Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 92020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32216873

RESUMEN

Optogenetic actuators with diverse spectral tuning, ion selectivity and kinetics are constantly being engineered providing powerful tools for controlling neural activity with subcellular resolution and millisecond precision. Achieving reliable and interpretable in vivo optogenetic manipulations requires reproducible actuator expression and calibration of photocurrents in target neurons. Here, we developed nine transgenic zebrafish lines for stable opsin expression and calibrated their efficacy in vivo. We first used high-throughput behavioural assays to compare opsin ability to elicit or silence neural activity. Next, we performed in vivo whole-cell electrophysiological recordings to quantify the amplitude and kinetics of photocurrents and test opsin ability to precisely control spiking. We observed substantial variation in efficacy, associated with differences in both opsin expression level and photocurrent characteristics, and identified conditions for optimal use of the most efficient opsins. Overall, our calibrated optogenetic toolkit will facilitate the design of controlled optogenetic circuit manipulations.


Asunto(s)
Opsinas/genética , Optogenética , Animales , Animales Modificados Genéticamente , Calibración , Cloruros/metabolismo , Reacción de Fuga , Neuronas Motoras/fisiología , Bombas de Protones/fisiología , Rodopsina/fisiología , Ganglio del Trigémino/embriología , Pez Cebra/embriología
2.
Genesis ; 57(1): e23264, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30461190

RESUMEN

The cranial trigeminal ganglia play a vital role in the peripheral nervous system through their relay of sensory information from the vertebrate head to the brain. These ganglia are generated from the intermixing and coalescence of two distinct cell populations: cranial neural crest cells and placodal neurons. Trigeminal ganglion assembly requires the formation of cadherin-based adherens junctions within the neural crest cell and placodal neuron populations; however, the molecular composition of these adherens junctions is still unknown. Herein, we aimed to define the spatio-temporal expression pattern and function of Cadherin-7 during early chick trigeminal ganglion formation. Our data reveal that Cadherin-7 is expressed exclusively in migratory cranial neural crest cells and is absent from trigeminal neurons. Using molecular perturbation experiments, we demonstrate that modulation of Cadherin-7 in neural crest cells influences trigeminal ganglion assembly, including the organization of neural crest cells and placodal neurons within the ganglionic anlage. Moreover, alterations in Cadherin-7 levels lead to changes in the morphology of trigeminal neurons. Taken together, these findings provide additional insight into the role of cadherin-based adhesion in trigeminal ganglion formation, and, more broadly, the molecular mechanisms that orchestrate the cellular interactions essential for cranial gangliogenesis.


Asunto(s)
Proteínas Aviares/metabolismo , Cadherinas/metabolismo , Cresta Neural/metabolismo , Neuronas/metabolismo , Ganglio del Trigémino/metabolismo , Uniones Adherentes/metabolismo , Animales , Proteínas Aviares/genética , Cadherinas/genética , Embrión de Pollo , Cresta Neural/embriología , Neurogénesis , Ganglio del Trigémino/citología , Ganglio del Trigémino/embriología
3.
Wiad Lek ; 70(3 pt 2): 561-565, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713082

RESUMEN

INTRODUCTION: Data related to the amount, size and morphological characteristics of cell elements of sensory ganglia at different stages of prenatal development has not been fully elucidated in recent scientific publications. At the same time publications considering the study of cell structure of trigeminal ganglion in the postnatal period confirm heterogeneity of its neurons. The aim of the research was to study morphological and immunohistochemical characteristics of human trigeminal ganglion neurons at 12-14 weeks of prenatal development. MATERIAL AND METHODS: The study was made on 24 trigeminal ganglions of 12 human fetuses at 12 to 14 weeks of prenatal development after abortion made on social and medical indications. RESULTS: At the studied period of the intrauterine development nerve cells of the trigeminal ganglion significantly differed in size, tinctorial properties and degree of argentophility of the perikaryon. At the same time, the number of small nerve cells with an average diameter of less than 15 µm prevailed. Immunohistochemical study allowed detecting the apparent Bcl-2 expression in the overwhelming number of small neurons; the expression of this marker has been observed in 50% of cells of the medium-sized neurons. No Bcl-2 expression has been found in most of the large neurons. Almost all the neurons, regardless of the size, showed moderate Ki-67 expression, protein S-100. VEGF expression has also occurred in the vast majority of the nerve cells of all size groups. CONCLUSIONS: 1. Human trigeminal ganglion neurons both at 12-14 weeks of prenatal development and in postnatal period are represented by heterogeneous population. 2. Polymorphism of trigeminal ganglion neurons has been found by all applied techniques. 3. Detected polymorphism is the evidence of processes of maturation and differentiation of neurons in human trigeminal ganglion at 12-14 weeks of prenatal development.


Asunto(s)
Desarrollo Fetal/fisiología , Neuronas/citología , Ganglio del Trigémino/citología , Ganglio del Trigémino/embriología , Feto/fisiología , Humanos , Neuronas/fisiología
4.
PLoS One ; 10(8): e0136666, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26313368

RESUMEN

SIX1 homeodomain protein is one of the essential key regulators of sensory organ development. Six1-deficient mice lack the olfactory epithelium, vomeronasal organs, cochlea, vestibule and vestibuloacoustic ganglion, and also show poor neural differentiation in the distal part of the cranial ganglia. Simultaneous loss of both Six1 and Six4 leads to additional abnormalities such as small trigeminal ganglion and abnormal dorsal root ganglia (DRG). The aim of this study was to understand the molecular mechanism that controls Six1 expression in sensory organs, particularly in the trigeminal ganglion and DRG. To this end, we focused on the sensory ganglia-specific Six1 enhancer (Six1-8) conserved between chick and mouse. In vivo reporter assays using both animals identified an important core region comprising binding consensus sequences for several transcription factors including nuclear hormone receptors, TCF/LEF, SMAD, POU homeodomain and basic-helix-loop-helix proteins. The results provided information on upstream factors and signals potentially relevant to Six1 regulation in sensory neurons. We also report the establishment of a new transgenic mouse line (mSix1-8-NLSCre) that expresses Cre recombinase under the control of mouse Six1-8. Cre-mediated recombination was detected specifically in ISL1/2-positive sensory neurons of Six1-positive cranial sensory ganglia and DRG. The unique features of the mSix1-8-NLSCre line are the absence of Cre-mediated recombination in SOX10-positive glial cells and central nervous system and ability to induce recombination in a subset of neurons derived from the olfactory placode/epithelium. This mouse model can be potentially used to advance research on sensory development.


Asunto(s)
Proteínas Aviares/biosíntesis , Ganglios Espinales/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/biosíntesis , Células Receptoras Sensoriales/metabolismo , Ganglio del Trigémino/embriología , Animales , Proteínas Aviares/genética , Embrión de Pollo , Pollos/genética , Pollos/metabolismo , Elementos de Facilitación Genéticos , Ganglios Espinales/citología , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Receptores Citoplasmáticos y Nucleares/biosíntesis , Receptores Citoplasmáticos y Nucleares/genética , Factores de Transcripción SOXE/biosíntesis , Factores de Transcripción SOXE/genética , Transactivadores/biosíntesis , Transactivadores/genética , Ganglio del Trigémino/citología
5.
Invest Ophthalmol Vis Sci ; 56(1): 29-36, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25503452

RESUMEN

PURPOSE: The cornea is densely innervated with nociceptive nerves that detect deleterious stimuli at the ocular surface and transduce these stimuli as sensations of pain. Thus, nociception is a major factor involved in preventing damage to corneal tissues. One class of molecules that is thought to be involved in detecting such stimuli is the transient receptor potential (TRP) family of ion channels. However, little is known about the acquisition of these channels during corneal development. Therefore, the present study examined the developmental acquisition of these receptors and elucidated certain parameters involved in this acquisition. METHODS: Quantitative RT-PCR was used to measure the expression of genes including TRPA and Ret in vivo. In vitro cocultures between cornea and the ophthalmic lobe of the trigeminal ganglion were used to test interactions between nerves and corneas along with recombinant proteins. RESULTS: TRPA1 mRNA showed a progressive temporal increase in the ophthalmic lobe of the trigeminal ganglion in vivo during embryonic development. In vitro, TRPA1 expression was significantly increased in the ganglion when cocultured with cornea, compared to ganglia cultured alone. Similarly, the addition of exogenous neurotrophin-3 (NT3) protein to cultured ganglia increased the expression of TRPA1 more than 100-fold. Addition of NT3 and neurturin synergistically increased TRPA1 expression in embryonic day (E)8 ganglia, but this effect was lost at E12. At E8, Ret+ nonpeptidergic neurons are specified in the trigeminal ganglion. CONCLUSIONS: Corneal-derived factors increase TRPA1 expression in trigeminal nonpeptidergic neurons during their embryonic specification.


Asunto(s)
Canales de Calcio/genética , Córnea/inervación , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/genética , ARN Mensajero/genética , Canales de Potencial de Receptor Transitorio/genética , Ganglio del Trigémino/metabolismo , Animales , Canales de Calcio/biosíntesis , Embrión de Pollo , Córnea/embriología , Hibridación in Situ , Proteínas del Tejido Nervioso/biosíntesis , Técnicas de Cultivo de Órganos , Reacción en Cadena en Tiempo Real de la Polimerasa , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/biosíntesis , Ganglio del Trigémino/embriología
6.
Dev Biol ; 392(2): 295-307, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24882712

RESUMEN

Neural crest cells are an embryonic cell population that is crucial for proper vertebrate development. Initially localized to the dorsal neural folds, premigratory neural crest cells undergo an epithelial-to-mesenchymal transition (EMT) and migrate to their final destinations in the developing embryo. Together with epidermally-derived placode cells, neural crest cells then form the cranial sensory ganglia of the peripheral nervous system. Our prior work has shown that αN-catenin, the neural subtype of the adherens junction α-catenin protein, regulates cranial neural crest cell EMT by controlling premigratory neural crest cell cadherin levels. Although αN-catenin down-regulation is critical for initial neural crest cell EMT, a potential role for αN-catenin in later neural crest cell migration, and formation of the cranial ganglia, has not been examined. In this study, we show for the first time that migratory neural crest cells that will give rise to the cranial trigeminal ganglia express αN-catenin and Cadherin-7. αN-catenin loss- and gain-of-function experiments reveal effects on the migratory neural crest cell population that include subsequent defects in trigeminal ganglia assembly. Moreover, αN-catenin perturbation in neural crest cells impacts the placode cell contribution to the trigeminal ganglia and also changes neural crest cell Cadherin-7 levels and localization. Together, these results highlight a novel function for αN-catenin in migratory neural crest cells that form the trigeminal ganglia.


Asunto(s)
Movimiento Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/metabolismo , Ganglio del Trigémino/embriología , alfa Catenina/metabolismo , Animales , Cadherinas/metabolismo , Embrión de Pollo , Electroporación , Inmunohistoquímica , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Indoles , Cresta Neural/citología , Cresta Neural/fisiología
7.
Dev Dyn ; 243(10): 1249-61, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24375872

RESUMEN

BACKGROUND: In the trigeminal placode, Pax3 is classified as necessary but not sufficient for sensory neuron differentiation. One hypothesis is that different Pax3 isoforms regulate cellular differentiation uniquely. Pax3 is known to sometimes activate and sometimes repress gene transcription, and its activity can be dependent on the isoforms present. Pax3 isoforms had not previously been characterized in chick sensory neurogenesis. RESULTS: Reverse transcriptase-polymerase chain reaction (PCR) analysis revealed three well-expressed Pax3 splice variants: full-length (flPax3), Pax3V1, and Pax3V2. Each was characterized for its effect on neurogenesis by misexpression in placodal ectoderm. The differences observed were more apparent under conditions of enhanced neurogenesis (by means of Notch inhibition), where flPax3 and Pax3V1 caused failed differentiation, while Pax3V2 misexpression resembled the neuronal differentiation seen in controls. Quantitative PCR analysis revealed a progressive increase in Pax3 expression, but no significant change in relative isoform expression. Of interest, Notch inhibition led to a significant increase in Pax3 expression. CONCLUSIONS: We can conclude that: (1) flPax3 and Pax3V1 inhibit neuronal differentiation; (2) Pax3V2 is permissive for neuronal differentiation; (3) while absolute levels change over time, relative splice form expression levels are largely maintained in the trigeminal placode domain; and (4) Pax3 expression generally increases in response to Notch inhibition.


Asunto(s)
Neurogénesis/genética , Nervio Oftálmico/embriología , Nervio Oftálmico/metabolismo , Factores de Transcripción Paired Box/fisiología , Ganglio del Trigémino/embriología , Ganglio del Trigémino/metabolismo , Animales , Diferenciación Celular/genética , Células Cultivadas , Embrión de Pollo , Técnicas de Cultivo de Embriones , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción Paired Box/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Células Receptoras Sensoriales/fisiología
8.
Dev Biol ; 383(2): 186-200, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24080509

RESUMEN

The integration of multiple morphogenic signalling pathways and transcription factor networks is essential to mediate neural crest (NC) cell induction, delamination, survival, stem-cell properties, fate choice and differentiation. Although the transcriptional control of NC development is well documented in mammals, the role of post-transcriptional modifications, and in particular ubiquitination, has not been explored. Here we report an essential role for the ubiquitin ligase Nedd4 in cranial NC cell development. Our analysis of Nedd4(-/-) embryos identified profound deficiency of cranial NC cells in the absence of structural defects in the neural tube. Nedd4 is expressed in migrating cranial NC cells and was found to positively regulate expression of the NC transcription factors Sox9, Sox10 and FoxD3. We found that in the absence of these factors, a subset of cranial NC cells undergo apoptosis. In accordance with a lack of cranial NC cells, Nedd4(-/-) embryos have deficiency of the trigeminal ganglia, NC derived bone and malformation of the craniofacial skeleton. Our analyses therefore uncover an essential role for Nedd4 in a subset of cranial NC cells and highlight E3 ubiquitin ligases as a likely point of convergence for multiple NC signalling pathways and transcription factor networks.


Asunto(s)
Encéfalo/citología , Encéfalo/embriología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cara/embriología , Cresta Neural/citología , Células Madre/citología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Biomarcadores/metabolismo , Tipificación del Cuerpo , Proliferación Celular , Supervivencia Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/deficiencia , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Ubiquitina-Proteína Ligasas Nedd4 , Fenotipo , Rombencéfalo/citología , Rombencéfalo/embriología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Ganglio del Trigémino/citología , Ganglio del Trigémino/embriología , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
9.
Int J Clin Exp Pathol ; 6(7): 1261-71, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23826407

RESUMEN

Somatosensory ganglia including dorsal root ganglion (DRG) and trigeminal ganglion (TG) are derived from a common pool of neural crest stem cells (NCCs), and are good systems to study the mechanisms of neurogenesis and gliogenesis. Previous studies have reported that deletion of Rbpj, a critical integrator of activation signals from all Notch receptors, in NCCs and their derived cells resulted in the delayed gliogenesis at early stage and a loss of glial cells at later stage in the DRG. But the phenotypes in the TG have not been described. Here we reported although the gliogenesis was also delayed initially in Rbpj-deficient TG, it was recovered as the development progressed, as shown by the presence of large number of glial cells in the TG at later stages. However, neuronal reduction was observed in Rbpj-deficient TG, which is similar to what observed in Rbpj-deficient DRG. Taken together, our data indicate the function of Rbpj is diversified and context dependent in the gliogenesis of somatosensory ganglia.


Asunto(s)
Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/deficiencia , Neuroglía/metabolismo , Ganglio del Trigémino/metabolismo , Animales , Biomarcadores/metabolismo , Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuronas/metabolismo , Fenotipo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Factores de Transcripción SOXE/metabolismo , Factores de Tiempo , Ganglio del Trigémino/embriología
10.
J Neurosci ; 33(12): 5399-410, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23516305

RESUMEN

Axonal branches of the trigeminal ganglion (TG) display characteristic growth and arborization patterns during development. Subsets of TG neurons express different receptors for growth factors, but these are unlikely to explain the unique patterns of axonal arborizations. Intrinsic modulators may restrict or enhance cellular responses to specific ligands and thereby contribute to the development of axon growth patterns. Protein tyrosine phosphatase receptor type O (PTPRO), which is required for Eph receptor-dependent retinotectal development in chick and for development of subsets of trunk sensory neurons in mouse, may be such an intrinsic modulator of TG neuron development. PTPRO is expressed mainly in TrkB-expressing (TrkB(+)) and Ret(+) mechanoreceptors within the TG during embryogenesis. In PTPRO mutant mice, subsets of TG neurons grow longer and more elaborate axonal branches. Cultured PTPRO(-/-) TG neurons display enhanced axonal outgrowth and branching in response to BDNF and GDNF compared with control neurons, indicating that PTPRO negatively controls the activity of BDNF/TrkB and GDNF/Ret signaling. Mouse PTPRO fails to regulate Eph signaling in retinocollicular development and in hindlimb motor axon guidance, suggesting that chick and mouse PTPRO have different substrate specificities. PTPRO has evolved to fine tune growth factor signaling in a cell-type-specific manner and to thereby increase the diversity of signaling output of a limited number of receptor tyrosine kinases to control the branch morphology of developing sensory neurons. The regulation of Eph receptor-mediated developmental processes by protein tyrosine phosphatases has diverged between chick and mouse.


Asunto(s)
Axones/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Ganglio del Trigémino/citología , Ganglio del Trigémino/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Embarazo , Receptor EphA1/metabolismo , Receptor trkA/metabolismo , Receptor trkC/metabolismo , Transducción de Señal/fisiología , Ganglio del Trigémino/embriología , Nervio Trigémino/citología , Nervio Trigémino/embriología , Nervio Trigémino/metabolismo
11.
Genesis ; 50(7): 552-60, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22368151

RESUMEN

Prrxl1-CreER(T2) transgenic mice expressing tamoxifen-inducible Cre recombinase were generated by modifying a Prrxl1-containing BAC clone. Cre recombination activity was examined in Prrxl1-CreER(T2); Rosa26 reporter mice at various embryonic and postnatal stages. Pregnant mice were treated with a single dose of tamoxifen at embryonic day (E) 9.5 or E12.5, and X-gal staining was performed 2 days later. Strong X-gal staining was observed in the somatosensory ganglia (e.g., dorsal root and trigeminal ganglia) and the first central sites for processing somatosensory information (e.g., spinal dorsal horn and trigeminal nerve-associated nuclei). When tamoxifen was administered at postnatal day (P) 20 or in adulthood (P120), strong Cre recombination activity was present in the primary somatosensory ganglia, while weak Cre recombination activity was found in the spinal dorsal horn, mesencephalic trigeminal nucleus, principal sensory trigeminal nucleus, and spinal trigeminal nucleus. This mouse line provides a useful tool for exploring genes' functions in the somatosensory system in a time-controlled way.


Asunto(s)
Vías Aferentes/fisiología , Proteínas de Homeodominio/genética , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Corteza Somatosensorial/fisiología , Raíces Nerviosas Espinales/fisiología , Factores de Transcripción/genética , Ganglio del Trigémino/fisiología , Vías Aferentes/embriología , Animales , Cromosomas Artificiales Bacterianos , Embrión de Mamíferos , Femenino , Efecto Fundador , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Integrasas/genética , Ratones , Embarazo , Regiones Promotoras Genéticas , Proteínas/genética , ARN no Traducido , Recombinación Genética/efectos de los fármacos , Corteza Somatosensorial/embriología , Raíces Nerviosas Espinales/embriología , Tamoxifeno/administración & dosificación , Factores de Tiempo , Ganglio del Trigémino/embriología
12.
Mech Dev ; 128(11-12): 560-76, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22285438

RESUMEN

X-linked Opitz syndrome (XLOS), caused by mutation in the MID1 gene, is a midline malformation syndrome with obvious craniofacial abnormalities. Because cranial neural crest cells (CNC) play a pivotal role in cranial morphogenesis, we examined the spatio-temporal expression of cMid1 in chick embryos and investigated if alterations in Mid1 protein function, specifically the ability of Mid1 to negatively regulate levels of protein phosphatase 2A (PP2A), affected CNC survival or migration. During the main phase of CNC migration (stage 9 to 11) cMid1 is strongly expressed within r2 and a subset of CNC in cranial mesenchyme at the level of r1/2 to the isthmus, but is not expressed in more caudal CNC streams. Inhibiting cMid1 function in r2 elevated PP2A levels. Overexpression of PP2A in r2 slowed CNC migration in vitro and in ovo and inhibited trigeminal gangliogenesis. Conversely in r4, forced expression of cMid1, or pharmacological inhibition of PP2A lowered PP2A levels. Inhibition of PP2A in r4 CNC in vitro up-regulated the disintegrin and metalloprotease ADAM10 and selectively increased CNC motility on fibronectin and collagen substrates, but not on laminin. In ovo, inhibiting PP2A activity in r4 increased CNC migration and hastened formation of the geniculate/vestibuloacoustic ganglion, comprising mostly epibranchial placode neuroblasts. Placodal neuroblast migration into the cranial mesenchyme is known to depend on the presence of r4 CNC and we show that inhibition of PP2A in r4 CNC causes premature breakdown of the epibranchial placode basement membrane and early immigration of placodal neuroblasts. In all cases, CNC proliferation and death were unaffected by altered PP2A levels. We propose that factors capable of altering PP2A activity, such as Mid1, affect CNC motility and matrix remodeling, thereby modulating craniofacial development.


Asunto(s)
Cresta Neural/fisiología , Proteína Fosfatasa 2/metabolismo , Cráneo/embriología , Factores de Transcripción/fisiología , Ganglio del Trigémino/embriología , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Adhesión Celular , Movimiento Celular , Células Cultivadas , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Humanos , Metaloproteasas/genética , Metaloproteasas/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Proteína Fosfatasa 2/genética , Cráneo/citología , Cráneo/inervación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Ganglio del Trigémino/citología , Ganglio del Trigémino/metabolismo
13.
Brain Behav Evol ; 79(2): 113-27, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22179203

RESUMEN

The extant monotremes (platypus and echidnas) are believed to all be capable of electroreception in the trigeminal pathways, although they differ significantly in the number and distribution of electroreceptors. It has been argued by some authors that electroreception was first developed in an aquatic environment and that echidnas are descended from a platypus-like ancestor that invaded an available terrestrial habitat. If this were the case, one would expect the developmental trajectories of the trigeminal pathways to be similar in the early stages of platypus and short-beaked echidna development, with structural divergence occurring later. We examined the development of the peripheral trigeminal pathway from snout skin to trigeminal ganglion in sectioned material in the Hill and Hubrecht collections to test for similarities and differences between the two during the development from egg to adulthood. Each monotreme showed a characteristic and different pattern of distribution of developing epidermal sensory gland specializations (electroreceptor primordia) from the time of hatching. The cross-sectional areas of the trigeminal divisions and the volume of the trigeminal ganglion itself were also very different between the two species at embryonic ages, and remained consistently different throughout post-hatching development. Our findings indicate that the trigeminal pathways in the short-beaked echidna and the platypus follow very different developmental trajectories from the earliest ages. These findings are more consistent with the notion that the platypus and echidna have both diverged from an ancestor with rudimentary electroreception and/or trigeminal specialization, rather than the contention that the echidna is derived from a platypus-like ancestor.


Asunto(s)
Vías Nerviosas/embriología , Ornitorrinco , Células Receptoras Sensoriales/fisiología , Tachyglossidae , Ganglio del Trigémino , Animales , Pico/embriología , Pico/crecimiento & desarrollo , Pico/fisiología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/fisiología , Ornitorrinco/embriología , Ornitorrinco/crecimiento & desarrollo , Ornitorrinco/fisiología , Tachyglossidae/embriología , Tachyglossidae/crecimiento & desarrollo , Tachyglossidae/fisiología , Ganglio del Trigémino/embriología , Ganglio del Trigémino/crecimiento & desarrollo , Ganglio del Trigémino/fisiología
14.
Dev Growth Differ ; 53(9): 994-1003, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22111909

RESUMEN

Cranial sense organs and a subset of cranial sensory neurons are generated from placodes, thickenings of the ectoderm. Pax3 has been known as a marker for ophthalmic trigeminal placode specification, and also an important regulator of trigeminal placode neuron differentiation. In this study, I show that Pax6 is initially expressed in the preplacodal region at the level of ophthalmic trigeminal placode, and that this expression gradually regresses in a medial-to-lateral direction as Pax3 expression expands in the same direction. Misexpression studies revealed that Pax6 represses Pax3 expression indirectly as a transcriptional activator in a cell-autonomous manner. Pax3-misexpression represses Pax6 expression in an indirect fashion, suggesting that unknown factor(s) downstream of Pax3 may repress Pax6 expression, and thereby allow an expansion of Pax3-positive ophthalmic trigeminal placode region. These results indicate that the mutual repression between Pax3 and Pax6 has important roles in the specification and the positioning of the ophthalmic trigeminal placode.


Asunto(s)
Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Órganos de los Sentidos/embriología , Células Receptoras Sensoriales/metabolismo , Ganglio del Trigémino/embriología , Ganglio del Trigémino/metabolismo , Animales , Encéfalo/embriología , Diferenciación Celular , Embrión de Pollo , Proteínas de Unión al ADN/metabolismo , Ectodermo/metabolismo , Proteínas del Ojo/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Neurogénesis , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/biosíntesis , Proteínas Represoras/biosíntesis , Transducción de Señal
15.
Neural Dev ; 6: 18, 2011 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-21529369

RESUMEN

BACKGROUND: In the developing vertebrate peripheral nervous system, the survival of sympathetic neurons and the majority of sensory neurons depends on a supply of nerve growth factor (NGF) from tissues they innervate. Although neurotrophic theory presupposes, and the available evidence suggests, that the level of NGF expression is completely independent of innervation, the possibility that innervation may regulate the timing or level of NGF expression has not been rigorously investigated in a sufficiently well-characterized developing system. RESULTS: To address this important question, we studied the influence of innervation on the regulation of NGF mRNA expression in the embryonic mouse maxillary process in vitro and in vivo. The maxillary process receives its innervation from predominantly NGF-dependent sensory neurons of the trigeminal ganglion and is the most densely innervated cutaneous territory with the highest levels of NGF in the embryo. When early, uninnervated maxillary processes were cultured alone, the level of NGF mRNA rose more slowly than in maxillary processes cultured with attached trigeminal ganglia. In contrast to the positive influence of early innervation on NGF mRNA expression, the levels of brain-derived neurotrophic factor (BDNF) mRNA and neurotrophin-3 (NT3) mRNA rose to the same extent in early maxillary processes grown with and without trigeminal ganglia. The level of NGF mRNA, but not BDNF mRNA or NT3 mRNA, was also significantly lower in the maxillary processes of erbB3-/- mice, which have substantially fewer trigeminal neurons than wild-type mice. CONCLUSIONS: This selective effect of initial innervation on target field NGF mRNA expression provokes a re-evaluation of a key assertion of neurotrophic theory that the level of NGF expression is independent of innervation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Factores de Crecimiento Nervioso/metabolismo , Células Receptoras Sensoriales/metabolismo , Piel/inervación , Ganglio del Trigémino/citología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Recuento de Células , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Noqueados , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/genética , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Técnicas de Cultivo de Órganos , ARN Mensajero/metabolismo , Receptor ErbB-3/deficiencia , Receptor trkA/genética , Receptor trkA/metabolismo , Receptor trkC/genética , Receptor trkC/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Ganglio del Trigémino/embriología
16.
J Neurochem ; 117(2): 221-30, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21250998

RESUMEN

The trigeminal ganglion is the largest of the cranial ganglia and responsible for transmitting sensory information for much of the face. The cell surface glycoprotein CD151 is an early marker of the trigeminal placode, the precursor to the ganglion. Here, we investigate the role of CD151 during specification of trigeminal placode cells in the developing chicken embryo. Expression of the transcription factor Pax3, the earliest known marker of the trigeminal placode, briefly precedes that of CD151, but they then subsequently overlap in the trigeminal placode. Loss of CD151 protein dramatically decreases the number of Pax3+ placode cells in Stage 13-14 embryos, leading to loss of ophthalmic trigeminal neurons by Stages 16 and 17. Although the initial size of the Pax3 population is similar to that in controls, the number of Pax3+ cells decreases with time without alterations in cell death or proliferation. This suggests a role for CD151 in maintenance of the specification state in the trigeminal placode, uncovering the first known role for a tetraspanin in a developmental system.


Asunto(s)
Antígenos CD/metabolismo , Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Ganglio del Trigémino/metabolismo , Análisis de Varianza , Animales , Antígenos CD/química , Tipificación del Cuerpo/efectos de los fármacos , Recuento de Células/métodos , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Ectodermo/embriología , Electroporación/métodos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Oligodesoxirribonucleótidos Antisentido/farmacología , Factores de Transcripción Paired Box/metabolismo , Tetraspanina 24 , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/embriología
17.
Arch Toxicol ; 85(2): 149-54, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20480362

RESUMEN

Acidic-alkaline stresses caused by ischemia and hypoglycemia induce neuronal cell death resulting from intracellular pH disturbance. The effects of acidic-alkaline disturbance on the trigeminal ganglion (TG) neurons of the embryonic mouse were investigated by caspase-3-immunohistochemistry and Nissl staining. TG neurons exhibited apoptosis in 3.08 ± 0.55% of neurons in intact embryos at day 16. Intraperitoneal injection of alkaline solution (pH 8.97; 0.005-0.1 M K2HPO4 or 0.01-0.04 M KOH) into the embryo at embryonic day 15 significantly increased the number of apoptotic neurons in the TG at embryonic day 16 with dependence on concentration (3.40-6.05 and 2.93-5.55%, respectively). On the other hand, acidic solutions (pH 4.4; 0.01-0.2 M KH2PO4 slightly, but not significantly, increased the number of apoptotic cells (3.64-5.15%, without dependence on concentration). Neutral solutions (pH 7.4; 0.01-0.2 M potassium phosphate buffer) had no effect on neuronal survival in the TG (2.89-3.48%). The results indicated that alkaline stress significantly increased apoptosis in the developing nervous system, but acidic stress did not.


Asunto(s)
Desequilibrio Ácido-Base/patología , Embrión de Mamíferos/patología , Neuronas/patología , Estrés Fisiológico , Ganglio del Trigémino/patología , Desequilibrio Ácido-Base/inducido químicamente , Desequilibrio Ácido-Base/metabolismo , Acidosis/inducido químicamente , Acidosis/patología , Alcalosis/inducido químicamente , Alcalosis/patología , Animales , Apoptosis , Caspasa 3/metabolismo , Femenino , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Embarazo , Ganglio del Trigémino/embriología , Ganglio del Trigémino/metabolismo
18.
Dev Biol ; 348(1): 107-18, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20883685

RESUMEN

Glypicans are conserved cell surface heparan sulfate proteoglycans expressed in a spatiotemporally regulated manner in many developing tissues including the nervous system. Here, we show that Glypican-1 (GPC1) is expressed by trigeminal placode cells as they ingress and contribute to trigeminal sensory neurons in the chick embryo. Either expression of full-length or truncated GPC1 in vivo causes defects in trigeminal gangliogenesis in a manner that requires heparan sulfate side chains. This leads to either abnormal placodal differentiation or organization, respectively, with near complete loss of the ophthalmic (OpV) trigeminal ganglion in the most severe cases after overexpression of full-length GPC1. Interestingly, modulating GPC1 alters levels of endogenous Wnt signaling activity in the forming trigeminal ganglion, as indicated by Wnt reporter expression. Accordingly, GPC1 overexpression phenocopies Wnt inhibition in causing loss of OpV placodal neurons. Furthermore, increased Wnt activity rescues the effects of GPC1 overexpression. Taken together, these results suggest that appropriate levels of GPC1 are essential for proper regulation of canonical Wnt signaling during differentiation and organization of trigeminal placodal cells into ganglia.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Glipicanos/fisiología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , Transducción de Señal/fisiología , Ganglio del Trigémino/embriología , Proteínas Wnt/fisiología , Animales , Embrión de Pollo , Glicosilfosfatidilinositoles/metabolismo , Glipicanos/deficiencia , Glipicanos/genética , Heparitina Sulfato/fisiología , Fenotipo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Proteínas Recombinantes de Fusión/fisiología , Células Receptoras Sensoriales/citología , Ganglio del Trigémino/ultraestructura , beta Catenina/química , beta Catenina/fisiología
19.
Mol Cell Neurosci ; 44(4): 394-403, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20621716

RESUMEN

Little is known of transcriptional mechanisms underlying the development of the trigeminal (V) principal sensory nucleus (PrV), the brainstem nucleus responsible for the development of the whisker-to-barrel cortex pathway. Lmx1b, a LIM homeodomain transcription factor, is expressed in embryonic PrV. In Lmx1b knockout ((-)(/)(-)) mice, V primary afferent projections to PrV are normal, albeit reduced in number, whereas the PrV-thalamic lemniscal pathway is sparse and develops late. Excess cell death occurs in the embryonic Lmx1b(-)(/)(-) PrV, but not in Lmx1b/Bax double null mutants. Expression of Drg11, a downstream transcription factor essential for PrV development and pattern formation, is abolished in PrV, but not in the V ganglion. Consequently, whisker patterns fail to develop in PrV by birth. Rescued PrV cells in Lmx1b/Bax double (-)(/)(-)s failed to rescue whisker-related PrV pattern formation. Thus, Lmx1b and Drg11 may act in the same genetic signaling pathway that is essential for PrV pattern formation.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Homeodominio/fisiología , Factores de Transcripción/fisiología , Núcleos del Trigémino/embriología , Vibrisas/inervación , Vías Aferentes/fisiología , Animales , Animales Recién Nacidos , Muerte Celular/genética , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Tálamo/citología , Tálamo/embriología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Ganglio del Trigémino/citología , Ganglio del Trigémino/embriología , Núcleos del Trigémino/citología , Núcleos del Trigémino/metabolismo , Proteína X Asociada a bcl-2/deficiencia
20.
Neural Dev ; 5: 3, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20096094

RESUMEN

The transcription factor Brn3a, product of the pou4f1 gene, is expressed in most sensory neurons throughout embryogenesis. Prior work has demonstrated a role for Brn3a in the repression of early neurogenic genes; here we describe a second major role for Brn3a in the specification of sensory subtypes in the trigeminal ganglion (TG). Sensory neurons initially co-express multiple Trk-family neurotrophin receptors, but are later marked by the unique expression of TrkA, TrkB or TrkC. Maturation of these sensory subtypes is known to depend on the expression of Runx transcription factors. Newborn Brn3a knockout mice fail to express TrkC, which is associated in the TG with mechanoreceptors, plus a set of functional genes associated with nociceptor subtypes. In embryonic Brn3a-/- ganglia, the normal expression of Runx3 is never initiated in TrkC+ neurons, and Runx1 expression is greatly attenuated in TrkA+ nociceptors. These changes are accompanied by expanded expression of TrkB in neurons that abnormally express multiple Trks, followed by the loss of TrkC and TrkA expression. In transgenic embryos expressing a Brn3a-VP16 dominant transactivator, Runx3 mRNA expression is increased, suggesting that it is a direct regulatory target of Brn3a. Chromatin immunoprecipitation confirms that Brn3a binds in vivo to a conserved upstream enhancer element within histone H3-acetylated chromatin in the Runx3 locus. Together these data show that Brn3a acts upstream of the Runx factors, which then repress TrkB expression to allow establishment of the non-overlapping Trk receptor profiles and correct terminally differentiated phenotypes.


Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Células Receptoras Sensoriales/metabolismo , Factor de Transcripción Brn-3A/genética , Factor de Transcripción Brn-3A/metabolismo , Ganglio del Trigémino/citología , Animales , Diferenciación Celular/genética , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica/genética , Genes Dominantes/genética , Proteína Vmw65 de Virus del Herpes Simple/genética , Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , ARN Mensajero , Receptor trkA/genética , Receptor trkA/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Receptor trkC/genética , Receptor trkC/metabolismo , Transactivadores/genética , Factor de Transcripción Brn-3A/deficiencia , Transfección , Ganglio del Trigémino/embriología , Ganglio del Trigémino/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA