

This study aims to investigate the effects of the Galectin-3 (Gal-3) inhibitor TD139 on inflammation and the extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/p38 pathway in gestational diabetes mellitus (GDM). Human placental tissues were treated with TD139 and TNF-α, assessing Gal-3, ERK/JNK/p38 activation, and inflammatory cytokines. GDM was induced in mice via subcutaneous injections of streptozotocin (STZ). After confirming GDM, mice were treated with 15 mg/kg TD139 on GD 10.5 12.5, 14.5, 16.5, and 18.5. Serum inflammatory cytokines were measured on GD 20.5, and post-delivery placental tissues were analyzed. Data were analyzed using one-way or two-way repeated measures ANOVA with post hoc tests. TD139 suppressed TNF-α-induced increases in Gal-3, IL-1ß, IL-6, MCP-1, and ERK/JNK/p38 activation in placental tissues. In STZ-induced GDM mice, TD139 reduced glucose levels, weight loss, and food and water intake. TD139 significantly lowered TNF-α, IL-1ß, IL-6, and MCP-1 in serum and placental tissues and inhibited the ERK/JNK/p38 pathway. TD139 improved pup numbers in GDM mice compared to untreated ones. TD139 reduces inflammation and inhibits the ERK/JNK/p38 pathway in TNF-α stimulated placental tissues and STZ-induced GDM mice, suggesting its therapeutic potential for managing GDM-related placental inflammation and improving pregnancy outcomes. The study used TNF-α to mimic GDM in placental tissues and an STZ-induced GDM mouse model, which may not fully represent human GDM complexity. Future research should explore alternative models, and broader signaling pathways, and thoroughly evaluate TD139's safety in pregnancy.


Asunto(s)
Diabetes Gestacional , Galectina 3 , Sistema de Señalización de MAP Quinasas , Placenta , Embarazo , Animales , Diabetes Gestacional/tratamiento farmacológico , Diabetes Gestacional/metabolismo , Femenino , Ratones , Humanos , Placenta/metabolismo , Placenta/efectos de los fármacos , Galectina 3/metabolismo , Galectina 3/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inflamación/tratamiento farmacológico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Citocinas/metabolismo , Citocinas/sangre , Estreptozocina , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo
3.
Cancer Chemother Pharmacol ; 94(5): 707-720, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39167148

RESUMEN

PURPOSE: Overexpression of galectin-3, a ß-galactoside-binding lectin, is associated with fibrotic diseases and cancer. Selvigaltin is an oral galectin-3 inhibitor, previously administered as a 50 mg capsule. This study aimed to evaluate the relative bioavailability and food effect of selvigaltin as a 100 mg tablet in healthy volunteers. METHODS: In this single-dose, randomized, three-period, crossover study (GALBA-1; NCT05747573), participants received selvigaltin as a 100 mg tablet (under fasted and fed conditions) or as two 50 mg capsules (under fasted conditions). Primary endpoints included plasma and urine pharmacokinetic (PK) parameters. Secondary endpoints were safety and tolerability. RESULTS: Of the 13 enrolled participants, 12 completed the study. Under fasted conditions, geometric mean maximum observed plasma concentration (Cmax) and systemic exposure (AUC0─inf) of selvigaltin were 161.0% and 84.0% higher, respectively, after administration of a tablet vs. capsules. Under fed vs. fasted conditions, geometric mean Cmax of the selvigaltin tablet was 20.0% lower, whereas AUC0─inf was unaffected. Geometric mean percentage of total dose of selvigaltin excreted in urine over 0─96 h was 30.3% and 35.9% for the tablet under fasted and fed conditions, respectively, and 14.5% for the capsules. No treatment-emergent severe or serious adverse events or study discontinuations due to a treatment-emergent adverse event were reported. CONCLUSION: The tablet formulation of selvigaltin displayed higher bioavailability vs. the capsule formulation, with minimal effect of food on PK. Selvigaltin was well-tolerated during all treatments. These findings warrant further clinical development of the tablet formulation of selvigaltin without specific food restrictions. CLINICAL TRIAL REGISTRATION: NCT05747573; February 28, 2023.


Asunto(s)
Disponibilidad Biológica , Estudios Cruzados , Interacciones Alimento-Droga , Voluntarios Sanos , Comprimidos , Humanos , Masculino , Adulto , Femenino , Adulto Joven , Persona de Mediana Edad , Administración Oral , Cápsulas , Ayuno , Galectina 3/antagonistas & inhibidores , Área Bajo la Curva , Proteínas Sanguíneas/metabolismo , Galectinas/antagonistas & inhibidores
4.
J Med Chem ; 67(16): 14184-14199, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39102502

RESUMEN

Galectin-3 (Gal-3) is a carbohydrate binding protein that has been implicated in the development and progression of fibrotic diseases. Proof-of-principal animal models have demonstrated that inhibition of Gal-3 is a potentially viable pathway for the treatment of fibrosis─with small molecule Gal-3 inhibitors advanced into clinical trials. We hereby report the discovery of novel galactose-based monosaccharide Gal-3 inhibitors comprising 2-methyl-4-phenyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (compound 20) and 4-phenyl-4H-1,2,4-triazole (compound 15). Notably, hindered rotation caused by steric interaction between the 3-thione and ortho-trifluoromethyl group of compounds 20, 21 induced formation of thermodynamically stable atropisomers. Distinct X-ray cocrystal structures of 20 and 21 were obtained, which clearly demonstrated that the configuration of 21 proscribes a key halogen bonding σ-hole interaction of 3-chloro with carbonyl oxygen of Gly182, thereby leading to significant loss in potency. Ultimately, 20 and 15 were evaluated in mouse pharmacokinetic studies, and both compounds exhibited oral exposures suitable for further in vivo assessment.


Asunto(s)
Galactosa , Galectina 3 , Triazoles , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Triazoles/farmacocinética , Galactosa/química , Galactosa/metabolismo , Animales , Humanos , Galectina 3/antagonistas & inhibidores , Galectina 3/metabolismo , Ratones , Relación Estructura-Actividad , Cristalografía por Rayos X , Tionas/química , Tionas/farmacología , Tionas/síntesis química , Tionas/farmacocinética , Proteínas Sanguíneas/metabolismo , Galectinas/antagonistas & inhibidores , Galectinas/metabolismo , Modelos Moleculares
5.
Kidney Int ; 106(4): 658-670, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084257

RESUMEN

IgA nephropathy (IgAN) is the most common type of glomerulonephritis that frequently progresses to kidney failure. However, the molecular pathogenesis underlying IgAN remains largely unknown. Here, we investigated the role of galectin-3 (Gal-3), a galactoside-binding protein in IgAN pathogenesis, and showed that Gal-3 expression by the kidney was significantly enhanced in patients with IgAN. In both TEPC-15 hybridoma-derived IgA-induced, passive, and spontaneous "grouped" ddY IgAN models, Gal-3 expression was clearly increased with disease severity in the glomeruli, peri-glomerular regions, and some kidney tubules. Gal-3 knockout (KO) in the passive IgAN model had significantly improved proteinuria, kidney function and reduced severity of kidney pathology, including neutrophil infiltration and decreased differentiation of Th17 cells from kidney-draining lymph nodes, despite increased percentages of regulatory T cells. Gal-3 KO also inhibited the NLRP3 inflammasome, yet it enhanced autophagy and improved kidney inflammation and fibrosis. Moreover, administration of 6-de-O-sulfated, N-acetylated low-molecular-weight heparin, a competitive Gal-3 binding inhibitor, restored kidney function and improved kidney lesions in passive IgAN mice. Thus, our results suggest that Gal-3 is critically involved in IgAN pathogenesis by activating the NLRP3 inflammasome and promoting Th17 cell differentiation. Hence, targeting Gal-3 action may represent a new therapeutic strategy for treatment of this kidney disease.


Asunto(s)
Modelos Animales de Enfermedad , Galectina 3 , Glomerulonefritis por IGA , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Células Th17 , Glomerulonefritis por IGA/patología , Glomerulonefritis por IGA/inmunología , Glomerulonefritis por IGA/metabolismo , Glomerulonefritis por IGA/genética , Animales , Galectina 3/metabolismo , Galectina 3/genética , Galectina 3/antagonistas & inhibidores , Humanos , Células Th17/inmunología , Células Th17/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Masculino , Femenino , Inflamasomas/metabolismo , Inflamasomas/inmunología , Autofagia/efectos de los fármacos , Fibrosis , Linfocitos T Reguladores/inmunología , Diferenciación Celular , Galectinas/genética , Galectinas/metabolismo , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Ratones Endogámicos C57BL , Glomérulos Renales/patología , Glomérulos Renales/inmunología , Inmunoglobulina A/metabolismo , Inmunoglobulina A/inmunología
6.
J Med Chem ; 67(11): 9214-9226, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38829964

RESUMEN

Pulmonary hypertension is a cardiovascular disease with a low survival rate. The protein galectin-3 (Gal-3) binding ß-galactosides of cellular glycoproteins plays an important role in the onset and development of this disease. Carbohydrate-based drugs that target Gal-3 represent a new therapeutic strategy in the treatment of pulmonary hypertension. Here, we present the synthesis of novel hydrophilic glycopolymer inhibitors of Gal-3 based on a polyoxazoline chain decorated with carbohydrate ligands. Biolayer interferometry revealed a high binding affinity of these glycopolymers to Gal-3 in the subnanomolar range. In the cell cultures of cardiac fibroblasts and pulmonary artery smooth muscle cells, the most potent glycopolymer 18 (Lac-high) caused a decrease in the expression of markers of tissue remodeling in pulmonary hypertension. The glycopolymers were shown to penetrate into the cells. In a biodistribution and pharmacokinetics study in rats, the glycopolymers accumulated in heart and lung tissues, which are most affected by pulmonary hypertension.


Asunto(s)
Galectina 3 , Hipertensión Pulmonar , Animales , Galectina 3/antagonistas & inhibidores , Galectina 3/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Ratas , Humanos , Distribución Tisular , Masculino , Biomarcadores , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Polímeros/química , Polímeros/farmacología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo
7.
Clin Sci (Lond) ; 138(12): 725-739, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38840496

RESUMEN

OBJECTIVES: Clinical studies have confirmed that galectin-3 (Gal-3) levels are significantly elevated in periodontitis patients. The present study aimed to explore the effects of Gal-3 inhibition on periodontal inflammation in vitro and in vivo. METHODS: Human gingival fibroblasts (HGFs) with or without Gal-3 knockdown were stimulated by lipopolysaccharide (LPS), and a ligation-induced mouse periodontitis model treated with a Gal-3 inhibitor was established. Hematoxylin-eosin (H&E) and immunohistochemistry (IHC) staining were used to evaluate Gal-3 levels in gingival tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect Gal-3, interleukin (IL)-6, IL-8, and C-C motif ligand 2 (CCL2) expression. Immunofluorescence and western blotting were used to detect NF-κB and ERK signaling pathway activation. Micro-computed tomography was used to analyse the degree of bone loss. RESULTS: Gal-3 was significantly up-regulated in inflamed gingival tissues and LPS-induced HGFs. Gal-3 knockdown markedly decreased LPS-induced IL-6, IL-8, and CCL2 expression and blocked NF-κB and ERK signaling pathway activation in HGFs. In the mouse periodontitis model, Gal-3 inhibition significantly alleviated IL-1ß and IL-6 infiltration in gingival tissue and mitigated periodontal bone loss. CONCLUSIONS: Gal-3 inhibition notably alleviated periodontal inflammation partly through blocking NF-κB and ERK signaling pathway activation.


Asunto(s)
Fibroblastos , Galectina 3 , Encía , Lipopolisacáridos , Periodontitis , Animales , Humanos , Masculino , Ratones , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Galectina 3/metabolismo , Galectina 3/antagonistas & inhibidores , Galectina 3/genética , Encía/metabolismo , Encía/patología , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Periodontitis/metabolismo , Periodontitis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
8.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928462

RESUMEN

Galectins are a family of beta-galactoside-binding proteins that are characterised by their carbohydrate recognition domain (CRD) and include galectin-1 and galectin-3. These galectins have been implicated in numerous diseases due to their pleiotropic nature, including cancer and fibrosis, with therapeutic inhibitors being clinically developed to block the CRD. One of the early methods developed to characterise these galectins was the hemagglutination of red blood cells. Although it is insightful, this approach has been hampered by a lack of sensitivity and accurate quantification of the agglutination observed. In this study, we aimed to validate a more precise and quantitative method to enable the further investigation of differences between galectins in respect to agglutination induction in different blood groups, as well as the characterisation of small molecule inhibitors. Quantification of hemagglutination was shown to be optimal using U-bottom plates imaged and analysed with FIJI ImageJ rather than flat-bottom plates read for absorbance on an optical density plate reader. Galectin-3-induced red blood cell agglutination efficacy increased significantly from blood group O to A to B. However, for both the galectin-1 monomer and concatemer, a more comparable effect was observed between blood group B and O, but with more potent effects than in blood group A. Inhibition assays for both galectin-3 and galectin-1 induced-hemagglutination were able to demonstrate clear concentration responses and expected selectivity profiles for a set of small-molecule glycomimetics, confirming the historical profiles obtained in biochemical binding and functional cellular assays.


Asunto(s)
Eritrocitos , Galectina 1 , Galectinas , Hemaglutinación , Humanos , Eritrocitos/metabolismo , Eritrocitos/efectos de los fármacos , Hemaglutinación/efectos de los fármacos , Galectinas/antagonistas & inhibidores , Galectinas/metabolismo , Galectina 1/antagonistas & inhibidores , Galectina 1/metabolismo , Galectina 3/antagonistas & inhibidores , Galectina 3/metabolismo , Pruebas de Aglutinación/métodos , Pruebas de Hemaglutinación , Aglutinación/efectos de los fármacos
9.
Lung ; 202(4): 385-403, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850292

RESUMEN

Galectin-3 is a multifunctional protein that is involved in various physiological and pathological events. Emerging evidence suggests that galectin-3 also plays a critical role in the pathogenesis of pulmonary diseases. Galectin-3 can be produced and secreted by various cell types in the lungs, and the overexpression of galectin-3 has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. Galectin-3 exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis in these pulmonary disorders, and genetic and pharmacologic modulation of galectin-3 has therapeutic effects on the treatment of pulmonary illnesses. In this review, we summarize the structure and function of galectin-3 and the underlying mechanisms of galectin-3 in pulmonary disease pathologies; we also discuss preclinical and clinical evidence regarding the therapeutic potential of galectin-3 inhibitors in these pulmonary disorders. Additionally, targeting galectin-3 may be a very promising therapeutic approach for the treatment of pulmonary diseases.


Asunto(s)
Galectina 3 , Enfermedades Pulmonares , Humanos , Galectina 3/metabolismo , Galectina 3/antagonistas & inhibidores , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/metabolismo , Animales , Pulmón/metabolismo , Pulmón/fisiopatología , Pulmón/patología , Proteínas Sanguíneas , Galectinas
10.
Exp Neurol ; 377: 114777, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636772

RESUMEN

BACKGROUND: Aneurysmal subarachnoid hemorrhage (SAH) is a devastating acute cerebrovascular event with high mortality and permanent disability rates. Higher galectin-3 levels on days 1-3 have been shown to predict the development of delayed cerebral infarction or adverse outcomes after SAH. Recent single-cell analysis of microglial transcriptomic diversity in SAH revealed that galectin could influence the development and course of neuroinflammation after SAH. METHODS: This study aimed to investigate the role and mechanism of galectin-3 in SAH and to determine whether galectin-3 inhibition prevents early brain injury by reducing microglia polarization using a mouse model of SAH and oxyhemoglobin-treated activation of mouse BV2 cells in vitro. RESULTS: We found that the expression of galectin-3 began to increase 12 h after SAH and continued to increase up to 72 h. Importantly, TD139-inhibited galectin-3 expression reduced the release of inflammatory factors in microglial cells. In the experimental SAH model, TD139 treatment alleviated neuroinflammatory damage after SAH and improved defects in neurological functions. Furthermore, we demonstrated that galectin-3 inhibition affected the activation and M1 polarization of microglial cells after SAH. TD139 treatment inhibited the expression of TLR4, p-NF-κB p65, and NF-κB p65 in microglia activated by oxyhemoglobin as well as eliminated the increased expression and phosphorylation of JAK2 and STAT3. CONCLUSION: These findings suggest that regulating microglia polarization by galectin-3 after SAH to improve neuroinflammation may be a potential therapeutic target.


Asunto(s)
Galectina 3 , Ratones Endogámicos C57BL , Microglía , Enfermedades Neuroinflamatorias , Hemorragia Subaracnoidea , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , Galectina 3/metabolismo , Galectina 3/antagonistas & inhibidores , Ratones , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/metabolismo , Masculino , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología
11.
Glycoconj J ; 41(2): 93-118, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38630380

RESUMEN

Galectin-3 has a variety of important pathophysiological significance in the human body. Much evidence shows that the abnormal expression of galectin-3 is related to the formation and development of many diseases. Pectin is mostly obtained from processed citrus fruits and apples and is a known natural inhibitor of galactin-3. A large number of peels produced each year are discarded, and it is necessary to recycle some of the economically valuable active compounds in these by-products to reduce resource waste and environmental pollution. By binding with galectin-3, pectin can directly reduce the expression level of galectin-3 on the one hand, and regulate the expression level of cytokines by regulating certain signaling pathways on the other hand, to achieve the effect of treating diseases. This paper begins by presenting an overview of the basic structure of pectin, subsequently followed by a description of the structure of galectin-3 and its detrimental impact on human health when expressed abnormally. The health effects of pectin as a galectin-3 inhibitor were then summarized from the perspectives of anticancer, anti-inflammatory, ameliorating fibrotic diseases, and anti-diabetes. Finally, the challenges and prospects of future research on pectin are presented, which provide important references for expanding the application of pectin in the pharmaceutical industry or developing functional dietary supplements.


Asunto(s)
Galectina 3 , Pectinas , Animales , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Proteínas Sanguíneas , Galectina 3/metabolismo , Galectina 3/antagonistas & inhibidores , Galectinas/metabolismo , Galectinas/antagonistas & inhibidores , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Pectinas/farmacología , Pectinas/química
12.
Gastroenterology ; 167(2): 298-314, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38467382

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) has a desmoplastic tumor stroma and immunosuppressive microenvironment. Galectin-3 (GAL3) is enriched in PDAC, highly expressed by cancer cells and myeloid cells. However, the functional roles of GAL3 in the PDAC microenvironment remain elusive. METHODS: We generated a novel transgenic mouse model (LSL-KrasG12D/+;Trp53loxP/loxP;Pdx1-Cre;Lgals3-/- [KPPC;Lgals3-/-]) that allows the genetic depletion of GAL3 from both cancer cells and myeloid cells in spontaneous PDAC formation. Single-cell RNA-sequencing analysis was used to identify the alterations in the tumor microenvironment upon GAL3 depletion. We investigated both the cancer cell-intrinsic function and immunosuppressive function of GAL3. We also evaluated the therapeutic efficacy of GAL3 inhibition in combination with immunotherapy. RESULTS: Genetic deletion of GAL3 significantly inhibited the spontaneous pancreatic tumor progression and prolonged the survival of KPPC;Lgals3-/- mice. Single-cell analysis revealed that genetic deletion of GAL3 altered the phenotypes of immune cells, cancer cells, and other cell populations. GAL3 deletion significantly enriched the antitumor myeloid cell subpopulation with high major histocompatibility complex class II expression. We also identified that GAL3 depletion resulted in CXCL12 upregulation, which could act as a potential compensating mechanism on GAL3 deficiency. Combined inhibition of the CXCL12-CXCR4 axis and GAL3 enhanced the efficacy of anti-PD-1 immunotherapy, leading to significantly inhibited PDAC progression. In addition, deletion of GAL3 also inhibited the basal/mesenchymal-like phenotype of pancreatic cancer cells. CONCLUSIONS: GAL3 promotes PDAC progression and immunosuppression via both cancer cell-intrinsic and immune-related mechanisms. Combined treatment targeting GAL3, CXCL12-CXCR4 axis, and PD-1 represents a novel therapeutic strategy for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Progresión de la Enfermedad , Galectina 3 , Neoplasias Pancreáticas , Microambiente Tumoral , Animales , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/terapia , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/antagonistas & inhibidores , Microambiente Tumoral/inmunología , Ratones , Humanos , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Modelos Animales de Enfermedad , Línea Celular Tumoral , Eliminación de Gen , Ratones Transgénicos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Ratones Noqueados , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Transducción de Señal , Galectinas/genética , Galectinas/metabolismo
13.
Toxicology ; 504: 153786, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522819

RESUMEN

This study evaluated the effect of pharmacological inhibition of galectin 3 (Gal-3) with modified citrus pectin (MCP) on the heart and kidney in a model of cisplatin-induced acute toxicity. Male Wistar rats were divided into four groups (n = 6/group): SHAM, which received sterile saline intraperitoneally (i.p.) for three days; CIS, which received cisplatin i.p. (10 mg/kg/day) for three days; MCP, which received MCP orally (100 mg/kg/day) for seven days, followed by sterile saline i.p. for three days; MCP+CIS, which received MCP orally for seven days followed by cisplatin i.p. for three days. The blood, heart, and kidneys were collected six hours after the last treatment. MCP treatment did not change Gal-3 protein levels in the blood and heart, but it did reduce them in the kidneys of the MCP groups compared to the SHAM group. While no morphological changes were evident in the cardiac tissue, increased malondialdehyde (MDA) levels and deregulation of the mitochondrial oxidative phosphorylation system were observed in the heart homogenates of the MCP+CIS group. Cisplatin administration caused acute tubular degeneration in the kidneys; the MCP+CIS group also showed increased MDA levels. In conclusion, MCP therapy in the acute model of cisplatin-induced toxicity increases oxidative stress in cardiac and renal tissues. Further investigations are needed to determine the beneficial and harmful roles of Gal-3 in the cardiorenal system since it can act differently in acute and chronic diseases/conditions.


Asunto(s)
Antineoplásicos , Cisplatino , Galectina 3 , Riñón , Pectinas , Ratas Wistar , Animales , Cisplatino/toxicidad , Pectinas/farmacología , Masculino , Galectina 3/metabolismo , Galectina 3/antagonistas & inhibidores , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Antineoplásicos/toxicidad , Ratas , Cardiotoxicidad , Miocardio/metabolismo , Miocardio/patología , Malondialdehído/metabolismo , Corazón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Galectinas/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/patología , Enfermedades Renales/prevención & control
14.
Bioorg Med Chem ; 101: 117638, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38394996

RESUMEN

As a result of our continued efforts to pursue Gal-3 inhibitors that could be used to fully evaluate the potential of Gal-3 as a therapeutic target, two novel series of benzothiazole derived monosaccharides as potent (against both human and mouse Gal-3) and orally bioavailable Gal-3 inhibitors, represented by 4 and 5, respectively, were identified. These discoveries were made based on proposals that the benzothiazole sulfur atom could interact with the carbonyl oxygen of G182/G196 in h/mGal-3, and that the anomeric triazole moiety could be modified into an N-methyl carboxamide functionality. The interaction between the benzothiazole sulfur and the carbonyl oxygen of G196 in mGal-3 was confirmed by an X-ray co-crystal structure of early lead 9, providing a rare example of using a S···O binding interaction for drug design. It was found that for both the series, methylation of 3-OH in the monosaccharides caused no loss in h & mGal-3 potencies but significantly improved permeability of the molecules.


Asunto(s)
Galectina 3 , Monosacáridos , Animales , Humanos , Ratones , Benzotiazoles/química , Benzotiazoles/farmacología , Diseño de Fármacos , Galectina 3/antagonistas & inhibidores , Galectinas/antagonistas & inhibidores , Monosacáridos/química , Monosacáridos/farmacología , Oxígeno , Azufre
15.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339036

RESUMEN

Human Galectin-3 (hGal-3) is a protein that selectively binds to ß-galactosides and holds diverse roles in both normal and pathological circumstances. Therefore, targeting hGal-3 has become a vibrant area of research in the pharmaceutical chemistry. As a step towards the development of novel hGal-3 inhibitors, we synthesized and investigated derivatives of thiodigalactoside (TDG) modified with different aromatic substituents. Specifically, we describe a high-yielding synthetic route of thiodigalactoside (TDG); an optimized procedure for the synthesis of the novel 3,3'-di-O-(quinoline-2-yl)methyl)-TDG and three other known, symmetric 3,3'-di-O-TDG derivatives ((naphthalene-2yl)methyl, benzyl, (7-methoxy-2H-1-benzopyran-2-on-4-yl)methyl). In the present study, using competition Saturation Transfer Difference (STD) NMR spectroscopy, we determined the dissociation constant (Kd) of the former three TDG derivatives produced to characterize the strength of the interaction with the target protein (hGal-3). Based on the Kd values determined, the (naphthalen-2-yl)methyl, the (quinolin-2-yl)methyl and the benzyl derivatives bind to hGal-3 94, 30 and 24 times more strongly than TDG. Then, we studied the binding modes of the derivatives in silico by molecular docking calculations. Docking poses similar to the canonical binding modes of well-known hGal-3 inhibitors have been found. However, additional binding forces, cation-π interactions between the arginine residues in the binding pocket of the protein and the aromatic groups of the ligands, have been established as significant features. Our results offer a molecular-level understanding of the varying affinities observed among the synthesized thiodigalactoside derivatives, which can be a key aspect in the future development of more effective ligands of hGal-3.


Asunto(s)
Galectina 3 , Tiogalactósidos , Humanos , Galectina 3/antagonistas & inhibidores , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Tiogalactósidos/química , Tiogalactósidos/farmacología
16.
Cardiovasc Res ; 119(15): 2536-2549, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37602717

RESUMEN

AIMS: Acute myocardial infarction (MI) causes inflammation, collagen deposition, and reparative fibrosis in response to myocyte death and, subsequently, a pathological myocardial remodelling process characterized by excessive interstitial fibrosis, driving heart failure (HF). Nonetheless, how or when to limit excessive fibrosis for therapeutic purposes remains uncertain. Galectin-3, a major mediator of organ fibrosis, promotes cardiac fibrosis and remodelling. We performed a preclinical assessment of a protein inhibitor of galectin-3 (its C-terminal domain, Gal-3C) to limit excessive fibrosis resulting from MI and prevent ventricular enlargement and HF. METHODS AND RESULTS: Gal-3C was produced by enzymatic cleavage of full-length galectin-3 or by direct expression of the truncated form in Escherichia coli. Gal-3C was intravenously administered for 7 days in acute MI models of young and aged rats, starting either pre-MI or 4 days post-MI. Echocardiography, haemodynamics, histology, and molecular and cellular analyses were performed to assess post-MI cardiac functionality and pathological fibrotic progression. Gal-3C profoundly benefitted left ventricular ejection fraction, end-systolic and end-diastolic volumes, haemodynamic parameters, infarct scar size, and interstitial fibrosis, with better therapeutic efficacy than losartan and spironolactone monotherapies over the 56-day study. Gal-3C therapy in post-MI aged rats substantially improved pump function and attenuated ventricular dilation, preventing progressive HF. Gal-3C in vitro treatment of M2-polarized macrophage-like cells reduced their M2-phenotypic expression of arginase-1 and interleukin-10. Gal-3C inhibited M2 polarization of cardiac macrophages during reparative response post-MI. Gal-3C impeded progressive fibrosis post-MI by down-regulating galectin-3-mediated profibrotic signalling cascades including a reduction in endogenous arginase-1 and inducible nitric oxide synthase (iNOS). CONCLUSION: Gal-3C treatment improved long-term cardiac function post-MI by reduction in the wound-healing response, and inhibition of inflammatory fibrogenic signalling to avert an augmentation of fibrosis in the periinfarct region. Thus, Gal-3C treatment prevented the infarcted heart from extensive fibrosis that accelerates the development of HF, providing a potential targeted therapy.


Asunto(s)
Cardiomiopatías , Galectina 3 , Infarto del Miocardio , Miocardio , Animales , Ratas , Arginasa/metabolismo , Cardiomiopatías/metabolismo , Fibrosis , Galectina 3/antagonistas & inhibidores , Infarto del Miocardio/patología , Miocardio/patología , Volumen Sistólico , Función Ventricular Izquierda , Remodelación Ventricular/fisiología
17.
Cancer Chemother Pharmacol ; 91(3): 267-280, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36914828

RESUMEN

PURPOSE: Galectin-3, a ß-galactoside-binding lectin, plays a key role in several cellular pathways involved in chronic inflammation, heart disease and cancer. GB1211 is an orally bioavailable galectin-3 inhibitor, developed to be systemically active. We report safety and pharmacokinetics (PK) of GB1211 in healthy participants. METHODS: This phase 1, double-blind, placebo-controlled, first-in-human study (NCT03809052) included a single ascending-dose phase (with a food-effect cohort) where participants across seven sequential cohorts were randomized 3:1 to receive oral GB1211 (5, 20, 50, 100, 200 or 400 mg) or placebo. In the multiple ascending-dose phase, participants received 50 or 100 mg GB1211 or placebo twice daily for 10 days. All doses were administered in the fasted state except in the food-effect cohort where doses were given 30 min after a high-fat meal. RESULTS: All 78 participants received at least one GB1211 dose (n = 58) or placebo (n = 20) and completed the study. No safety concerns were identified. Following single and multiple oral doses under fasted conditions, maximum GB1211 plasma concentrations were reached at 1.75-4 h (median) post-dose; mean half-life was 11-16 h. There was a ~ twofold GB1211 accumulation in plasma with multiple dosing, with steady-state reached within 3 days; 30% of the administered dose was excreted in urine as unchanged drug. Absorption in the fed state was delayed by 2 h but systemic exposure was unaffected. CONCLUSION: GB1211 was well tolerated, rapidly absorbed, and displayed favorable PK, indicating a potential to treat multiple disease types. These findings support further clinical development of GB1211. CLINICAL TRIAL REGISTRATION: The study was registered with ClinicalTrials.gov (identifier: NCT03809052).


Asunto(s)
Galectina 3 , Humanos , Administración Oral , Área Bajo la Curva , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Galectina 3/antagonistas & inhibidores , Voluntarios Sanos
18.
J Neuroinflammation ; 19(1): 229, 2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36115971

RESUMEN

BACKGROUND: Dysfunctional humoral and cellular innate immunity are key components in the development and progression of age-related macular degeneration (AMD). Specifically, chronically activated microglia and their disturbed regulatory system contribute to retinal degeneration. Galectin-3, a ß-galactose binding protein, is a potent driver of macrophage and microglia activation and has been implicated in neuroinflammation, including neurodegenerative diseases of the brain. Here, we hypothesized that genetic deficiency of galectin-3 or its modulation via TD139 dampens mononuclear phagocyte reactivity and delays retinal degeneration. METHODS: Galectin-3 expression in AMD patients was analyzed by immunohistochemical stainings. Galectin-3 knockout and BALB/cJ mice were exposed to white bright light with an intensity of 15,000 lux for 1 h and Cx3cr1GFP/+ mice to focal blue light of 50,000 lux for 10 min. BALB/cJ and Cx3cr1GFP/+ mice received intraperitoneal injections of 15 mg/kg TD139 or vehicle for five consecutive days, starting one day prior to light exposure. The effects of galectin-3 deficiency or inhibition on microglia were analyzed by immunohistochemical stainings and in situ hybridization of retinal sections and flat mounts. Pro-inflammatory cytokine levels in the retina and retinal pigment epithelium (RPE) were quantified by qRT-PCR and transcriptomic changes were analyzed by RNA-sequencing. Retinal thickness and structure were evaluated by optical coherence tomography. RESULTS: We found that galectin-3 expression was strongly upregulated in reactive retinal mononuclear phagocytes of AMD patients and in the two related mouse models of light-induced retinal degeneration. The experimental in vivo data further showed that specific targeting of galectin-3 by genetic knockout or administration of the small-molecule inhibitor TD139 reduced microglia reactivity and delayed retinal damage in both light damage conditions. CONCLUSION: This study defines galectin-3 as a potent driver of retinal degeneration and highlights the protein as a drug target for ocular immunomodulatory therapies.


Asunto(s)
Galectina 3 , Degeneración Macular , Microglía , Animales , Citocinas/metabolismo , Galectina 3/antagonistas & inhibidores , Galectina 3/genética , Galectina 3/metabolismo , Humanos , Degeneración Macular/genética , Degeneración Macular/metabolismo , Degeneración Macular/prevención & control , Ratones , Microglía/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , ARN/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Degeneración Retiniana/prevención & control , Tiogalactósidos/farmacología , Triazoles/farmacología
19.
J Med Chem ; 65(8): 5975-5989, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35427125

RESUMEN

Galectin-3 is a ß-galactoside-specific, carbohydrate-recognizing protein (lectin) that is strongly implicated in cancer development, metastasis, and drug resistance. Galectin-3 promotes migration and ability to withstand drug treatment of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells. Due to high amino acid conservation among galectins and the shallow nature of their glycan-binding site, the design of selective potent antagonists targeting galectin-3 is challenging. Herein, we report the design and synthesis of novel taloside-based antagonists of galectin-3 with enhanced affinity and selectivity. The molecules were optimized by in silico docking, selectivity was established against four galectins, and the binding modes were confirmed by elucidation of X-ray crystal structures. Critically, the specific inhibition of galectin-3-induced BCP-ALL cell agglutination was demonstrated. The compounds decreased the viability of ALL cells even when grown in the presence of protective stromal cells. We conclude that these compounds are promising leads for therapeutics, targeting the tumor-supportive activities of galectin-3 in cancer.


Asunto(s)
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Diseño de Fármacos , Galectina 3/antagonistas & inhibidores , Galectina 3/metabolismo , Humanos , Polisacáridos/síntesis química , Polisacáridos/química , Polisacáridos/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
20.
Carbohydr Polym ; 277: 118864, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34893269

RESUMEN

Ulcerative colitis (UC) is an inflammatory bowel disease that affects the colon and rectum. Although galectin-3 (Gal-3) has been reported to play a proinflammatory role in UC, it is unknown whether pectic polysaccharide, a Gal-3 inhibitor in tumor metastasis, can alleviate UC by inhibiting Gal-3. The aim of this study was to investigate the anti-inflammatory effects and underlying mechanisms of SCLP, a pectic polysaccharide purified from Smilax china L. in our previous work, on dextran sulfate sodium-induced UC in BALB/c mice. The results showed that SCLP could significantly improve symptoms, alleviate histopathological damage and reduce the secretion of inflammatory mediators in mice with UC. Analysis of the anti-colitis mechanisms indicated that SCLP could inhibit the Gal-3/NLRP3 inflammasome/IL-1ß pathway by suppressing the expression of Gal-3 and the interaction of Gal-3 and NLRP3. Our results suggested that SCLP could be a promising candidate for prevention and treatment of UC.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Inflamasomas/antagonistas & inhibidores , Pectinas/farmacología , Polisacáridos/farmacología , Smilax/química , Animales , Antiinflamatorios no Esteroideos/química , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Sulfato de Dextran , Galectina 3/antagonistas & inhibidores , Galectina 3/metabolismo , Inflamasomas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Pectinas/química , Polisacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...