Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.809
Filtrar
1.
Bioresour Technol ; 409: 131192, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094960

RESUMEN

This study explored a novel economical and efficient process for treating actual low-ammonia nitrogen electroplating tail wastewater. A pilot scale system of denitrification-partial nitrification/anaerobic ammonium oxidation (DN-PN/A) was constructed and operated for 190 days. The partial nitrification (PN) reactor, filled with zeolite, increased free ammonia concentration beyond the nitrite oxidizing bacteria threshold and successfully supplied NO2--N, with nitrite accumulation rate exceeding 90 %. Over 109 days, the total nitrogen removal rate achieved was 80.2 ± 7.41 %, and the chemical oxygen demand removal rate reached 79.68 ± 9.53 %. The dominant functional bacteria were Nitrosomonas (5.45 %) and Candidatus Anammoxoglobus (28.84 %) in PN reactor and anaerobic ammonium oxidation (Anammox) reactor. This process, characterized by rapid start-up, strong shock resistance, and low cost, alleviates the pressure of ammonium pollution control, promotes the sustainable development of the electroplating industry and has the potential for application in the treatment of other industrial wastewater.


Asunto(s)
Reactores Biológicos , Desnitrificación , Aguas Residuales , Purificación del Agua , Aguas Residuales/química , Purificación del Agua/métodos , Proyectos Piloto , Nitrificación , Galvanoplastia , Oxidación-Reducción , Nitrógeno , Compuestos de Amonio/metabolismo , Amoníaco/metabolismo , Anaerobiosis , Análisis de la Demanda Biológica de Oxígeno , Eliminación de Residuos Líquidos/métodos , Nitritos/metabolismo , Residuos Industriales
2.
ACS Appl Mater Interfaces ; 16(34): 44538-44548, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39072533

RESUMEN

Temperature has a profound influence on various neuromodulation processes and has emerged as a focal point. However, the effects of acute environmental temperature fluctuations on cultured cortical networks have been inadequately elucidated. To bridge this gap, we have developed a brain-on-a-chip platform integrating cortical networks and electrodeposited Pt/Ir modified microelectrode arrays (MEAs) with 3D-printed bear-shaped triple chambers, facilitating control of temperature transients. This innovative system administers thermal stimuli while concurrently monitoring neuronal activity, including spikes and local field potentials, from 60 microelectrodes (diameter: 30 µm; impedance: 9.34 ± 1.37 kΩ; and phase delay: -45.26 ± 2.85°). Temperature transitions of approximately ±10 °C/s were applied to cortical networks on MEAs via in situ perfusion within the triple chambers. Subsequently, we examined the spatiotemporal dynamics of the brain-on-a-chip under temperature regulation at both the group level (neuronal population) and their interactions (network dynamics) and the individual level (cellular activity). Specifically, we found that after the temperature reduction neurons enhanced the overall information transmission efficiency of the network through synchronous firing to compensate for the decreased efficiency of single-cell level information transmission, in contrast to temperature elevation. By leveraging the integration of high-performance MEAs with perfusion chambers, this investigation provides a comprehensive understanding of the impact of temperature on the spatiotemporal dynamics of neural networks, thereby facilitating future exploration of the intricate interplay between temperature and brain function.


Asunto(s)
Microelectrodos , Neuronas , Platino (Metal) , Temperatura , Animales , Platino (Metal)/química , Neuronas/fisiología , Iridio/química , Corteza Cerebral/fisiología , Galvanoplastia/métodos , Ratas
3.
ACS Appl Mater Interfaces ; 16(31): 40570-40580, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39078097

RESUMEN

In vivo glutamate sensing has provided valuable insight into the physiology and pathology of the brain. Electrochemical glutamate biosensors, constructed by cross-linking glutamate oxidase onto an electrode and oxidizing H2O2 as a proxy for glutamate, are the gold standard for in vivo glutamate measurements for many applications. While glutamate sensors have been employed ubiquitously for acute measurements, there are almost no reports of long-term, chronic glutamate sensing in vivo, despite demonstrations of glutamate sensors lasting for weeks in vitro. To address this, we utilized a platinum electrode with nanometer-scale roughness (nanoPt) to improve the glutamate sensors' sensitivity and longevity. NanoPt improved the GLU sensitivity by 67.4% and the sensors were stable in vitro for 3 weeks. In vivo, nanoPt glutamate sensors had a measurable signal above a control electrode on the same array for 7 days. We demonstrate the utility of the nanoPt sensors by studying the effect of traumatic brain injury on glutamate in the rat striatum with a flexible electrode array and report measurements of glutamate taken during the injury itself. We also show the flexibility of the nanoPt platform to be applied to other oxidase enzyme-based biosensors by measuring γ-aminobutyric acid in the porcine spinal cord. NanoPt is a simple, effective way to build high sensitivity, robust biosensors harnessing enzymes to detect neurotransmitters in vivo.


Asunto(s)
Aminoácido Oxidorreductasas , Técnicas Biosensibles , Ácido Glutámico , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Animales , Ácido Glutámico/análisis , Ácido Glutámico/química , Ratas , Aminoácido Oxidorreductasas/química , Aminoácido Oxidorreductasas/metabolismo , Electrodos , Platino (Metal)/química , Porcinos , Lesiones Traumáticas del Encéfalo/metabolismo , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/química , Ratas Sprague-Dawley , Masculino , Galvanoplastia
4.
Chemosphere ; 361: 142532, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844109

RESUMEN

Ladle slag, a by-product of steelmaking, presents a valuable strategy for waste reduction and valorization in wastewater treatment. This work demonstrates the successful simultaneous removal of Al(III), B(III), Ba(II), Cr(III), Mg(II), Sr(II), Pb(II), and Zn(II), from electroplating wastewater by ladle slag. First, Cr(III) and Pb(II) removals were evaluated in single synthetic systems by analyzing the influence of pH, temperature, and ladle slag dosage. Competitive removal was observed in binary batch experiments of Cr(III) - Pb(II), achieving 88% and 96% removal, respectively, with fast kinetics following a pseudo-second-order model. The findings of XRD, SEM, EDX, and FTIR of the slag after removal helped to elucidate the synergic removal mechanism involving ladle slag dissolution, precipitation, ion exchange, and adsorption in a tight relationship with the solution pH. Lastly, ladle slag was tested in real electroplating wastewater with the aforementioned ions at concentrations ranging from <1 to 1700 mg/L. The removal was performed in two steps, the first attained the following efficiencies: 73% for Al(III), 88% for B(III), 98% for Ba(II), 80% for Cr(III), 82% for Mg(II), 99% for Pb(II), 88% for Sr(II), and 88% for Zn(II). Visual MINTEQ simulation was utilized to identify the different species of ions present during the removal process. Furthermore, the leaching tests indicated a minimal environmental risk of secondary pollution in its application. The results promote an effective and sustainable approach to wastewater treatment within the circular economy.


Asunto(s)
Galvanoplastia , Metales Pesados , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Metales Pesados/aislamiento & purificación , Metales Pesados/análisis , Metales Pesados/química , Eliminación de Residuos Líquidos/métodos , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Residuos Industriales/análisis , Acero/química
5.
Environ Geochem Health ; 46(7): 255, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884657

RESUMEN

The discharge of electroplating wastewater, containing high concentrations of N-nitrosamines, poses significant risks to human health and aquatic ecosystems. Karst aquatic environment is easily impacted by N-nitrosamines due to the fragile surface ecosystem. However, it's still unclear in understanding N-nitrosamine transformation in karst water systems. To explore the response and transport of nine N-nitrosamines in electroplating effluent within both karst surface water and groundwater, different river and groundwater samples were collected from both the upper and lower reaches of the effluent discharge areas in a typical karst industrial catchment in Southwest China. Results showed that the total average concentrations of N-nitrosamines (∑NAs) in electroplating effluent (1800 ng/L) was significantly higher than that in the receiving river water (130 ng/L) and groundwater (70 ng/L). The dynamic nature of karst aquifers resulted in comparable average concentrations of ∑NAs in groundwater (70 ng/L) and river water (79 ng/L) at this catchment. Based on the principal component analysis and multiple linear regression analysis, the electroplating effluent contributed 89% and 53% of N-nitrosamines to the river water and groundwater, respectively. The results based on the species sensitivity distribution model revealed N-nitrosodibutylamine as a particularly toxic compound to aquatic organisms. Furthermore, the average N-nitrosamine carcinogenic risk was significantly higher in lower groundwater reaches compared to upper reaches. This study represents a pioneering effort in considering specific N-nitrosamine properties in evaluating their toxicity and constructing species sensitivity curves. It underscores the significance of electroplating effluent as a primary N-nitrosamine source in aquatic environments, emphasizing their swift dissemination and significant accumulation in karst groundwater.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Nitrosaminas , Ríos , Contaminantes Químicos del Agua , Nitrosaminas/análisis , Contaminantes Químicos del Agua/análisis , China , Agua Subterránea/química , Ríos/química , Aguas Residuales/química , Residuos Industriales/análisis , Galvanoplastia , Animales , Ecosistema
6.
Biosens Bioelectron ; 261: 116418, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38875864

RESUMEN

Electroplating of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is important in many neuroelectronic applications but is challenging to achieve uniformity on large-scale microelectrode arrays (MEA) using conventional galvanostatic methods. In this study, we address this challenge through a potentiostatic method and demonstrate highly uniform electroplating of PEDOT:PSS on MEA with more than one hundred electrodes, all at cellular sizes. The validation of this approach involves comparisons with galvanostatic deposition methods, showcasing unparalleled deposition yield and uniformity. Systematic electrochemical characterizations reveal similarities in structure and stability from potentiostatic deposited coatings. The advances developed here establish the potentiostatic method and detailed process to achieve a uniform coating of PEDOT:PSS on large-scale MEA, with broad utility in neuroelectronics.


Asunto(s)
Microelectrodos , Poliestirenos , Poliestirenos/química , Galvanoplastia/métodos , Técnicas Biosensibles/métodos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Polímeros/química , Animales , Técnicas Electroquímicas/métodos , Tiofenos
7.
Mar Pollut Bull ; 204: 116513, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795464

RESUMEN

The present study aims to combat the problem of oil in water pollution via its separation using a superhydrophobic copper mesh. An ecofriendly superhydrophobic copper mesh with a water contact angle of 166 ± 2° is developed by a facile two-step process (electrodeposition followed by coating). The coated mesh with mechanical robustness, chemical endurance and thermal stability is a promising choice for real-world conditions. Additionally, its resistance to corrosion in harsh chemical environments ensures its long-term durability. With a separation efficiency of 99.9 %, the coated mesh serves as an efficient medium for oil-water separation. It can be used as a reusable filtering medium with high separation efficiency in alkali and neutral environments. Besides, it is also competent for continuous oil-water separation and collection of oil from wastewater. Thus, the above study clearly manifests that the coated mesh holds tremendous potential for large-scale oil spill cleanup.


Asunto(s)
Cobre , Restauración y Remediación Ambiental , Interacciones Hidrofóbicas e Hidrofílicas , Contaminación por Petróleo , Contaminantes Químicos del Agua , Cobre/química , Restauración y Remediación Ambiental/métodos , Contaminantes Químicos del Agua/análisis , Galvanoplastia
8.
Water Sci Technol ; 89(9): 2538-2557, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747966

RESUMEN

Electroplating wastewater contains heavy metal ions and organic matter. These contaminants not only endanger the environment but also pose risks to human health. Despite the development of various treatment processes such as chemical precipitation MBR, electrocoagulation (EC) ceramic membrane (CM), coagulation ultrafiltration (UF) reverse osmosis (RO), and CM RO. These methods are only effective for low concentrations of heavy metals and struggle with high concentrations. To address the challenge of treating electroplating wastewater with high heavy metal content, this study focuses on the wastewater from Dongfang Aviation Machinery Processing Plant. It introduces an EC and integrated membrane (IM) treatment process for electroplating wastewater. The IM comprises microfiltration (MF) membrane, nanofiltration (NF) membrane, and RO membrane. Results indicated that under specific conditions, such as a pH of 8, current density of 5 A/dm2, electrode plate spacing of 2 cm, 35 min of electrolysis time, and influent pH of 10 for the IM, removal rates of Zn2+, Cu2+, Ni2+, and TCr in the wastewater exceeded 99%. The removal rates of chemical oxygen demand (COD), suspended solids (SS), total phosphorus (TP), total nitrogen (TN), and petroleum in wastewater exceed 97%. Following a continuous cleaning process, the membrane flux can consistently recover to over 94.3%.


Asunto(s)
Membranas Artificiales , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Galvanoplastia , Purificación del Agua/métodos , Metales Pesados , Electrocoagulación/métodos
9.
Bioresour Technol ; 401: 130761, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692370

RESUMEN

Cr (VI) is a common heavy metal pollutant in electroplating wastewater. This study introduces the liquid-phase product from the hydrothermal reaction of coffee grounds (CGHCL) into the synthesis process of molybdenum disulfide, assisting in the fabrication of an intercalated, expanded core-shell structured molybdenum disulfide adsorbent (C-MoS2), designed for the adsorption and reduction of Cr (VI) from electroplating wastewater. The addition of CGHCL significantly enhances the adsorption performance of MoS2. Furthermore, C-MoS2 exhibits exceedingly high removal efficiency and excellent regenerative capability for Cr (VI)-containing electroplating wastewater. The core-shell structure effectively minimizes molybdenum leaching to the greatest extent, while the oleophobic interface is unaffected by oily substances in water, and the expanded interlayer structure ensures the long-term stability of C-MoS2 in air (90 days). This study provides a viable pathway for the resource utilization of biomass and the application of molybdenum disulfide-based materials in wastewater treatment.


Asunto(s)
Biomasa , Cromo , Disulfuros , Molibdeno , Aguas Residuales , Purificación del Agua , Molibdeno/química , Disulfuros/química , Adsorción , Aguas Residuales/química , Purificación del Agua/métodos , Cromo/química , Galvanoplastia , Contaminantes Químicos del Agua , Soluciones
10.
Anal Methods ; 16(16): 2424-2443, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38592715

RESUMEN

This review summarizes recent developments in amperometric biosensors, based on one-step electrodeposited organic-inorganic hybrid layers, used for analysis of low molecular weight compounds. The factors affecting self-assembly of one-step electrodeposited films, methods for verifying their composition, advantages, limitations and approaches affecting the electroanalytical performance of amperometric biosensors based on organic-inorganic hybrid layers were systemized. Moreover, issues related to the formation of one-step organic-inorganic hybrid functional layers with different structures in biosensors produced under the same electrodeposition parameters are discussed. The systemized dependencies can support the preliminary choice of functional sensing layers with architectures tuned for specific biotechnology and life science applications. Finally, the capabilities of one-step electrodeposition of organic-inorganic hybrid functional films beyond amperometric biosensors were highlighted.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Galvanoplastia/métodos , Nanoestructuras/química , Electrodos
11.
J Environ Manage ; 358: 120821, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599087

RESUMEN

In electroplating sludge, iron (Fe) and aluminum (Al) are common impurities that need to be separated before recycling valuable heavy metals. However, the traditional Fe/Al separation process often leads to significant losses of heavy metals. To address this issue, a new approach was developed to sequentially separate Fe/Al and recycle chromium (Cr) and nickel (Ni) from real electroplating sludge. The sludge contained 4.5% Cr, 1.2% Al, 1.1% Ni, and 14.6% Fe. Initially, the sludge was completely dissolved in a mixture of hydrochloric and nitric acids. The resulting acid solution was then heated to 160 °C for 10 h with the addition of saccharose. This hydrothermal treatment led to the hydrolysis and crystallization of 98.3% of Fe, 31.8% of Cr, 1.1% of Al, and 4.9% of Ni, forming akaganeite-bearing particles. It was observed that the excessive amount of saccharose also improved the removal of Cr, Al, and Ni, but decreased the removal of Fe. After the hydrothermal treatment, the remaining supernatant was adjusted to different pH levels (1.9, 2.9, and 4.5, respectively), and then Al, Cr, and Ni were stepwise extracted using di-(2-ethylhexyl) phosphate acid (P204). The recycling efficiencies achieved were 97.4% for Al, 61.2% for Cr, and 89.3% for Ni. This approach provides a promising method for the stepwise separation of Fe/Al and the recycling of heavy metals from electroplating sludge.


Asunto(s)
Galvanoplastia , Hierro , Reciclaje , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Hierro/química , Cromo/química , Metales Pesados/química , Cristalización , Níquel/química , Aluminio/química
12.
Environ Sci Pollut Res Int ; 31(21): 30849-30866, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38622417

RESUMEN

Various industrial operations in the dye, fertilizer, pesticide, battery, mining, and chemical industries have been associated with releasing heavy metals in wastewater, such as lead, zinc, copper, arsenic, cadmium, chromium, nickel, and mercury. These metals are dangerous to aquatic life as well as to humans, who may consume them directly or indirectly. Therefore, before being released into open water and land resources, it is necessary to minimize the concentration of toxic ions below the discharge limit. This study used Eichhornia crassipes (Mart.) Solms to remove zinc from wastewater from the electroplating industry in a constructed wetland. Experimental investigations were conducted for removing zinc ions from electroplating industry wastewater using various process parameters such as nutrient dosages, dilution ratios, potential of hydrogen ions, biomasses, and contact times. The outcome of this study revealed that the maximum zinc removal percentage in electroplating industrial wastewater was found for the optimum nutrient dosages of 60 g, dilution ratios of 10, potential hydrogen ion levels of 8, and biomass amounts of 100 g. The maximum zinc removal by Eichhornia crassipes (Mart.) Solms was found to be 88.3 ± 0.6 and 93.4 ± 0.4% at the optimum parameter values for the electroplating industry wastewater and the aqueous solution, respectively, against the optimum contact time of 22 days. This study suggests using this phytoremediation technology to remove all pollutants from industrial wastewater in general, not just wastewater from the electroplating industry.


Asunto(s)
Eichhornia , Galvanoplastia , Aguas Residuales , Contaminantes Químicos del Agua , Zinc , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Adsorción , Metales Pesados , Residuos Industriales , Biodegradación Ambiental
13.
Environ Sci Pollut Res Int ; 31(20): 30072-30084, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38594564

RESUMEN

Complex wastewater matrices such as printed circuit board (PCB) manufacturing wastewater present a major environmental concern. In this work, simultaneous decomplexation of metal complex Cu-EDTA and reduction/electrodeposition of Cu2+ was conducted in a persulfate-based electrochemical oxidation system. Oxidizing/reductive species were simultaneously produced in this system, which realized 99.8% of Cu-EDTA decomplexation, 94.5% of Cu2+ reduction/electrodeposition under the conditions of original solution pH = 3.2, electrode distance = 3 cm, [Na2S2O8]0 = 5 mM, current density = 12 mA/cm2, and reaction time = 180 min. The total treatment cost is as low as 0.80 USD/mol Cu-EDTA. Effective mineralization (74.1% total organic carbon removal) of the solution was obtained after 3 h of treatment. •OH and SO4•- drove the Cu-EDTA decomplexation, destroying the chelating sites and finally it was effectively mineralized to CO2, H2O and Cu2+. The mechanisms of copper electrodeposition on the stainless steel cathode and persulfate activation by the BDD anode were proposed based on the electrochemical measurements. The electrodes exhibited excellent reusability and low metal (total iron and Ni2+) leaching during 20 cycles of application. This study provide an effective and sustainable method for the application of the electro-persulfate process in treating complex wastewater matrices.


Asunto(s)
Cobre , Ácido Edético , Galvanoplastia , Oxidación-Reducción , Aguas Residuales , Aguas Residuales/química , Cobre/química , Ácido Edético/química , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Técnicas Electroquímicas , Sulfatos/química , Electrodos
14.
Analyst ; 149(10): 2905-2914, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38572989

RESUMEN

High cost, inherent destabilization, and intricate fixing of enzyme molecules are the main drawbacks of enzyme-based creatinine sensors. The design of a low-cost, stabilizable, and enzyme-free creatinine sensing probe is essential to address these limitations. In this work, an integrated three-dimensional (3D) free-standing electrode was designed to serve as a non-enzymatic creatinine sensing platform and was fabricated by rapid electrodeposition of a dense copper nanoparticle film on nickel foam (Cu NP film/NF). This low-cost, stable, easy-to-fabricate, and binder-free Cu NP film/NF electrode has abundant active sites and excellent electrochemical performance. Cyclic voltammetry measurements show a wide linear range (0.25-24 mM), low detection limit (0.17 mM), and high sensitivity (306 µA mM-1 cm-2). The developed sensor shows high recovery of creatinine concentration in real urine. Besides, it has better specificity, reproducibility, and robustness in detecting creatinine. These excellent results suggest that a non-enzymatic creatinine sensor based on an integrated 3D free-standing Cu NP film/NF electrode has good potential for non-invasive detection of urinary creatinine.


Asunto(s)
Cobre , Creatinina , Electrodos , Galvanoplastia , Límite de Detección , Nanopartículas del Metal , Níquel , Cobre/química , Níquel/química , Creatinina/orina , Creatinina/química , Nanopartículas del Metal/química , Humanos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Reproducibilidad de los Resultados
15.
Talanta ; 275: 126095, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653118

RESUMEN

One of the current challenges in medicine is to achieve a rapid and unequivocal detection and quantification of extremely low levels of disease biomarkers in complex biological samples. Here, we present the development and analytical evaluation of a low-cost smartphone-based system designed for ultrasensitive detection of the prostate-specific antigen (PSA) using two detection alternatives: electrochemical or optical, by coupling the smartphone with a portable potentiostat or magnifying lenses. An antibody tagged with gold nanoparticles (AuNPs), and indium tin oxide coated polyethylene terephthalate platform (ITO-PET) have been used to develop a sandwich-type immunoassay. Then, a controlled silver electrodeposition on the AuNPs surface is carried out, enhancing their size greatly. Due to such strong nanoparticle-size amplification (from nm to µm), the final detection can be dual, by measuring current intensity or the number of silver-enlarged microstructures generated. The proposed strategies exhibited limit detections (LOD) of 102 and 37 fg/mL for electrochemical and optical detection respectively. The developed immunosensor reaches excellent selectivity and performance characteristics to quantify biomarkers at clinically relevant values without any pretreatment. These proposed procedures could be useful to check and verify possible recurrence after clinical treatment of tumors or even report levels of disease serum biomarkers in early stages.


Asunto(s)
Técnicas Electroquímicas , Oro , Nanopartículas del Metal , Antígeno Prostático Específico , Plata , Teléfono Inteligente , Oro/química , Antígeno Prostático Específico/sangre , Antígeno Prostático Específico/análisis , Nanopartículas del Metal/química , Plata/química , Humanos , Técnicas Electroquímicas/métodos , Galvanoplastia , Inmunoensayo/métodos , Límite de Detección , Técnicas Biosensibles/métodos , Anticuerpos/inmunología , Anticuerpos/química , Masculino , Compuestos de Estaño
16.
Bioresour Technol ; 399: 130573, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479626

RESUMEN

Exploring new electrode structures and co-doped composite biomass material electrodes is considered to be an effective way of developing cheap, efficient carbon-based supercapacitors. A bamboo-based sandwich-structured matrix was prepared from thin bamboo veneer and bamboo fiber by pretreatment with H3PO4 and Co2+-catalyzed graphitization. The pore structure was modulated by hydrothermal activation with NaOH and electrodeposition of carbon nanotubes (CNTs) to obtain CNTs modified, Co/P co-doped sandwich-structured woodceramics electrode (CNT@Co/P). It not only has an obvious sandwich structure, but also retains the natural structural characteristics of bamboo. The specific capacitance of the resulting electrode (CNT@Co/P-20) is as high as 453.72F/g using 1 wt% of carboxylated multi-walled carbon nanotubes (CMWCNT) solution as the deposition electrolyte at a current density of 0.2 A/g for 20 min at room temperature. When the power density is 500 W/kg, the energy density reaches 21.3Wh /kg, showing a good electrochemical performance.


Asunto(s)
Nanotubos de Carbono , Nanotubos de Carbono/química , Galvanoplastia , Electrodos , Capacidad Eléctrica , Biomasa
17.
J Environ Manage ; 357: 120725, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38554454

RESUMEN

Since the electroplating industry is springing up, effective control of phosphate has attracted global concerns. In this study, a novel biosorbent (MIL-88@CS-HDG) was synthesized by loading a kind of Fe-based metal organic framework called MIL-88 into chitosan hydrogel beads and applied in deep treatment of phosphate removal in electroplating wastewater. The adsorption capacities of H2PO4- on MIL-88@CS-HDG could reach 1.1 mmol/g (corresponding to 34.1 mg P/g and 106.7 mg H2PO4-/g), which was 2.65% higher than that on single MOF powders and chitosan hydrogel beads. The H2PO4- adsorption was well described by the Freundlich isotherm model. Over 90% H2PO4- could be adsorbed at contact time of 3 h. It could keep high adsorption capacity in the pH range from 2 to 7, which had a wider pH range of application compared with pure MIL-88. Only NO3- and SO42- limited the adsorption with the reduction rate of 11.42% and 23.23%, proving it tolerated most common co-existing ions. More than 92% of phosphorus could be recovered using NaOH and NaNO3. Electrostatic attraction between Fe core and phosphorus in MIL-88@CS-HDG and ion exchange played the dominant role. The recovered MIL-88@CS-HDG remained stable and applicable in the treatment process of real electroplating wastewater even after six adsorption-regeneration cycles. Based on the removal properties and superb regenerability, MIL-88@CS-HDG is potentially applicable to practical production.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Fosfatos , Hidrogeles , Quitosano/química , Aguas Residuales , Galvanoplastia , Fósforo , Adsorción , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Cinética
18.
Chemosphere ; 352: 141340, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301836

RESUMEN

Nanoarchitectured design of the metal sulfides with highly available surface and abundant electroactive centers and using them as electrocatalyst for fabricate the electrochemical sensors for the detection of hydrazine (N2H4) and hydrogen peroxide (H2O2) is challenging and desirable. Herein, Cu2O nanospheres powder is firstly prepared using chemical reduction of copper chloride and then drop-casted on the glassy carbon electrode (GCE) surface. In the next step, CoFeS nanoflakes are electrodeposited on Cu2O nanospheres by cyclic voltammetry method to form CoFeS/Cu2O nanocomposite as a detection platform for measuring N2H4 and H2O2. Accordingly, Cu2O nanospheres are not only used as substrate, but also guided the CoFeS nanoflakes to adhere to the electrode surface without need to any binder or conductive additive, which enhances the electrical conductivity of the sensing active materials. As the hydrazine sensor, the CoFeS/Cu2O/GCE displayed wide linear ranges (0.0001-0.021 mM and 0.021-1.771 mM), low detection limit (0.12 µM), very high sensitivities (103.33 and 21.23 mA mM-1 cm-2), and excellent selectivity. The as-made nanocomposite also exhibited low detection limit of 1.26 µM for H2O2 sensing with very high sensitivities (12.31 and 3.96 mA mM-1 cm-2) for linear ranges of 0.001-0.03 mM and 0.03-2.03 mM, respectively, and negligible response against interfering substances. The superior analytical performance of the CoFeS/Cu2O for N2H4 electro-oxidation and H2O2 electro-reduction can be attributed to structure stability, high electroactive surface area, and good availability to analyte species and electrolyte diffusion. Moreover, to examine the potency of the prepared nanocomposite in real applications, the seawater sample was analyzed and results display that the CoFeS/Cu2O/GCE can be utilized as a reliable and applicable platform for measuring N2H4 and H2O2.


Asunto(s)
Peróxido de Hidrógeno , Nanosferas , Peróxido de Hidrógeno/química , Cobre/química , Galvanoplastia , Carbono/química , Electrodos , Técnicas Electroquímicas/métodos
19.
Anal Methods ; 16(11): 1631-1638, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38410935

RESUMEN

Since ochratoxin A (OTA) is immunotoxic, teratogenic and carcinogenic, it is very important to monitor this compound in food samples. In the present work, the development and fabrication of a label-free electrochemical aptasensor based on the gold nanoparticles/silver-based metal-organic framework (AuNPs/Ag-MOF) for the determination of ochratoxin A (OTA) is introduced. The aptasensor was fabricated by electrodeposition of AuNPs on a glassy carbon electrode modified with Ag-MOF. The characteristics of the synthesized Ag-MOF were determined by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR) and UV-Visible spectroscopy. The aptamer was immobilized on the modified electrode and then OTA was incubated on it. The process of different stages of the aptasensor construction has been confirmed by two methods of electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) and using [Fe(CN)6]3-/4- as a redox probe. The EIS method has also been used for the OTA quantitative determination. The difference in charge transfer resistance (Rct) before and after the interaction of OTA with the immobilized aptamer was considered as the analytical response of the aptasensor. Using the developed aptasensor, it is possible to measure OTA in the concentration range of 1.0 × 10-3 to 200.0 ng mL-1 with a detection limit of 2.2 × 10-4 ng mL-1. Finally, the ability of the aptasensor to measure OTA in red and black pepper was investigated and completely satisfactory results were obtained.


Asunto(s)
Aptámeros de Nucleótidos , Capsicum , Nanopartículas del Metal , Estructuras Metalorgánicas , Ocratoxinas , Oro/química , Estructuras Metalorgánicas/química , Plata , Galvanoplastia , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química
20.
Sci Rep ; 14(1): 4097, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374378

RESUMEN

A total of 30 samples from the downwind direction of a certain electroplating company in Jiaxing were collected in layers to analyze their heavy metal content. The soil risk assessment was conducted from the perspective of ecological and human health risks using the ground accumulation index method and human health risk assessment method. The results showed that in all samples, cadmium and arsenic far exceeded the soil background values, with an average exceeding multiple of 14.31 and 64.42, respectively, and a exceeding rate of 100%. After evaluation by the ground accumulation index, among these six heavy metals, arsenic and cadmium belong to extremely serious pollution levels. The human health risk assessment of electroplating plants found that in the exposure risk assessment, the ingestion value was much greater than the harm caused by breathing and skin, and the maximum exposure damage value of arsenic to children and adults was 4.17 × 10-3, among the carcinogenic risks, the risk brought by consumption is much greater than the respiratory and skin carcinogenic risk index, with the highest value score of 3.37 for cadmium, arsenic, and zinc carcinogenic risks 3.37 × 10-6, 2.42 × 10-3, 1.10 × 10-4.


Asunto(s)
Arsénico , Metales Pesados , Contaminantes del Suelo , Adulto , Niño , Humanos , Arsénico/toxicidad , Arsénico/análisis , Suelo , Cadmio , Galvanoplastia , Monitoreo del Ambiente , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Metales Pesados/toxicidad , Metales Pesados/análisis , Medición de Riesgo , China , Carcinogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...