Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.126
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125611

RESUMEN

Sexual dimorphism among mammals includes variations in the pain threshold. These differences are influenced by hormonal fluctuations in females during the estrous and menstrual cycles of rodents and humans, respectively. These physiological conditions display various phases, including proestrus and diestrus in rodents and follicular and luteal phases in humans, distinctly characterized by varying estrogen levels. In this study, we evaluated the capsaicin responses in male and female mice at different estrous cycle phases, using two murine acute pain models. Our findings indicate that the capsaicin-induced pain threshold was lower in the proestrus phase than in the other three phases in both pain assays. We also found that male mice exhibited a higher pain threshold than females in the proestrus phase, although it was similar to females in the other cycle phases. We also assessed the mRNA and protein levels of TRPV1 in the dorsal root and trigeminal ganglia of mice. Our results showed higher TRPV1 protein levels during proestrus compared to diestrus and male mice. Unexpectedly, we observed that the diestrus phase was associated with higher TRPV1 mRNA levels than those in both proestrus and male mice. These results underscore the hormonal influence on TRPV1 expression regulation and highlight the role of sex steroids in capsaicin-induced pain.


Asunto(s)
Capsaicina , Dolor , Canales Catiónicos TRPV , Animales , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Capsaicina/farmacología , Masculino , Femenino , Ratones , Dolor/metabolismo , Dolor/genética , Hormonas Esteroides Gonadales/metabolismo , Ciclo Estral/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Caracteres Sexuales , ARN Mensajero/metabolismo , ARN Mensajero/genética
2.
Science ; 385(6704): 80-86, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38963846

RESUMEN

Classical migraine patients experience aura, which is transient neurological deficits associated with cortical spreading depression (CSD), preceding headache attacks. It is not currently understood how a pathological event in cortex can affect peripheral sensory neurons. In this study, we show that cerebrospinal fluid (CSF) flows into the trigeminal ganglion, establishing nonsynaptic signaling between brain and trigeminal cells. After CSD, ~11% of the CSF proteome is altered, with up-regulation of proteins that directly activate receptors in the trigeminal ganglion. CSF collected from animals exposed to CSD activates trigeminal neurons in naïve mice in part by CSF-borne calcitonin gene-related peptide (CGRP). We identify a communication pathway between the central and peripheral nervous system that might explain the relationship between migrainous aura and headache.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Depresión de Propagación Cortical , Trastornos Migrañosos , Ganglio del Trigémino , Animales , Ratones , Péptido Relacionado con Gen de Calcitonina/líquido cefalorraquídeo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Líquido Cefalorraquídeo/metabolismo , Modelos Animales de Enfermedad , Trastornos Migrañosos/líquido cefalorraquídeo , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/fisiopatología , Proteoma/metabolismo , Transducción de Señal , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/fisiopatología
3.
J Headache Pain ; 25(1): 115, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014318

RESUMEN

BACKGROUND: Posttraumatic headache (PTH) is a common and debilitating symptom following repetitive mild traumatic brain injury (rmTBI), and it mainly resembles a migraine-like phenotype. While modulation of the endocannabinoid system (ECS) is effective in treating TBI and various types of pain including migraine, the role of augmentation of endocannabinoids in treating PTH has not been investigated. METHODS: Repetitive mild TBI was induced in male C57BL/6J mice using the non-invasive close-head impact model of engineered rotational acceleration (CHIMERA). Periorbital allodynia was assessed using von Frey filaments and determined by the "Up-Down" method. Immunofluorescence staining was employed to investigate glial cell activation and calcitonin gene-related peptide (CGRP) expression in the trigeminal ganglion (TG) and trigeminal nucleus caudalis (TNC) of the rmTBI mice. Levels of 2-arachidonoyl glycerol (2-AG), anandamide (AEA), and arachidonic acid (AA) in the TG, medulla (including TNC), and periaqueductal gray (PAG) were measured by mass spectrometry. The therapeutic effect of endocannabinoid modulation on PTH was also assessed. RESULTS: The rmTBI mice exhibited significantly increased cephalic pain hypersensitivity compared to the sham controls. MJN110, a potent and selective inhibitor of the 2-AG hydrolytic enzyme monoacylglycerol lipase (MAGL), dose-dependently attenuated periorbital allodynia in the rmTBI animals. Administration of CGRP at 0.01 mg/kg reinstated periorbital allodynia in the rmTBI animals on days 33 and 45 post-injury but had no effect in the sham and MJN110 treatment groups. Activation of glial cells along with increased production of CGRP in the TG and TNC at 7 and 14 days post-rmTBI were attenuated by MJN110 treatment. The anti-inflammatory and anti-nociceptive effects of MJN110 were partially mediated by cannabinoid receptor activation, and the pain-suppressive effect of MJN110 was completely blocked by co-administration of DO34, an inhibitor of 2-AG synthase. The levels of 2-AG in TG, TNC and PAG were decreased in TBI animals, significantly elevated and further reduced by the selective inhibitors of 2-AG hydrolytic and synthetic enzymes, respectively. CONCLUSION: Enhancing endogenous levels of 2-AG appears to be an effective strategy for the treatment of PTH by attenuating pain initiation and transmission in the trigeminal pathway and facilitating descending pain inhibitory modulation.


Asunto(s)
Ácidos Araquidónicos , Conmoción Encefálica , Endocannabinoides , Glicéridos , Ratones Endogámicos C57BL , Cefalea Postraumática , Animales , Endocannabinoides/metabolismo , Masculino , Conmoción Encefálica/complicaciones , Conmoción Encefálica/tratamiento farmacológico , Ácidos Araquidónicos/farmacología , Ratones , Cefalea Postraumática/etiología , Cefalea Postraumática/tratamiento farmacológico , Glicéridos/metabolismo , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Hidrólisis , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/efectos de los fármacos , Piperidinas/farmacología , Piperidinas/uso terapéutico , Alcamidas Poliinsaturadas/farmacología
4.
Dev Biol ; 515: 79-91, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39019425

RESUMEN

The trigeminal ganglion, the largest of the vertebrate cranial ganglia, is comprised of sensory neurons that relay sensations of pain, touch, and temperature to the brain. These neurons are derived from two embryonic cell types, the neural crest and ectodermal placodes, whose interactions are critical for proper ganglion formation. While the T-cell leukemia homeobox 3 (Tlx3) gene is known to be expressed in placodally-derived sensory neurons and necessary for their differentiation, little was known about Tlx3 expression and/or function in the neural crest-derived component of the developing trigeminal ganglion. By combining lineage labeling with in situ hybridization in the chick embryo, we show that neural crest-derived cells that contribute to the cranial trigeminal ganglion express Tlx3 at a time point that coincides with the onset of ganglion condensation. Importantly, loss of Tlx3 function in vivo diminishes the overall size and abundance of neurons within the trigeminal ganglion. Conversely, ectopic expression of Tlx3 in migrating cranial neural crest results in their premature neuronal differentiation. Taken together, our results demonstrate a critical role for Tlx3 in neural crest-derived cells during chick trigeminal gangliogenesis.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Cresta Neural , Ganglio del Trigémino , Animales , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/embriología , Ganglio del Trigémino/citología , Embrión de Pollo , Cresta Neural/metabolismo , Cresta Neural/embriología , Cresta Neural/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Neuronas/metabolismo , Neurogénesis/genética , Movimiento Celular , Linaje de la Célula
5.
PLoS Biol ; 22(7): e3002074, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39038054

RESUMEN

While interactions between neural crest and placode cells are critical for the proper formation of the trigeminal ganglion, the mechanisms underlying this process remain largely uncharacterized. Here, by using chick embryos, we show that the microRNA (miR)-203, whose epigenetic repression is required for neural crest migration, is reactivated in coalescing and condensing trigeminal ganglion cells. Overexpression of miR-203 induces ectopic coalescence of neural crest cells and increases ganglion size. By employing cell-specific electroporations for either miR-203 sponging or genomic editing using CRISPR/Cas9, we elucidated that neural crest cells serve as the source, while placode cells serve as the site of action for miR-203 in trigeminal ganglion condensation. Demonstrating intercellular communication, overexpression of miR-203 in the neural crest in vitro or in vivo represses an miR-responsive sensor in placode cells. Moreover, neural crest-secreted extracellular vesicles (EVs), visualized using pHluorin-CD63 vector, become incorporated into the cytoplasm of placode cells. Finally, RT-PCR analysis shows that small EVs isolated from condensing trigeminal ganglia are selectively loaded with miR-203. Together, our findings reveal a critical role in vivo for neural crest-placode communication mediated by sEVs and their selective microRNA cargo for proper trigeminal ganglion formation.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares , MicroARNs , Cresta Neural , Ganglio del Trigémino , Cresta Neural/metabolismo , Cresta Neural/embriología , Cresta Neural/citología , Animales , MicroARNs/metabolismo , MicroARNs/genética , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/embriología , Ganglio del Trigémino/citología , Vesículas Extracelulares/metabolismo , Embrión de Pollo , Comunicación Celular/genética , Movimiento Celular/genética , Regulación del Desarrollo de la Expresión Génica
6.
Cell Commun Signal ; 22(1): 307, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831315

RESUMEN

BACKGROUND: Interleukin 24 (IL-24) has been implicated in the nociceptive signaling. However, direct evidence and the precise molecular mechanism underlying IL-24's role in peripheral nociception remain unclear. METHODS: Using patch clamp recording, molecular biological analysis, immunofluorescence labeling, siRNA-mediated knockdown approach and behavior tests, we elucidated the effects of IL-24 on sensory neuronal excitability and peripheral pain sensitivity mediated by T-type Ca2+ channels (T-type channels). RESULTS: IL-24 enhances T-type channel currents (T-currents) in trigeminal ganglion (TG) neurons in a reversible and dose-dependent manner, primarily by activating the interleukin-22 receptor 1 (IL-22R1). Furthermore, we found that the IL-24-induced T-type channel response is mediated through tyrosine-protein kinase Lyn, but not its common downstream target JAK1. IL-24 application significantly activated protein kinase A; this effect was independent of cAMP and prevented by Lyn antagonism. Inhibition of PKA prevented the IL-24-induced T-current response, whereas inhibition of protein kinase C or MAPK kinases had no effect. Functionally, IL-24 increased TG neuronal excitability and enhanced pain sensitivity to mechanical stimuli in mice, both of which were suppressed by blocking T-type channels. In a trigeminal neuropathic pain model induced by chronic constriction injury of the infraorbital nerve, inhibiting IL-22R1 signaling alleviated mechanical allodynia, which was reversed by blocking T-type channels or knocking down Cav3.2. CONCLUSION: Our findings reveal that IL-24 enhances T-currents by stimulating IL-22R1 coupled to Lyn-dependent PKA signaling, leading to TG neuronal hyperexcitability and pain hypersensitivity. Understanding the mechanism of IL-24/IL-22R1 signaling in sensory neurons may pave the way for innovative therapeutic strategies in pain management.


Asunto(s)
Canales de Calcio Tipo T , Proteínas Quinasas Dependientes de AMP Cíclico , Receptores de Interleucina , Células Receptoras Sensoriales , Transducción de Señal , Ganglio del Trigémino , Familia-src Quinasas , Animales , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/genética , Familia-src Quinasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ganglio del Trigémino/metabolismo , Masculino , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Receptores de Interleucina/metabolismo , Ratones , Ratones Endogámicos C57BL , Interleucinas/metabolismo
7.
Sci Adv ; 10(25): eadj9173, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905344

RESUMEN

Sensory neurons in the dorsal root ganglion (DRG) and trigeminal ganglion (TG) are specialized to detect and transduce diverse environmental stimuli to the central nervous system. Single-cell RNA sequencing has provided insights into the diversity of sensory ganglia cell types in rodents, nonhuman primates, and humans, but it remains difficult to compare cell types across studies and species. We thus constructed harmonized atlases of the DRG and TG that describe and facilitate comparison of 18 neuronal and 11 non-neuronal cell types across six species and 31 datasets. We then performed single-cell/nucleus RNA sequencing of DRG from both human and the highly regenerative axolotl and found that the harmonized atlas also improves cell type annotation, particularly of sparse neuronal subtypes. We observed that the transcriptomes of sensory neuron subtypes are broadly similar across vertebrates, but the expression of functionally important neuropeptides and channels can vary notably. The resources presented here can guide future studies in comparative transcriptomics, simplify cell-type nomenclature differences across studies, and help prioritize targets for future analgesic development.


Asunto(s)
Ganglios Espinales , Transcriptoma , Ganglio del Trigémino , Animales , Humanos , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ganglio del Trigémino/citología , Ganglio del Trigémino/metabolismo , Análisis de la Célula Individual/métodos , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/citología , Especificidad de la Especie , Ratones , Atlas como Asunto , Perfilación de la Expresión Génica , Ratas
8.
Arch Oral Biol ; 165: 106014, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38833771

RESUMEN

OBJECTIVE: To investigate cellular changes in protein expression in the trigeminal ganglion in an established preclinical chronic model of temporomandibular joint disorder (TMD) in response to grape seed extract (GSE) supplementation based on its beneficial use in preclinical chronic orofacial pain models. DESIGN: Three experimental conditions included female Sprague-Dawley rats as naïve controls, and animals subjected to neck muscle inflammation and prolonged jaw opening with and without daily supplementation of GSE in the drinking water prior to inflammation. Changes were evaluated in mechanical sensitivity to von Frey filaments and protein expression in the trigeminal ganglion of animals 14 days post jaw opening. RESULTS: Calcitonin-gene related peptide and protein kinase A, proteins positively associated with peripheral sensitization and enhanced nociception, did not show elevated expression at day 14 in the model compared to naïve or GSE supplemented animals. However, neuronal levels of glutamate decarboxylase (GAD) 65/67, which are enzymes responsible for the synthesis of the inhibitory neurotransmitter GABA that functions to suppress neuronal excitability, were significantly decreased on day 14 post jaw opening. Similarly, a significant decrease in neuronal expression of the GABA receptor subunits GABAB1 and GABAB2, but not GABAA, was observed in the TMD model. Importantly, GSE prevented suppression of GAD 65/67 and GABAB subunits, maintaining levels similar to naïve animals. CONCLUSION: Results from our study provide evidence of the downregulation of inhibitory GABAergic proteins in trigeminal ganglion neurons in a preclinical chronic TMD model and the benefits of GSE supplementation in preventing their suppression and maintaining normal levels.


Asunto(s)
Suplementos Dietéticos , Modelos Animales de Enfermedad , Extracto de Semillas de Uva , Ratas Sprague-Dawley , Trastornos de la Articulación Temporomandibular , Ganglio del Trigémino , Animales , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/efectos de los fármacos , Femenino , Ratas , Extracto de Semillas de Uva/farmacología , Trastornos de la Articulación Temporomandibular/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Vitis/química
9.
Cells ; 13(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38786051

RESUMEN

The inhibition of endocannabinoid hydrolysis by enzymatic inhibitors may interfere with mechanisms underlying migraine-related pain. The dual FAAH/MAGL inhibitor AKU-005 shows potent inhibitory activity in vitro. Here, we assessed the effect of AKU-005 in a migraine animal model based on nitroglycerin (NTG) administration. Male rats were treated with AKU-005 (0.5 mg/kg, i.p.) or vehicle 3 h after receiving NTG (10 mg/kg, i.p.) or NTG vehicle. One hour later, rats were subjected to the open field test followed by the orofacial formalin test. At the end of the test, we collected serum samples for assessing calcitonin gene-related peptide (CGRP) levels as well as meninges, trigeminal ganglia, and brain areas to assess mRNA levels of CGRP and pro-inflammatory cytokines, and endocannabinoid and related lipid levels. AKU-005 reduced NTG-induced hyperalgesia during the orofacial formalin test but did not influence NTG-induced changes in the open field test. It significantly reduced serum levels of CGRP, CGRP, and pro-inflammatory cytokine mRNA levels in the meninges, trigeminal ganglia, and central areas. Surprisingly, AKU-005 caused no change in endocannabinoids and related lipids in the regions evaluated. The present findings suggest that AKU-005 may have anti-migraine effects by reducing CGRP synthesis and release and the associated inflammatory events. This effect, however, does not seem mediated via an interference with the endocannabinoid pathway.


Asunto(s)
Amidohidrolasas , Péptido Relacionado con Gen de Calcitonina , Hiperalgesia , Ganglio del Trigémino , Animales , Masculino , Hiperalgesia/tratamiento farmacológico , Ratas , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Amidohidrolasas/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/sangre , Ganglio del Trigémino/efectos de los fármacos , Ganglio del Trigémino/metabolismo , Ratas Sprague-Dawley , Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/metabolismo , Endocannabinoides/metabolismo , Nitroglicerina/farmacología , Modelos Animales de Enfermedad , Citocinas/metabolismo , Citocinas/sangre , Trastornos Migrañosos/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Oligopéptidos , Proteínas y Péptidos Salivales
10.
Biochem Biophys Res Commun ; 717: 150044, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38718567

RESUMEN

Pulpitis constitutes a significant challenge in clinical management due to its impact on peripheral nerve tissue and the persistence of chronic pain. Despite its clinical importance, the correlation between neuronal activity and the expression of voltage-gated sodium channel 1.7 (Nav1.7) in the trigeminal ganglion (TG) during pulpitis is less investigated. The aim of this study was to examine the relationship between experimentally induced pulpitis and Nav1.7 expression in the TG and to investigate the potential of selective Nav1.7 modulation to attenuate TG abnormal activity associated with pulpitis. Acute pulpitis was induced at the maxillary molar (M1) using allyl isothiocyanate (AITC). The mice were divided into three groups: control, pulpitis model, and pulpitis model treated with ProTx-II, a selective Nav1.7 channel inhibitor. After three days following the surgery, we conducted a recording and comparative analysis of the neural activity of the TG utilizing in vivo optical imaging. Then immunohistochemistry and Western blot were performed to assess changes in the expression levels of extracellular signal-regulated kinase (ERK), c-Fos, collapsin response mediator protein-2 (CRMP2), and Nav1.7 channels. The optical imaging result showed significant neurological excitation in pulpitis TGs. Nav1.7 expressions exhibited upregulation, accompanied by signaling molecular changes suggestive of inflammation and neuroplasticity. In addition, inhibition of Nav1.7 led to reduced neural activity and subsequent decreases in ERK, c-Fos, and CRMP2 levels. These findings suggest the potential for targeting overexpressed Nav1.7 channels to alleviate pain associated with pulpitis, providing practical pain management strategies.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Pulpitis , Animales , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/genética , Ratones , Masculino , Pulpitis/metabolismo , Pulpitis/patología , Ganglio del Trigémino/metabolismo , Neuronas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intercelular
11.
J Headache Pain ; 25(1): 85, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783191

RESUMEN

The trigeminal system is key to the pathophysiology of migraine and cluster headache, two primary headache disorders that share many features. Recently, MER proto-oncogene tyrosine kinase (MERTK), a cell surface receptor, was strongly associated with cluster headache through genetic studies. Further, the MERTK ligand galectin-3 has been found to be elevated in serum of migraine patients. In this study, MERTK and MERTK ligands were investigated in key tissue to better understand their potential implication in the pathophysiology of primary headache disorders. Immunohistochemistry was used to map MERTK and galectin-3 expression in rat trigeminal ganglia. RT-qPCR was used to assess MERTK gene expression in blood, and ELISA immunoassays were used for MERTK ligand quantification in serum from study participants with and without cluster headache. MERTK gene expression was elevated in blood samples from study participants with cluster headache compared to controls. In addition, MERTK ligand galectin-3 was found at increased concentration in the serum of study participants with cluster headache, whereas the levels of MERTK ligands growth arrest specific 6 and protein S unaffected. MERTK and galectin-3 were both expressed in rat trigeminal ganglia. Galectin-3 was primarily localized in smaller neurons and to a lesser extent in C-fibres, while MERTK was found in satellite glia cells and in the outer membrane of Schwann cells. Interestingly, a strong MERTK signal was found specifically in the region proximal to the nodes of Ranvier. The overexpression of MERTK and galectin-3 in tissue from study participants with cluster headache, as well as the presence of MERTK in rat peripheral satellite glia cells and Schwann cells in the trigeminal ganglia, further highlights MERTK signalling as an interesting potential future therapeutic target in primary headache.


Asunto(s)
Cefalalgia Histamínica , Ganglio del Trigémino , Tirosina Quinasa c-Mer , Animales , Cefalalgia Histamínica/metabolismo , Cefalalgia Histamínica/sangre , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa c-Mer/genética , Ganglio del Trigémino/metabolismo , Humanos , Masculino , Ratas , Femenino , Proto-Oncogenes Mas , Adulto , Persona de Mediana Edad , Ratas Sprague-Dawley , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Sanguíneas , Galectinas
12.
BMC Oral Health ; 24(1): 552, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735923

RESUMEN

Patients who suffer from myofascial orofacial pain could affect their quality of life deeply. The pathogenesis of pain is still unclear. Our objective was to assess Whether Voltage-gated calcium channel α2δ-1(Cavα2δ-1) is related to myofascial orofacial pain. Rats were divided into the masseter tendon ligation group and the sham group. Compared with the sham group, the mechanical pain threshold of the masseter tendon ligation group was reduced on the 4th, 7th, 10th and 14th day after operation(P < 0.05). On the 14th day after operation, Cavα2δ-1 mRNA expression levels in trigeminal ganglion (TG) and the trigeminal spinal subnucleus caudalis and C1-C2 spinal cervical dorsal horn (Vc/C2) of the masseter tendon ligation group were increased (PTG=0.021, PVc/C2=0.012). Rats were divided into three groups. On the 4th day after ligating the superficial tendon of the left masseter muscle of the rats, 10 ul Cavα2δ-1 antisense oligonucleotide, 10 ul Cavα2δ-1 mismatched oligonucleotides and 10 ul normal saline was separately injected into the left masseter muscle of rats in Cavα2δ-1 antisense oligonucleotide group, Cavα2δ-1 mismatched oligonucleotides group and normal saline control group twice a day for 4 days. The mechanical pain threshold of the Cavα2δ-1 antisense oligonucleotides group was higher than Cavα2δ-1 mismatched oligonucleotides group on the 7th and 10th day after operation (P < 0.01). After PC12 cells were treated with lipopolysaccharide, Cavα2δ-1 mRNA expression level increased (P < 0.001). Cavα2δ-1 may be involved in the occurrence and development in myofascial orofacial pain.


Asunto(s)
Canales de Calcio Tipo L , Dolor Facial , Músculo Masetero , Ganglio del Trigémino , Animales , Masculino , Ratas , Canales de Calcio/metabolismo , Dolor Facial/metabolismo , Músculo Masetero/metabolismo , Síndromes del Dolor Miofascial , Oligonucleótidos Antisentido/farmacología , Umbral del Dolor , Ratas Sprague-Dawley , ARN Mensajero/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Ganglio del Trigémino/metabolismo
13.
J Headache Pain ; 25(1): 87, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802819

RESUMEN

BACKGROUND: Pain, an evolutionarily conserved warning system, lets us recognize threats and motivates us to adapt to those threats. Headache pain from migraine affects approximately 15% of the global population. However, the identity of any putative threat that migraine or headache warns us to avoid is unknown because migraine pathogenesis is poorly understood. Here, we show that a stress-induced increase in pituitary adenylate cyclase-activating polypeptide-38 (PACAP38), known as an initiator of allosteric load inducing unbalanced homeostasis, causes headache-like behaviour in male mice via mas-related G protein-coupled receptor B2 (MrgprB2) in mast cells. METHODS: The repetitive stress model and dural injection of PACAP38 were performed to induce headache behaviours. We assessed headache behaviours using the facial von Frey test and the grimace scale in wild-type and MrgprB2-deficient mice. We further examined the activities of trigeminal ganglion neurons using in vivo Pirt-GCaMP Ca2+ imaging of intact trigeminal ganglion (TG). RESULTS: Repetitive stress and dural injection of PACAP38 induced MrgprB2-dependent headache behaviours. Blood levels of PACAP38 were increased after repetitive stress. PACAP38/MrgprB2-induced mast cell degranulation sensitizes the trigeminovascular system in dura mater. Moreover, using in vivo intact TG Pirt-GCaMP Ca2+ imaging, we show that stress or/and elevation of PACAP38 sensitized the TG neurons via MrgprB2. MrgprB2-deficient mice showed no sensitization of TG neurons or mast cell activation. We found that repetitive stress and dural injection of PACAP38 induced headache behaviour through TNF-a and TRPV1 pathways. CONCLUSIONS: Our findings highlight the PACAP38-MrgprB2 pathway as a new target for the treatment of stress-related migraine headache. Furthermore, our results pertaining to stress interoception via the MrgprB2/PACAP38 axis suggests that migraine headache warns us of stress-induced homeostatic imbalance.


Asunto(s)
Mastocitos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Estrés Psicológico , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Mastocitos/metabolismo , Masculino , Ratones , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ganglio del Trigémino/metabolismo , Cefalea/etiología , Cefalea/metabolismo , Cefalea/fisiopatología , Ratones Noqueados , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
14.
Cells ; 13(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38667268

RESUMEN

Subarachnoid hemorrhage (SAH) remains a major cause of cerebrovascular morbidity, eliciting severe headaches and vasospasms that have been shown to inversely correlate with vasodilator calcitonin gene-related peptide (CGRP) levels. Although dura mater trigeminal afferents are an important source of intracranial CGRP, little is known about the effects of SAH on these neurons in preclinical models. The present study evaluated changes in CGRP levels and expression in trigeminal primary afferents innervating the dura mater 72 h after experimentally induced SAH in adult rats. SAH, eliciting marked damage revealed by neurological examination, significantly reduced the density of CGRP-immunoreactive nerve fibers both in the dura mater and the trigeminal caudal nucleus in the medulla but did not affect the total dural nerve fiber density. SAH attenuated ex vivo dural CGRP release by ~40% and in the trigeminal ganglion, reduced both CGRP mRNA levels and the number of highly CGRP-immunoreactive cell bodies. In summary, we provide novel complementary evidence that SAH negatively affects the integrity of the CGRP-expressing rat trigeminal neurons. Reduced CGRP levels suggest likely impaired meningeal neurovascular functions contributing to SAH complications. Further studies are to be performed to reveal the importance of impaired CGRP synthesis and its consequences in central sensory processing.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Duramadre , Neuronas , Ratas Sprague-Dawley , Hemorragia Subaracnoidea , Ganglio del Trigémino , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Duramadre/metabolismo , Masculino , Ratas , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/patología , Neuronas/metabolismo , Ganglio del Trigémino/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Nervio Trigémino/metabolismo
15.
Headache ; 64(5): 533-546, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38650105

RESUMEN

OBJECTIVES: Investigation of chronic homocysteine action on the excitability and N-methyl-D-aspartate (NMDA) sensitivity of the peripheral trigeminovascular system of rats. BACKGROUND: Migraine is a neurological disease that affects 15%-20% of the general population. Epidemiological observations show that an increase of the sulfur-containing amino acid homocysteine in plasma-called hyperhomocysteinemia-is associated with a high risk of migraine, especially migraine with aura. In animal studies, rats with hyperhomocysteinemia demonstrated mechanical allodynia, photophobia, and anxiety, and higher sensitivity to cortical spreading depression. In addition, rats with hyperhomocysteinemia were more sensitive in a model of chronic migraine induced by nitroglycerin which indicated the involvement of peripheral nociceptive mechanisms. The present work aimed to analyze the excitability of meningeal afferents and neurons isolated from the trigeminal ganglion of rats with prenatal hyperhomocysteinemia. METHODS: Experiments were performed on male rats born from females fed with a methionine-rich diet before and during pregnancy. The activity of meningeal afferents was recorded extracellularly in hemiskull preparations ex vivo and action potentials were characterized using cluster analysis. The excitability of trigeminal ganglion neurons was assessed using whole-cell patch clamp recording techniques and calcium imaging studies. Meningeal mast cells were stained using toluidine blue. RESULTS: The baseline extracellular recorded electrical activity of the trigeminal nerve was higher in the hyperhomocysteinemia group with larger amplitude action potentials. Lower concentrations of KCl caused an increase in the frequency of action potentials of trigeminal afferents recorded in rat hemiskull ex vivo preparations. In trigeminal ganglion neurons of rats with hyperhomocysteinemia, the current required to elicit at least one action potential (rheobase) was lower, and more action potentials were induced in response to stimulus of 2 × rheobase. In controls, short-term application of homocysteine and its derivatives increased the frequency of action potentials of the trigeminal nerve and induced Ca2+ transients in neurons, which are associated with the activation of NMDA receptors. At the same time, in rats with hyperhomocysteinemia, we did not observe an increased response of the trigeminal nerve to NMDA. Similarly, the parameters of Ca2+ transients induced by NMDA, homocysteine, and its derivatives were not changed in rats with hyperhomocysteinemia. Acute incubation of the meninges in homocysteine and homocysteinic acid did not change the state of the mast cells, whereas in the model of hyperhomocysteinemia, an increased degranulation of mast cells in the meninges was observed. CONCLUSIONS: Our results demonstrated higher excitability of the trigeminal system of rats with hyperhomocysteinemia. Together with our previous finding about the lower threshold of generation of cortical spreading depression in rats with hyperhomocysteinemia, the present data provide evidence of homocysteine as a factor that increases the sensitivity of the peripheral migraine mechanisms, and the control of homocysteine level may be an important strategy for reducing the risk and/or severity of migraine headache attacks.


Asunto(s)
Homocisteína , Hiperhomocisteinemia , Meninges , Trastornos Migrañosos , Ganglio del Trigémino , Animales , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/fisiopatología , Trastornos Migrañosos/fisiopatología , Trastornos Migrañosos/metabolismo , Masculino , Homocisteína/farmacología , Ratas , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/fisiopatología , Femenino , Modelos Animales de Enfermedad , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de los fármacos , Embarazo , Ratas Wistar , Técnicas de Placa-Clamp , Ratas Sprague-Dawley , Neuronas Aferentes/fisiología , Neuronas Aferentes/metabolismo
16.
Curr Protoc ; 4(4): e1028, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646944

RESUMEN

Proteomics and phosphoproteomics play crucial roles in elucidating the dynamics of post-transcriptional processes. While experimental methods and workflows have been established in this field, a persistent challenge arises when dealing with small samples containing a limited amount of protein. This limitation can significantly impact the recovery of peptides and phosphopeptides. In response to this challenge, we have developed a comprehensive experimental workflow tailored specifically for small-scale samples, with a special emphasis on neuronal tissues like the trigeminal ganglion. Our proposed workflow consists of seven steps aimed at optimizing the preparation of limited tissue samples for both proteomic and phosphoproteomic analyses. One noteworthy innovation in our approach involves the utilization of a dual enrichment strategy for phosphopeptides. Initially, we employ Fe-NTA Magnetic beads, renowned for their specificity and effectiveness in capturing phosphopeptides. Subsequently, we complement this approach with the TiO2-based method, which offers a broader spectrum of phosphopeptide recovery. This innovative workflow not only overcomes the challenges posed by limited sample sizes but also establishes a new benchmark for precision and efficiency in proteomic investigations. Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Protein extraction and digestion Basic Protocol 2: TMT labeling and peptide cleanup Basic Protocol 3: IMAC Fe-NTA magnetic beads phosphopeptide enrichment Basic Protocol 4: TiO2 enrichment Basic Protocol 5: Fe-NTA phosphopeptide Enrichment Basic Protocol 6: High pH peptide fractionation Basic protocol 7: LC-MS/MS analysis and database search.


Asunto(s)
Fosfopéptidos , Proteómica , Flujo de Trabajo , Proteómica/métodos , Fosfopéptidos/análisis , Fosfopéptidos/aislamiento & purificación , Animales , Espectrometría de Masas en Tándem , Ganglio del Trigémino/metabolismo , Cromatografía Liquida/métodos
17.
Front Biosci (Landmark Ed) ; 29(3): 102, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38538263

RESUMEN

Herpes simplex virus 1 (HSV-1) or simplexvirus humanalpha 1 is a neurotropic virus that is responsible for orofacial infections in humans. More than 70% of the world's population may have seropositivity for HSV-1, and this virus is a leading cause of sporadic lethal encephalitis in humans. The role of toll-like receptors (TLRs) in defending against HSV-1 infection has been explored, including the consequences of lacking these receptors or other proteins in the TLR pathway. Cell and mouse models have been used to study the importance of these receptors in combating HSV-1, how they relate to the innate immune response, and how they participate in the orchestration of the adaptive immune response. Myeloid differentiation factor 88 (MyD88) is a protein involved in the downstream activation of TLRs and plays a crucial role in this signaling. Mice with functional MyD88 or TLR2 and TLR9 can survive HSV-1 infection. However, they can develop encephalitis and face a 100% mortality rate in a dose-dependent manner when MyD88 or TLR2 plus TLR9 proteins are non-functional. In TLR2/9 knockout mice, an increase in chemokines and decreases in nitric oxide (NO), interferon (IFN) gamma, and interleukin 1 (IL-1) levels in the trigeminal ganglia (TG) have been correlated with mortality.


Asunto(s)
Encefalitis , Herpes Simple , Herpesvirus Humano 1 , Humanos , Animales , Ratones , Herpesvirus Humano 1/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Ganglio del Trigémino/metabolismo , Receptores Toll-Like/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL
18.
Brain Behav Immun ; 118: 480-498, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499209

RESUMEN

Trigeminal neuropathic pain is emotionally distressing and disabling. It presents with allodynia, hyperalgesia and dysaesthesia. In preclinical models it has been assumed that cephalic nerve constriction injury shows identical molecular, cellular, and sex dependent neuroimmune changes as observed in extra-cephalic injury models. This study sought empirical evidence for such assumptions using the infraorbital nerve chronic constriction model (ION-CCI). We compared the behavioural consequences of nerve constriction with: (i) the temporal patterns of recruitment of macrophages and T-lymphocytes at the site of nerve injury and in the trigeminal ganglion; and (ii) the degree of demyelination and axonal reorganisation in the injured nerve. Our data demonstrated that simply testing for allodynia and hyperalgesia as is done in extra-cephalic neuropathic pain models does not provide access to the range of injury-specific nociceptive responses and behaviours reflective of the experience of trigeminal neuropathic pain. Similarly, trigeminal neuroimmune changes evoked by nerve injury are not the same as those identified in models of extra-cephalic neuropathy. Specifically, the timing, magnitude, and pattern of ION-CCI evoked macrophage and T-lymphocyte activity differs between the sexes.


Asunto(s)
Neuralgia , Neuralgia del Trigémino , Ratas , Masculino , Femenino , Animales , Hiperalgesia/metabolismo , Ratas Sprague-Dawley , Neuralgia del Trigémino/metabolismo , Neuralgia/metabolismo , Ganglio del Trigémino/metabolismo , Modelos Animales de Enfermedad
19.
Mol Pain ; 20: 17448069241234451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38325814

RESUMEN

Toothache is one of the most common types of pain, but the mechanisms underlying pulpitis-induced pain remain unknown. The ionotropic purinergic receptor family (P2X) is reported to mediate nociception in the nervous system. This study aims to investigate the involvement of P2X3 in the sensitisation of the trigeminal ganglion (TG) and the inflammation caused by acute pulpitis. An acute tooth inflammation model was established by applying LPS to the pulp of SD rats. We found that the increased expression of P2X3 was induced by acute pulpitis. A selective P2X3 inhibitor (A-317491) reduced pain-like behavior in the maxillofacial region of rats and depressed the activation of neurons in the trigeminal ganglion induced by pulpitis. The upregulated MAPK signaling (p-p38, p-ERK1/2) expression in the ipsilateral TG induced by pulpitis could also be depressed by the application of the P2X3 inhibitor. Furthermore, the expression of markers of inflammatory processes, such as NF-κB, TNF-α and IL-1ß, could be induced by acute pulpitis and deduced by the intraperitoneal injection of P2X3 antagonists. Our findings demonstrate that purinergic P2X3 receptor signaling in TG neurons contributes to pulpitis-induced pain in rats and that P2X3 signaling may be a potential therapeutic target for tooth pain.


Asunto(s)
Pulpitis , Ratas , Animales , Pulpitis/metabolismo , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Dolor/metabolismo , Transducción de Señal , Inflamación/complicaciones , Inflamación/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Ganglio del Trigémino/metabolismo
20.
Cell Mol Neurobiol ; 44(1): 22, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363424

RESUMEN

Calcitonin gene-related peptide (CGRP) is synthesized and secreted by trigeminal ganglion neurons, and is a key neuropeptide involved in pain and immune regulation. This study investigates the expression of CGRP in the trigeminal ganglion (TG) and its regulatory role in the polarization of macrophages in rats with temporomandibular arthritis. A rat model of temporomandibular arthritis was established using CFA. Pain behavior was then observed. Temporomandibular joint (TMJ) and the TG were collected, and immunohistochemistry, immunofluorescence (IF) staining, and RT-qPCR were used to examine the expression of CGRP and macrophage-related factors. To investigate the impact of CGRP on macrophage polarization, both CGRP and its antagonist, CGRP 8-37, were separately administered directly within the TG. Statistical analysis revealed that within 24 h of inducing temporomandibular arthritis using CFA, there was a significant surge in CD86 positive macrophages within the ganglion. These macrophages peaked on the 7th day before beginning their decline. In this context, it's noteworthy that administering CGRP to the trigeminal ganglion can prompt these macrophages to adopt the M2 phenotype. Intriguingly, this study demonstrates that injecting the CGRP receptor antagonist (CGRP 8-37) to the ganglion counteracts this shift towards the M2 phenotype. Supporting these in vivo observations, we found that in vitro, CGRP indeed fosters the M2-type polarization of macrophages. CGRP can facilitate the conversion of macrophages into the M2 phenotype. The phenotypic alterations of macrophages within the TG could be instrumental in initiating and further driving the progression of TMJ disorders.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Macrófagos , Trastornos de la Articulación Temporomandibular , Ganglio del Trigémino , Animales , Ratas , Péptido Relacionado con Gen de Calcitonina/metabolismo , Macrófagos/metabolismo , Dolor/metabolismo , Trastornos de la Articulación Temporomandibular/metabolismo , Ganglio del Trigémino/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...