Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.225
Filtrar
1.
PLoS One ; 19(5): e0300254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696450

RESUMEN

Low back pain, knee osteoarthritis, and cancer patients suffer from chronic pain. Aberrant nerve growth into intervertebral disc, knee, and tumors, are common pathologies that lead to these chronic pain conditions. Axonal dieback induced by capsaicin (Caps) denervation has been FDA-approved to treat painful neuropathies and knee osteoarthritis but with short-term efficacy and discomfort. Herein, we propose to evaluate pyridoxine (Pyr), vincristine sulfate (Vcr) and ionomycin (Imy) as axonal dieback compounds for denervation with potential to alleviate pain. Previous literature suggests Pyr, Vcr, and Imy can cause undesired axonal degeneration, but no previous work has evaluated axonal dieback and cytotoxicity on adult rat dorsal root ganglia (DRG) explants. Thus, we performed axonal dieback screening using adult rat DRG explants in vitro with Caps as a positive control and assessed cytotoxicity. Imy inhibited axonal outgrowth and slowed axonal dieback, while Pyr and Vcr at high concentrations produced significant reduction in axon length and robust axonal dieback within three days. DRGs treated with Caps, Vcr, or Imy had increased DRG cytotoxicity compared to matched controls, but overall cytotoxicity was minimal and at least 88% lower compared to lysed DRGs. Pyr did not lead to any DRG cytotoxicity. Further, neither Pyr nor Vcr triggered intervertebral disc cell death or affected cellular metabolic activity after three days of incubation in vitro. Overall, our findings suggest Pyr and Vcr are not toxic to DRGs and intervertebral disc cells, and there is potential for repurposing these compounds for axonal dieback compounds to cause local denervation and alleviate pain.


Asunto(s)
Axones , Desnervación , Ganglios Espinales , Disco Intervertebral , Animales , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Ratas , Disco Intervertebral/efectos de los fármacos , Disco Intervertebral/patología , Axones/efectos de los fármacos , Capsaicina/farmacología , Ratas Sprague-Dawley , Masculino , Vincristina/farmacología
2.
Adv Biol (Weinh) ; 8(5): e2400020, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548657

RESUMEN

Understanding the intricate processes of neuronal growth, degeneration, and neurotoxicity is paramount for unraveling nervous system function and holds significant promise in improving patient outcomes, especially in the context of chemotherapy-induced peripheral neuropathy (CIPN). These processes are influenced by a broad range of entwined events facilitated by chemical, electrical, and mechanical signals. The progress of each process is inherently linked to phenotypic changes in cells. Currently, the primary means of demonstrating morphological changes rely on measurements of neurite outgrowth and axon length. However, conventional techniques for monitoring these processes often require extensive preparation to enable manual or semi-automated measurements. Here, a label-free and non-invasive approach is employed for monitoring neuronal differentiation and degeneration using quantitative phase imaging (QPI). Operating on unlabeled specimens and offering little to no phototoxicity and photobleaching, QPI delivers quantitative maps of optical path length delays that provide an objective measure of cellular morphology and dynamics. This approach enables the visualization and quantification of axon length and other physical properties of dorsal root ganglion (DRG) neuronal cells, allowing greater understanding of neuronal responses to stimuli simulating CIPN conditions. This research paves new avenues for the development of more effective strategies in the clinical management of neurotoxicity.


Asunto(s)
Axones , Diferenciación Celular , Ganglios Espinales , Animales , Ganglios Espinales/patología , Ganglios Espinales/citología , Axones/patología , Neuronas/patología , Humanos , Ratones , Enfermedades del Sistema Nervioso Periférico/patología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Imágenes de Fase Cuantitativa
3.
J Alzheimers Dis ; 98(1): 247-264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427478

RESUMEN

Background: Loss of Cholinergic Receptor Muscarinic 1 (CHRM1) has been linked to the pathogenesis of Alzheimer's disease (AD). Our recent study found significantly lower CHRM1 protein levels in AD patient cortices, linked to reduced survival. Furthermore, using knockout mice (Chrm1-/-) we demonstrated that deletion of Chrm1 alters cortical mitochondrial structure and function, directly establishing a connection between its loss and mitochondrial dysfunction in the context of AD. While CHRM1's role in the brain has been extensively investigated, its impact on peripheral neurons in AD remains a crucial area of research, especially considering reported declines in peripheral nerve conduction among AD patients. Objective: The objective was to characterize Chrm1 localization and mitochondrial deficits in Chrm1-/- dorsal root ganglion (DRG) neurons. Methods: Recombinant proteins tagged with Green or Red Fluorescent Protein (GFP/RFP) were transiently expressed to investigate the localization of Chrm1 and mitochondria, as well as mitochondrial movement in the neurites of cultured primary mouse DRG neurons, using confocal time-lapse live cell imaging. Transmission electron microscopy was performed to examine the ultrastructure of mitochondria in both wild-type and Chrm1-/- DRGs. Results: Fluorescence imaging revealed colocalization and comigration of N-terminal GFP-tagged Chrm1 and mitochondrial localization signal peptide-tagged RFP-labelled mitochondria in the DRGs neurons. A spectrum of mitochondrial structural abnormalities, including disruption and loss of cristae was observed in 87% neurons in Chrm1-/- DRGs. Conclusions: This study suggests that Chrm1 may be localized in the neuronal mitochondria and loss of Chrm1 in peripheral neurons causes sever mitochondrial structural aberrations resembling AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Enfermedad de Alzheimer/patología , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Neuronas/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo , Colinérgicos , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
4.
Neurotoxicology ; 101: 46-53, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316190

RESUMEN

Adeno-associated virus (AAV)-based vectors are commonly used for delivering transgenes in gene therapy studies, but they are also known to cause dorsal root ganglia (DRG) and peripheral nerve toxicities in animals. However, the functional implications of these pathologic findings and their time course remain unclear. At 2, 4, 6, and 8 weeks following a single dose of an AAV9 vector carrying human frataxin transgene in rats, non-standard functional assessments, including von Frey filament, electrophysiology, and Rotarod tests, were conducted longitudinally to measure allodynia, nerve conduction velocity, and coordination, respectively. Additionally, DRGs, peripheral nerves, brain and spinal cord were evaluated histologically and circulating neurofilament light chain (NfL) was quantified at 1, 2, 4, and 8 weeks, respectively. At 2 and 4 weeks after dosing, minimal-to-moderate nerve fiber degeneration and neuronal degeneration were observed in the DRGs in some of the AAV9 vector-dosed animals. At 8 weeks, nerve fiber degeneration was observed in DRGs, with or without neuronal degeneration, and in sciatic nerves of all AAV9 vector-dosed animals. NfL values were higher in AAV9 vector-treated animals at weeks 4 and 8 compared with controls. However, there were no significant differences in the three functional endpoints evaluated between the AAV9 vector- and vehicle-dosed animals, or in a longitudinal comparison between baseline (predose), 4, and 8 week values in the AAV9 vector-dose animals. These findings demonstrate that there is no detectable functional consequence to the minimal-to-moderate neurodegeneration observed with our AAV9 vector treatment in rats, suggesting a functional tolerance or reserve for loss of DRG neurons after systemic administration of AAV9 vector.


Asunto(s)
Ganglios Espinales , Enfermedades del Sistema Nervioso Periférico , Humanos , Ratas , Animales , Ganglios Espinales/patología , Fibras Nerviosas , Nervio Ciático , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Neuronas
5.
Osteoarthritis Cartilage ; 32(4): 398-405, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38244717

RESUMEN

OBJECTIVE: To provide a historical perspective and narrative review on research into the molecular pathogenesis of osteoarthritis pain. DESIGN: PubMed databases were searched for combinations of "osteoarthritis", "pain" and "animal models" for papers that represented key phases in the history of osteoarthritis pain discovery research including epidemiology, pathology, imaging, preclinical modeling and clinical trials. RESULTS: The possible anatomical sources of osteoarthritis pain were identified over 50 years ago, but relatively slow progress has been made in understanding the apparent disconnect between structural changes captured by radiography and symptom severity. Translationally relevant animal models of osteoarthritis have aided in our understanding of the structural and molecular drivers of osteoarthritis pain, including molecules such as nerve growth factor and C-C motif chemokine ligand 2. Events leading to persistent osteoarthritis pain appear to involve a two-step process involving changes in joint innervation, including neo-innervation of the articular cartilage, as well as sensitization at the level of the joint, dorsal root ganglion and central nervous system. CONCLUSIONS: There remains a great need for the development of treatments to reduce osteoarthritis pain in patients. Harnessing all that we have learned over the past several decades is helping us to appreciate the important interaction between structural disease and pain, and this is likely to facilitate development of new disease modifying therapies in the future.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Humanos , Dolor/etiología , Dolor/patología , Osteoartritis/patología , Cartílago Articular/patología , Radiografía , Ganglios Espinales/patología
6.
Am J Pathol ; 193(12): 2017-2030, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37734588

RESUMEN

Despite the development of antiretroviral therapy (ART), HIV-associated distal sensory polyneuropathy remains prevalent. Using SIV-infected rhesus macaques, this study examined molecular mechanisms of peripheral and central sensitization to infer chronic pain from HIV infection. Previous studies identified atrophy in nociceptive neurons during SIV infection, which was associated with monocyte infiltration into the dorsal root ganglia (DRG). However, the sensory signaling mechanism connecting this pathology to symptoms remains unclear, especially because pain persists after resolution of high viremia and inflammation with ART. We hypothesized that residual DRG and dorsal horn neuroinflammation contributes to nociceptive sensitization. Using three cohorts of macaques [uninfected (SIV-), SIV-infected (SIV+), and SIV infected with ART (SIV+/ART)], this study showed an increase in the cellular and cytokine inflammatory profiles in the DRG of SIV+/ART macaques compared with uninfected animals. It found significant increase in the expression of nociceptive ion channels, TRPV1, and TRPA1 among DRG neurons in SIV+/ART compared with uninfected animals. SIV-infected and SIV+/ART animals showed reduced innervation of the nonpeptidergic nociceptors into the dorsal horn compared with uninfected animals. Finally, there were a significantly higher number of CD68+ cells in the dorsal horn of SIV+/ART macaques compared with uninfected animals. In summary, these data demonstrate that neuroinflammation, characteristics of nociceptor sensitization, and central terminal atrophy persists in SIV+/ART animals.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Infecciones por VIH/patología , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Virus de la Inmunodeficiencia de los Simios/fisiología , Nociceptores/patología , Macaca mulatta , Enfermedades Neuroinflamatorias , Ganglios Espinales/patología , Atrofia/patología
7.
Pain ; 164(11): 2581-2595, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37556385

RESUMEN

ABSTRACT: Neurotoxicity of chemotherapeutics involves peculiar alterations in the structure and function, including abnormal nerve signal transmission, of both the peripheral and central nervous system. The lack of effective pharmacological approaches to prevent chemotherapy-induced neurotoxicity necessitates the identification of innovative therapies. Recent evidence suggests that repeated treatment with the pentacyclic pyridoindole derivative DDD-028 can exert both pain-relieving and glial modulatory effects in mice with paclitaxel-induced neuropathy. This work is aimed at assessing whether DDD-028 is a disease-modifying agent by protecting the peripheral nervous tissues from chemotherapy-induced damage. Neuropathy was induced in animals by paclitaxel injection (2.0 mg kg -1 i.p). DDD-028 (10 mg kg -1 ) and the reference drug, pregabalin (30 mg kg -1 ), were administered per os daily starting concomitantly with the first injection of paclitaxel and continuing 10 days after the end of paclitaxel treatment. The behavioural tests confirmed the antihyperalgesic efficacy of DDD-028 on paclitaxel-induced neuropathic pain. Furthermore, the electrophysiological analysis revealed the capacity of DDD-028 to restore near-normal sensory nerve conduction in paclitaxel-treated animals. Histopathology evidence indicated that DDD-028 was able to counteract effectively paclitaxel-induced peripheral neurotoxicity by protecting against the loss of intraepidermal nerve fibers, restoring physiological levels of neurofilament in nerve tissue and plasma, and preventing morphological alterations occurring in the sciatic nerves and dorsal root ganglia. Overall, DDD-028 is more effective than pregabalin in preventing chemotherapy-induced neurotoxicity. Thus, based on its potent antihyperalgesic and neuroprotective efficacy, DDD-028 seems to be a viable prophylactic medication to limit the development of neuropathies consequent to chemotherapy.


Asunto(s)
Antineoplásicos Fitogénicos , Antineoplásicos , Neuralgia , Ratones , Animales , Neuroprotección , Pregabalina/uso terapéutico , Paclitaxel/toxicidad , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/patología , Nervio Ciático/patología , Antineoplásicos/toxicidad , Ganglios Espinales/patología , Antineoplásicos Fitogénicos/farmacología
8.
Biochem Biophys Res Commun ; 677: 77-80, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37556953

RESUMEN

To guide the treatment of malignant neuropathic pain (MNP) in clinical practice, by inoculating MADB-106 breast cancer cells into the right L4 nerve root in Sprague-Dawley rats, a rat model of MNP was established, providing basic conditions for the study of neuropathic pain and development and application of therapeutic drugs. As the tumor grew over time, it pressed the nerve roots, causing nerve damage. The spinal nerve ligation (SNL) model, which is a neuropathic pain model widely used in rats, was compared with the L4 nerve root SNL model, and histologic examination of the nerve tissue of both models was performed by electron microscopy. In addition to the infiltration and erosion of the L4 nerve by tumor cells, the tumor tissue gradually grew and compressed the L4 nerve roots, resulting in hyperalgesia of the rat's posterior foot on the operative side. Some spontaneous pain phenomena were also observed, such as constant lifting or licking of the posterior foot on the operative side under quiet conditions. Electron microscopy images showed that nerve injury was due to progressive compression by the tumor, cells of which were visualized, but the injury was lighter than that in SNL rats. Imaging showed a paravertebral tumor near the L4 nerve root in the carcinomatous neuropathic pain model rat. These results suggest that progressive compression of the nerve by a malignant tumor leads to nerve damage similar to the behavioral changes associated with chronic compression injury resulting from a loose ligature of the nerve. The cancer neuropathologic pain model at the L4 nerve root was successfully established in Sprague-Dawley rats.


Asunto(s)
Neoplasias , Neuralgia , Ratas , Animales , Ratas Sprague-Dawley , Neuralgia/patología , Nervios Espinales/patología , Hiperalgesia/complicaciones , Neoplasias/complicaciones , Ganglios Espinales/patología , Ligadura/efectos adversos
9.
Front Endocrinol (Lausanne) ; 14: 1176566, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334284

RESUMEN

Introduction: During the development of Autoimmune Diabetes (AD) an autoimmune attack against the Peripheral Nervous System occurs. To gain insight into this topic, analyses of Dorsal Root Ganglia (DRG) from Non-Obese Diabetic (NOD) mice were carried out. Methods: Histopathological analysis by electron and optical microscopy in DRG samples, and mRNA expression analyzes by the microarray technique in DRG and blood leukocyte samples from NOD and C57BL/6 mice were performed. Results: The results showed the formation of cytoplasmic vacuoles in DRG cells early in life that could be related to a neurodegenerative process. In view of these results, mRNA expression analyses were conducted to determine the cause and/or the molecules involved in this suspected disorder. The results showed that DRG cells from NOD mice have alterations in the transcription of a wide range of genes, which explain the previously observed alterations. In addition, differences in the transcription genes in white blood cells were also detected. Discussion: Taken together, these results indicate that functional defects are not only seen in beta cells but also in DRG in NOD mice. These results also indicate that these defects are not a consequence of the autoimmune process that takes place in NOD mice and suggest that they may be involved as triggers for its development.


Asunto(s)
Diabetes Mellitus Tipo 1 , Ratones , Animales , Ratones Endogámicos NOD , Diabetes Mellitus Tipo 1/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Ratones Endogámicos C57BL , Expresión Génica , ARN Mensajero/metabolismo
10.
J Biomed Mater Res B Appl Biomater ; 111(11): 1903-1920, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37326300

RESUMEN

Despite the significant global prevalence of chronic pain, current methods to identify pain therapeutics often fail translation to the clinic. Phenotypic screening platforms rely on modeling and assessing key pathologies relevant to chronic pain, improving predictive capability. Patients with chronic pain often present with sensitization of primary sensory neurons (that extend from dorsal root ganglia [DRG]). During neuronal sensitization, painful nociceptors display lowered stimulation thresholds. To model neuronal excitability, it is necessary to maintain three key anatomical features of DRGs to have a physiologically relevant platform: (1) isolation between DRG cell bodies and neurons, (2) 3D platform to preserve cell-cell and cell-matrix interactions, and (3) presence of native non-neuronal support cells, including Schwann cells and satellite glial cells. Currently, no culture platforms maintain the three anatomical features of DRGs. Herein, we demonstrate an engineered 3D multicompartment device that isolates DRG cell bodies and neurites and maintains native support cells. We observed neurite growth into isolated compartments from the DRG using two formulations of collagen, hyaluronic acid, and laminin-based hydrogels. Further, we characterized the rheological, gelation and diffusivity properties of the two hydrogel formulations and found the mechanical properties mimic native neuronal tissue. Importantly, we successfully limited fluidic diffusion between the DRG and neurite compartment for up to 72 h, suggesting physiological relevance. Lastly, we developed a platform with the capability of phenotypic assessment of neuronal excitability using calcium imaging. Ultimately, our culture platform can screen neuronal excitability, providing a more translational and predictive system to identify novel pain therapeutics to treat chronic pain.


Asunto(s)
Dolor Crónico , Ganglios Espinales , Humanos , Ganglios Espinales/patología , Ganglios Espinales/fisiología , Dolor Crónico/patología , Neuronas , Neuritas , Hidrogeles/farmacología
11.
Exp Neurol ; 364: 114393, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37003485

RESUMEN

Gain-of-function mutations in Scn9a, which encodes the peripheral sensory neuron-enriched voltage-gated sodium channel Nav1.7, cause paroxysmal extreme pain disorder (PEPD), inherited erythromelalgia (IEM), and small fiber neuropathy (SFN). Conversely, loss-of-function mutations in the gene are linked to congenital insensitivity to pain (CIP). These mutations are evidence for a link between altered sodium conductance and neuronal excitability leading to somatosensory aberrations, pain, or its loss. Our previous work in young adult mice with the Nav1.7 gain-of-function mutation, I228M, showed the expected DRG neuron hyperexcitability, but unexpectedly the mice had normal mechanical and thermal behavioral sensitivity. We now show that with aging both male and female mice with this mutation unexpectedly develop a profound insensitivity to noxious heat and cold, as well skin lesions that span the body. Electrophysiology demonstrates that, in contrast to young mice, aged I228M mouse DRGs have a profound loss of sodium conductance and changes in activation and slow inactivation dynamics, representing a loss-of-function. Through RNA sequencing we explored how these age-related changes may produce the phenotypic changes and found a striking and specific decrease in C-low threshold mechanoreceptor- (cLTMR) associated gene expression, suggesting a potential contribution of this DRG neuron subtype to Nav1.7 dysfunction phenotypes. A GOF mutation in a voltage-gated channel can therefore produce over a prolonged time, highly complex and unexpected alterations in the nervous system beyond excitability changes.


Asunto(s)
Mutación con Ganancia de Función , Canal de Sodio Activado por Voltaje NAV1.7 , Masculino , Femenino , Ratones , Animales , Mutación con Ganancia de Función/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Nocicepción , Mutación/genética , Sodio , Ganglios Espinales/patología
12.
J Vis Exp ; (192)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36912549

RESUMEN

Animal models represent the workhorse of the neuroscience field. Despite this, today, there is still no step-by-step protocol to dissect a complete rodent nervous system, nor is there a complete schematic representing it that is freely available. Only methods to harvest the brain, the spinal cord, a specific dorsal root ganglion, and the sciatic nerve (separately) are available. Here, we provide detailed pictures and a schematic of the central and peripheral murine nervous system. More importantly, we outline a robust procedure to perform its dissection. The 30 min pre-dissection step allows isolating the intact nervous system within the vertebra with muscles free of viscera and skin. A 2-4 h dissection follows it under a micro-dissection microscope to expose the spinal cord and the thoracic nerves, and finally peel the whole central and peripheral nervous system off the carcass. This protocol represents a significant step forward in studying the anatomy and pathophysiology of the nervous system globally. For example, the dissected dorsal root ganglions from a neurofibromatosis type I mice model can be further processed for histology to unravel changes in tumor progression.


Asunto(s)
Sistema Nervioso Periférico , Médula Espinal , Ratones , Animales , Ganglios Espinales/cirugía , Ganglios Espinales/patología , Nervio Ciático/cirugía , Encéfalo
13.
J Neurol Sci ; 445: 120539, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638603

RESUMEN

PURPOSE: Ganglion cysts are benign soft tissue lesions found in joints, most commonly wrists. The incidence for juxtafacet cysts, the condition under which spinal ganglion cysts are categorized, is between 0.06% and 5.8%. Spinal ganglion cysts often arise in the most mobile segment of the lumbar spine, L4-L5. Patients commonly present with pain, radiculopathy, and weakness. Conservative management is used, but surgical resection is the most common treatment modality. We aim to review the literature and present a rare case of an L2-L3 situated spinal ganglion cyst, treated with maximal safe resection. METHODS: A systematic review of literature was conducted in accordance with PRISMA guidelines. PubMed, Web of Science, and Cochrane databases were queried using Boolean operators and search terms, "spinal ganglion cyst, lumbar ganglion cyst, and lumbar juxtafacet cyst". Presentation, surgical management, and postoperative course of a 29-year-old male with an L2-L3 spinal ganglion cyst are also described. RESULTS: The search yielded 824 articles; 23 met inclusion criteria. These papers consisted of 27 spinal ganglion cyst cases with disaggregated patient data. 63.0% of patients were male, and 53.4 years (range: 23-86) was the average age at presentation. Mean symptom duration was 1.9 years (range: 3 days-12 years). 70.4% of patients reported complete symptom resolution. 14.8% of cases noted neural foramen involvement. CONCLUSIONS: Spinal ganglion cysts are benign lesions typically presenting with radiculopathy. Maximal safe resection is an effective treatment modality with low complication rates. Future studies are needed to understand if neural foramen involvement leads to increased symptom severity.


Asunto(s)
Quistes , Radiculopatía , Quiste Sinovial , Humanos , Masculino , Adulto , Femenino , Radiculopatía/etiología , Radiculopatía/cirugía , Ganglios Espinales/patología , Quistes/complicaciones , Quistes/cirugía , Quiste Sinovial/complicaciones , Quiste Sinovial/patología , Quiste Sinovial/cirugía , Resultado del Tratamiento , Imagen por Resonancia Magnética
14.
Hum Mol Genet ; 32(8): 1380-1400, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36537577

RESUMEN

A functional nerve growth factor NGF-Tropomyosin Receptor kinase A (TrkA) system is an essential requisite for the generation and maintenance of long-lasting thermal and mechanical hyperalgesia in adult mammals. Indeed, mutations in the gene encoding for TrkA are responsible for a rare condition, named Hereditary Sensory and Autonomic Neuropathy type IV (HSAN IV), characterized by the loss of response to noxious stimuli, anhidrosis and cognitive impairment. However, to date, there is no available mouse model to properly understand how the NGF-TrkA system can lead to pathological phenotypes that are distinctive of HSAN IV. Here, we report the generation of a knock-in mouse line carrying the HSAN IV TrkAR649W mutation. First, by in vitro biochemical and biophysical analyses, we show that the pathological R649W mutation leads to kinase-inactive TrkA also affecting its membrane dynamics and trafficking. In agreement with the HSAN IV human phenotype, TrkAR649W/m mice display a lower response to thermal and chemical noxious stimuli, correlating with reduced skin innervation, in addition to decreased sweating in comparison to TrkAh/m controls. Moreover, the R649W mutation decreases anxiety-like behavior and compromises cognitive abilities, by impairing spatial-working and social memory. Our results further uncover unexplored roles of TrkA in thermoregulation and sociability. In addition to accurately recapitulating the clinical manifestations of HSAN IV patients, our findings contribute to clarifying the involvement of the NGF-TrkA system in pain sensation.


Asunto(s)
Modelos Animales de Enfermedad , Neuropatías Hereditarias Sensoriales y Autónomas , Receptor trkA , Humanos , Animales , Ratones , Mutación , Receptor trkA/genética , Técnicas de Sustitución del Gen , Factor de Crecimiento Nervioso/metabolismo , Fosforilación , Genes Letales , Dolor/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Piel/metabolismo , Piel/patología , Sistema Nervioso Simpático/metabolismo , Hipohidrosis/metabolismo , Conducta Animal
15.
Neuropharmacology ; 225: 109354, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36460082

RESUMEN

Pain sensitization is a phenomenon that occurs to protect tissues from damage and recent studies have shown how a variety of non-noxious stimuli included in our everyday lives can lead to pain sensitization. Consumption of large amounts of alcohol over a long period of time invokes alcohol use disorder (AUD), a complex pathological state that has many manifestations, including alcohol peripheral neuropathy (neuropathic pain). We asked if 'non-pathological' alcohol consumption can cause pain sensitization in the absence of other pathology? Studies have pointed to glia and other immune cells and their role in pain sensitization that results in cell and sex-specific responses. Using a low-dose and short-term ethanol exposure model, we investigated whether this exposure would sensitize mice to a subthreshold dose of an inflammatory mediator that normally does not induce pain. We observed female mice exhibited specific mechanical and higher thermal sensitivity than males. We also observed an increase in CD68+ macrophages in the ipsilateral dorsal root ganglia (DRG) and Iba1+ microglia in the ipsilateral spinal dorsal horn of animals that were exposed to ethanol and injected with subthreshold inflammatory prostaglandin E2. Our findings suggest that short-term ethanol exposure stimulates peripheral and central, immune and glial activation, respectively to induce pain sensitization. This work begins to reveal a possible mechanism behind the development of alcoholic peripheral neuropathy.


Asunto(s)
Etanol , Hiperalgesia , Neuralgia , Caracteres Sexuales , Animales , Femenino , Masculino , Ratones , Etanol/efectos adversos , Ganglios Espinales/patología , Hiperalgesia/inducido químicamente , Macrófagos/efectos de los fármacos , Macrófagos/patología , Microglía/efectos de los fármacos , Microglía/patología , Neuralgia/inducido químicamente , Neuralgia/patología , Neuroglía/efectos de los fármacos , Neuroglía/patología , Alcoholismo/complicaciones
16.
Neurosci Bull ; 39(2): 177-193, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35821338

RESUMEN

Post-amputation pain causes great suffering to amputees, but still no effective drugs are available due to its elusive mechanisms. Our previous clinical studies found that surgical removal or radiofrequency treatment of the neuroma at the axotomized nerve stump effectively relieves the phantom pain afflicting patients after amputation. This indicated an essential role of the residual nerve stump in the formation of chronic post-amputation pain (CPAP). However, the molecular mechanism by which the residual nerve stump or neuroma is involved and regulates CPAP is still a mystery. In this study, we found that nociceptors expressed the mechanosensitive ion channel TMEM63A and macrophages infiltrated into the dorsal root ganglion (DRG) neurons worked synergistically to promote CPAP. Histology and qRT-PCR showed that TMEM63A was mainly expressed in mechanical pain-producing non-peptidergic nociceptors in the DRG, and the expression of TMEM63A increased significantly both in the neuroma from amputated patients and the DRG in a mouse model of tibial nerve transfer (TNT). Behavioral tests showed that the mechanical, heat, and cold sensitivity were not affected in the Tmem63a-/- mice in the naïve state, suggesting the basal pain was not affected. In the inflammatory and post-amputation state, the mechanical allodynia but not the heat hyperalgesia or cold allodynia was significantly decreased in Tmem63a-/- mice. Further study showed that there was severe neuronal injury and macrophage infiltration in the DRG, tibial nerve, residual stump, and the neuroma-like structure of the TNT mouse model, Consistent with this, expression of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß all increased dramatically in the DRG. Interestingly, the deletion of Tmem63a significantly reduced the macrophage infiltration in the DRG but not in the tibial nerve stump. Furthermore, the ablation of macrophages significantly reduced both the expression of Tmem63a and the mechanical allodynia in the TNT mouse model, indicating an interaction between nociceptors and macrophages, and that these two factors gang up together to regulate the formation of CPAP. This provides a new insight into the mechanisms underlying CPAP and potential drug targets its treatment.


Asunto(s)
Dolor Crónico , Canales Iónicos , Neuroma , Animales , Ratones , Amputación Quirúrgica , Dolor Crónico/patología , Modelos Animales de Enfermedad , Ganglios Espinales/patología , Hiperalgesia/etiología , Canales Iónicos/metabolismo , Macrófagos , Neuroma/complicaciones , Neuroma/patología
17.
Mol Pain ; 19: 17448069221106167, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35610945

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is the most common side-effect of anti-cancer therapy. To date, there are no clinically effective analgesics that could prevent and treat CIPN. However, the exact pathogenesis of CIPN is still unclear. In the present study, we use the paclitaxel-induced peripheral neuropathy (PIPN) model, aiming to better understand the transcriptomic level of the Dorsal root ganglia (DRG) neurons in rats with PIPN. mRNA from each DRG sample was reverse transcribed to cDNA and sequenced using next-generation high throughput sequencing technology. Quantitative RT-PCR verification was used to confirm the identified Differentially expressed genes (DEGs) in the DRG of PIPN rats. RNAseq results have identified 384 DEGs (adjusted P-value < 0.05; fold change ≥ 2) in the DRG of rats 14 days after paclitaxel injection in total, including 97 up-regulated genes, and 287 down-regulated genes. GO analysis revealed that these DEGs were majorly involved in neuropeptide activity, chemokine receptor activity, defense response, and inflammatory response. Kyoto Encyclopedia of Gene and Genomes analysis showed that neuroactive ligand-receptor interaction and cytokine-cytokine receptor interaction were involved in sensory neurons of rats with PIPN. Besides, comparison analysis identified that 11 DEGs in the PIPN model are shared with either inflammatory pain (Ces1d, Cfd, Retn, and Fam150b) or neuropathic pain (Atf3, Csrp3, Ecel1, Gal, Sprr1a, Tgm1, and Vip). Quantitative RT-PCR results also confirmed the validation of the RNAseq data. These results suggested that neuroactive ligand-receptor interaction and cytokine-cytokine receptor interaction are majorly involved in sensory neurons of rats with PIPN. Immune, inflammatory responses and neuron functional changes are the major pathogenesis of PIPN. Paclitaxel-induced peripheral neuropathy has shared characteristics with both inflammatory pain and neuropathic pain.


Asunto(s)
Neuralgia , Paclitaxel , Ratas , Animales , Paclitaxel/efectos adversos , Ganglios Espinales/patología , Ligandos , Ratas Sprague-Dawley , Neuralgia/inducido químicamente , Neuralgia/genética , Neuralgia/patología , Citocinas , Células Receptoras Sensoriales , Perfilación de la Expresión Génica , Receptores de Citocinas
18.
Acta Neuropathol Commun ; 10(1): 178, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510334

RESUMEN

Evolving evidence has supported the existence of two anatomically distinct Lewy-related pathology (LRP) types. Investigation of spinal cord and peripheral LRP can elucidate mechanisms of Lewy body disorders and origins of synuclein accumulation. Still, very few unselected studies have focused on LRP in these regions. Here we analysed LRP in spinal cord, dorsal root ganglion, and adrenal gland in the population-based Vantaa 85 + study, including every ≥ 85 years old citizen living in the city of Vantaa in 1991 (n = 601). Samples from spinal cord (C6-7, TH3-4, L3-4, S1-2) were available from 303, lumbar dorsal root ganglion from 219, and adrenal gland from 164 subjects. Semiquantitative scores of LRP were determined from immunohistochemically stained sections (anti-alpha-synuclein antibody 5G4). LRP in the ventral and dorsal horns of spinal cord, thoracic intermediolateral column, dorsal root ganglion and adrenal gland were compared with brain LRP, previously determined according to DLB Consortium criteria and by caudo-rostral versus amygdala-based LRP classification. Spinal LRP was found in 28% of the total population and in 61% of those who had LRP in the brain. Spinal cord LRP was found only in those subjects with LRP in the brain, and the quantity of spinal cord LRP was associated with the severity of brain LRP (p < 0.001). Unsupervised K-means analysis identified two cluster types of spinal and brain LRP corresponding to caudo-rostral and amygdala-based LRP types. The caudo-rostral LRP type exhibited more frequent and severe pathology in spinal cord, dorsal root ganglion and adrenal gland than the amygdala-based LRP type. Analysis of specific spinal cord regions showed that thoracic intermediolateral column and sacral dorsal horn were the most frequently affected regions in both LRP types. This population-based study on brain, spinal and peripheral LRP provides support to the concept of at least two distinct LRP types.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Animales , Humanos , Anciano de 80 o más Años , Enfermedad por Cuerpos de Lewy/patología , Médula Espinal/patología , Encéfalo/patología , Ganglios Espinales/patología , Amígdala del Cerebelo/patología
19.
BMC Neurosci ; 23(1): 64, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36376788

RESUMEN

BACKGROUND: The pathogenesis of neuropathic pain (NP) has not been fully elucidated. Gene changes in dorsal root ganglia (DRG) may contribute to the development of NP. Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs that form covalently closed loop structures and are crucial for genetic and epigenetic regulation. However, little is known about circRNA changes in DRG neurons after peripheral nerve injury. METHODS: A sciatic nerve chronic constriction injury (CCI) model was established to induce neuropathic pain. We performed genome-wide circRNA analysis of four paired dorsal root ganglion (DRG) samples (L4-L5) from CCI and negative control (NC) rats using next-generation sequencing technology. The differentially expressed circRNAs (DEcircRNAs) were identified by differential expression analysis, and the expression profile of circRNAs was validated by quantitative PCR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to predict the function of DEcircRNAs. RESULTS: A total of 374 DEcircRNAs were identified between CCI and NC rats using circRNA high-throughput sequencing. Among them, 290 were upregulated and 84 were downregulated in the CCI group. The expression levels of nine DEcircRNAs were validated by qPCR. Functional annotation analysis showed that the DEcircRNAs were mainly enriched in pathways and functions, including 'dopaminergic synapse,' 'renin secretion,' 'mitogen-activated protein kinase signaling pathway,' and 'neurogenesis.' Competing endogenous RNA analysis showed that the top 50 circRNAs exhibited interactions with four pain-related microRNAs (miRNAs). Circ:chr2:33950934-33955969 was the largest node in the circRNA-miRNA interaction network. CONCLUSIONS: Peripheral nerve injury-induced neuropathic pain led to changes in the comprehensive expression profile of circRNAs in the DRG of rats. DEcircRNAs may advance our understanding of the molecular mechanisms underlying neuropathic pain.


Asunto(s)
MicroARNs , Neuralgia , Traumatismos de los Nervios Periféricos , Ratas , Animales , ARN Circular/genética , Ganglios Espinales/patología , Constricción , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Epigénesis Genética , Neuralgia/genética , MicroARNs/genética , MicroARNs/metabolismo , Perfilación de la Expresión Génica
20.
Brain Res Bull ; 191: 30-39, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36240908

RESUMEN

Low back and radicular pain syndromes, usually caused by local inflammation and irritation to the nerve root and dorsal root ganglion (DRG), are common throughout medical practice, but sufficient pain relief is scarce. In this study, we employed a chronic compression of DRG (CCD)-induced radicular pain model in rats to explore whether lysine-specific demethylase 1 (LSD1), a histone demethylase and transcriptional co-repressor, is involved in the pathological process of radicular pain. We found that LSD1 was expressed in various-sized DRG neurons by immunohistochemistry. CCD induced the upregulation of LSD1 in compressed L4-L5 DRGs. Moreover, either LSD1 small interfering RNAs or LSD1 inhibitor attenuated CCD-induced pain hypersensitivities. LSD1 was also upregulated in the injured lumbar 4 (L4) DRG in a spinal nerve ligation (SNL)-induced neuropathic pain mouse model. Nevertheless, LSD1 was not altered in L3-L5 DRGs in complete Freund's adjuvant-induced inflammatory pain mouse model, paclitaxel- or streptozotocin-induced neuropathic pain models. Furthermore, knockdown of LSD1 in the injured L4 DRG reversed SNL-induced pain hypersensitivities in mice. Therefore, we speculate that nerve injury induced the upregulation of LSD1 in the injured DRGs, which contributes to neuropathic pain hypersensitivities; thus, LSD1 may serve as a potential target for the treatment of radicular pain and neuropathic pain.


Asunto(s)
Hipersensibilidad , Neuralgia , Ratas , Ratones , Animales , Ganglios Espinales/patología , Lisina , Ratas Sprague-Dawley , Neuralgia/patología , Nervios Espinales/lesiones , Modelos Animales de Enfermedad , Hipersensibilidad/complicaciones , Hipersensibilidad/patología , Células Receptoras Sensoriales , Hiperalgesia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA