RESUMEN
The analysis of gangliosides and glycosphingolipids is crucial for understanding cellular membrane structure and function as well as to accurately diagnose certain inborn errors of metabolism. GM2-gangliosidosis represents a rare and fatal group of lysosomal storage disorders characterized by accumulation of GM2 gangliosides in various tissues and organs. These disorders arise due to deficiency or functional impairment of the ß-hexosaminidase A or B enzymes, which are responsible for degradation of GM2 ganglioside. Deficient enzyme activity primarily leads to the accumulation of GM2 gangliosides within the lysosomes of cells. Accurate and rapid diagnostic methods that detect increased levels of GM2 gangliosides in patients with GM2-gangliosidosis can play a significant role in early diagnosis and appropriate treatment of this condition. To address this need, we developed a multiplexed liquid chromatography-tandem mass spectrometry method targeting 84 species of gangliosides and other glycosphingolipids involved in ganglioside metabolism. Reproducibility, linearity, extraction efficiency, and sample stability were evaluated and proof-of-concept data obtained from analysis of serum samples from confirmed cases of GM2-gangliosidosis. This method has the potential to simultaneously monitor the biosynthesis of gangliosides and the lysosomal catabolic pathway serving as a valuable tool for screening and diagnosing an important group of lysosomal storage disorders.
Asunto(s)
Gangliósidos , Gangliosidosis GM2 , Glicoesfingolípidos , Espectrometría de Masas en Tándem , Gangliosidosis GM2/sangre , Humanos , Glicoesfingolípidos/sangre , Glicoesfingolípidos/metabolismo , Gangliósidos/sangre , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Reproducibilidad de los Resultados , Gangliósido G(M2)/sangre , Gangliósido G(M2)/metabolismoRESUMEN
The late-onset GM2 gangliosidoses, comprising late-onset Tay-Sachs and Sandhoff diseases, are rare, slowly progressive, neurogenetic disorders primarily characterized by neurogenic weakness, ataxia, and dysarthria. The aim of this longitudinal study was to characterize the natural history of late-onset GM2 gangliosidoses using a number of clinical outcome assessments to measure different aspects of disease burden and progression over time, including neurological, functional, and quality of life, to inform the design of future clinical interventional trials. Patients attending the United States National Tay-Sachs & Allied Diseases Family Conference between 2015 and 2019 underwent annual clinical outcome assessments. Currently, there are no clinical outcome assessments validated to assess late-onset GM2 gangliosidoses; therefore, instruments used or designed for diseases with similar features, or to address various aspects of the clinical presentations, were used. Clinical outcome assessments included the Friedreich's Ataxia Rating Scale, the 9-Hole Peg Test, and the Assessment of Intelligibility of Dysarthric Speech. Twenty-three patients participated in at least one meeting visit (late-onset Tay-Sachs, n = 19; late-onset Sandhoff, n = 4). Patients had high disease burden at baseline, and scores for the different clinical outcome assessments were generally lower than would be expected for the general population. Longitudinal analyses showed slow, but statistically significant, neurological progression as evidenced by worsening scores on the 9-Hole Peg Test (2.68%/year, 95% CI: 0.13-5.29; p = 0.04) and the Friedreich's Ataxia Rating Scale neurological examination (1.31 points/year, 95% CI: 0.26-2.35; p = 0.02). Time since diagnosis to study entry correlated with worsening scores on the 9-Hole Peg Test (r = 0.728; p < 0.001), Friedreich's Ataxia Rating Scale neurological examination (r = 0.727; p < 0.001), and Assessment of Intelligibility of Dysarthric Speech intelligibility (r = -0.654; p = 0.001). In summary, patients with late-onset GM2 gangliosidoses had high disease burden and slow disease progression. Several clinical outcome assessments suitable for clinical trials showed only small changes and standardized effect sizes (change/standard deviation of change) over 4 years. These longitudinal natural history study results illustrate the challenge of identifying responsive endpoints for clinical trials in rare, slowly progressive, neurogenerative disorders where arguably the treatment goal is to halt or decrease the rate of decline rather than improve clinical status. Furthermore, powering such a study would require a large sample size and/or a long study duration, neither of which is an attractive option for an ultra-rare disease with no available treatment. These findings support the development of potentially more sensitive late-onset GM2 gangliosidoses-specific rating instruments and/or surrogate endpoints for use in future clinical trials.
Asunto(s)
Progresión de la Enfermedad , Gangliosidosis GM2 , Calidad de Vida , Humanos , Masculino , Femenino , Adulto , Estudios Longitudinales , Gangliosidosis GM2/terapia , Evaluación de Resultado en la Atención de Salud , Persona de Mediana Edad , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/diagnóstico , Enfermedad de Tay-Sachs/fisiopatología , Costo de Enfermedad , Edad de Inicio , Adulto Joven , Adolescente , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/diagnóstico , Enfermedad de Sandhoff/patología , Enfermedad de Sandhoff/terapia , Enfermedad de Sandhoff/fisiopatología , NiñoRESUMEN
GM2 gangliosidoses (GM2) are a group of rare lysosomal storage disorders in which accumulation of GM2 gangliosides results in progressive central nervous system damage. The infantile GM2 phenotype is characterized by delays in milestones by 6 months of age, followed by rapid loss of motor, cognitive, and visual function. Advancements in early diagnosis and pharmacotherapies provide promise for improved outcomes. However, the lack of feasible and clinically meaningful clinical outcome assessments for GM2 poses a challenge to characterizing GM2 natural history and selecting clinical trial endpoints. The purpose of this study was to develop a remotely administered infantile GM2 rating scale to measure health-related function in children with infantile GM2. A 2-phase mixed methods design was employed. In phase 1 of the study, 8 families of children with Infantile GM2 completed a natural history survey and a 1:1 semistructured interview to provide caregiver perspectives on the impacts of GM2 on health-related function. In phase 2 of the study, 8 expert clinicians provided feedback via surveys and participated in videoconference-hosted focus groups to refine scale administration and scoring procedures. These methods guided the development of 16 scale items to assess function in 5 health-related function domains: vision, hand and arm use, communication, gross motor, and feeding. This study used caregiver perspectives and expert clinician feedback to develop a remotely administered clinical outcome assessment of clinically meaningful health-related function in children with infantile GM2. Future studies will further evaluate the feasibility, reliability, and validity of the Infantile GM2 Clinical Rating Scale.
Asunto(s)
Gangliosidosis GM2 , Humanos , Masculino , Femenino , Gangliosidosis GM2/diagnóstico , Lactante , Preescolar , Índice de Severidad de la EnfermedadRESUMEN
BACKGROUND AND OBJECTIVES: GM2 gangliosidoses, a group of autosomal-recessive neurodegenerative lysosomal storage disorders, result from ß-hexosaminidase (HEX) deficiency with GM2 ganglioside as its main substrate. Historically, GM2 gangliosidoses have been classified into infantile, juvenile, and late-onset forms. With disease-modifying treatment trials now on the horizon, a more fine-grained understanding of the disease course is needed. METHODS: We aimed to map and stratify the clinical course of GM2 gangliosidoses in a multicenter cohort of pediatric and adult patients. Patients were stratified according to age at onset and age at diagnosis. The 2 resulting GM2 disease clusters were characterized in-depth for respective disease features (detailed standardized clinical, laboratory, and MRI assessments) and disease evolution. RESULTS: In 21 patients with GM2 gangliosidosis (17 Tay-Sachs, 2 GM2 activator deficiency, 2 Sandhoff disease), 2 disease clusters were discriminated: an early-onset and early diagnosis cluster (type I; n = 8, including activator deficiency and Sandhoff disease) and a cluster with very variable onset and long interval until diagnosis (type II; n = 13 patients). In type I, rapid onset of developmental stagnation and regression, spasticity, and seizures dominated the clinical picture. Cherry red spot, startle reactions, and elevated AST were only seen in this cluster. In type II, problems with balance or gait, muscle weakness, dysarthria, and psychiatric symptoms were specific and frequent symptoms. Ocular signs were common, including supranuclear vertical gaze palsy in 30%. MRI involvement of basal ganglia and peritrigonal hyperintensity was seen only in type I, whereas predominant infratentorial atrophy (or normal MRI) was characteristic in type II. These types were, at least in part, associated with certain genetic variants. DISCUSSION: Age at onset alone seems not sufficient to adequately predict different disease courses in GM2 gangliosidosis, as required for upcoming trial planning. We propose an alternative classification based on age at disease onset and dynamics, predicted by clinical features and biomarkers, into type I-an early-onset, rapid progression cluster-and type II-a variable onset, slow progression cluster. Specific diagnostic workup, including GM2 gangliosidosis, should be performed in patients with combined ataxia plus lower motor neuron weakness to identify type II patients.
Asunto(s)
Gangliosidosis GM2 , Enfermedad de Sandhoff , Adulto , Humanos , Niño , Enfermedad de Sandhoff/diagnóstico por imagen , Enfermedad de Sandhoff/genética , Gangliosidosis GM2/diagnóstico por imagen , Gangliosidosis GM2/genética , Diagnóstico por Imagen , Ataxia , Progresión de la EnfermedadRESUMEN
OBJECTIVE: Late-onset GM2 gangliosidosis (LOGG) subtypes late-onset Tay-Sachs (LOTS) and Sandhoff disease (LOSD) are ultra-rare neurodegenerative lysosomal storage disorders presenting with weakness, ataxia, and neuropsychiatric symptoms. Previous studies considered LOTS and LOSD clinically indistinguishable; recent studies have challenged this. We performed a scoping review to ascertain whether imaging and clinical features may differentiate these diseases. METHODS: We examined MEDLINE/non-MEDLINE databases up to May 2022. Articles reporting brain imaging findings in genetically/enzymatically confirmed LOGG, symptom onset at age ≥ 10 years (or evaluated at least once ≥18 years) were included, yielding 170 LOGG patients (LOTS = 127, LOSD = 43) across 68 papers. We compared LOTS versus LOSD and performed regression analyses. Results were corrected for multiple comparisons. RESULTS: Age of onset was lower in LOTS versus LOSD (17.9 ± 8.2 vs. 23.9 ± 14.4 years, p = 0.017), although disease duration was similar (p = 0.34). LOTS more commonly had psychosis/bipolar symptoms (35.0% vs. 9.30%, p = 0.011) but less frequent swallowing problems (4.10% vs. 18.60%, p = 0.041). Cerebellar atrophy was more common in LOTS (89.0%) versus LOSD (60.5%), p < 0.0001, with more severe atrophy in LOTS (p = 0.0005). Brainstem atrophy was documented only in LOTS (14.2%). Independent predictors of LOTS versus LOSD (odds ratio [95% confidence interval]) included the presence of psychosis/bipolar symptoms (4.95 [1.59-19.52], p = 0.011), no swallowing symptoms (0.16 [0.036-0.64], p = 0.011), and cerebellar atrophy (5.81 [2.10-17.08], p = 0.0009). Lower age of onset (0.96 [0.93-1.00], p = 0.075) and tremor (2.50 [0.94-7.43], p = 0.078) were marginally statistically significant but felt relevant to include in the model. INTERPRETATION: These data suggest significant differences in symptomatology, disease course, and imaging findings between LOTS and LOSD.
Asunto(s)
Gangliosidosis GM2 , Enfermedades Neurodegenerativas , Trastornos Psicóticos , Humanos , Niño , Progresión de la Enfermedad , Atrofia , Gangliosidosis GM2/diagnóstico por imagenRESUMEN
GM2 gangliosidoses are a group of neurodegenerative lysosomal storage disorders that are characterized by the accumulation of GM2 gangliosides (GM2), leading to rapid neurological decline and death. The hydrolysis of GM2 requires the specific synthesis, processing, and combination of products of three genes-HEXA, HEXB, and GM2A-within the cell's lysosomes. Mutations in these genes result in Tay-Sachs disease, Sandhoff disease, or AB-variant GM2 gangliosidosis (ABGM2), respectively. ABGM2, the rarest of the three types, is characterized by a mutation in the GM2A gene, which encodes the GM2 activator (GM2A) protein. Being a monogenic disease, gene therapy is a plausible and likely effective method of treatment for ABGM2. This study aimed at assessing the effects of administering a one-time intravenous treatment of single-stranded Adeno-associated virus serotype 9 (ssAAV9)-GM2A viral vector at a dose of 1 × 1014 vector genomes (vg) per kilogram per mouse in an ABGM2 mouse model (Gm2a-/-). ssAAV9-GM2A was administered at 1-day (neonatal) or 6-weeks of age (adult-stage). The results demonstrated that, in comparison to Gm2a-/- mice that received a vehicle injection, the treated mice had reduced GM2 accumulation within the central nervous system and had long-term persistence of vector genomes in the brain and liver. This proof-of-concept study is a step forward towards the development of a clinically therapeutic approach for the treatment of patients with ABGM2.
Asunto(s)
Gangliosidosis GM2 , Enfermedad de Tay-Sachs , Humanos , Animales , Ratones , Dependovirus/genética , Serogrupo , Enfermedad de Tay-Sachs/terapia , Gangliosidosis GM2/genética , Gangliosidosis GM2/terapia , Proteína Activadora de G (M2)/genética , Terapia GenéticaRESUMEN
OBJECTIVE: GM2 gangliosidosis is usually fatal by 5 years of age in its 2 major subtypes, Tay-Sachs and Sandhoff disease. First reported in 1881, GM2 gangliosidosis has no effective treatment today, and children succumb to the disease after a protracted neurodegenerative course and semi-vegetative state. This study seeks to further develop adeno-associated virus (AAV) gene therapy for human translation. METHODS: Cats with Sandhoff disease were treated by intracranial injection of vectors expressing feline ß-N-acetylhexosaminidase, the enzyme deficient in GM2 gangliosidosis. RESULTS: Hexosaminidase activity throughout the brain and spinal cord was above normal after treatment, with highest activities at the injection sites (thalamus and deep cerebellar nuclei). Ganglioside storage was reduced throughout the brain and spinal cord, with near complete clearance in many regions. While untreated cats with Sandhoff disease lived for 4.4 ± 0.6 months, AAV-treated cats lived to 19.1 ± 8.6 months, and 3 of 9 cats lived >21 months. Correction of the central nervous system was so effective that significant increases in lifespan led to the emergence of otherwise subclinical peripheral disease, including megacolon, enlarged stomach and urinary bladder, soft tissue spinal cord compression, and patellar luxation. Throughout the gastrointestinal tract, neurons of the myenteric and submucosal plexuses developed profound pathology, demonstrating that the enteric nervous system was inadequately treated. INTERPRETATION: The vector formulation in the current study effectively treats neuropathology in feline Sandhoff disease, but whole-body targeting will be an important consideration in next-generation approaches. ANN NEUROL 2023;94:969-986.
Asunto(s)
Gangliosidosis GM2 , Enfermedad de Sandhoff , Niño , Animales , Gatos , Humanos , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , Enfermedad de Sandhoff/veterinaria , Insuficiencia Multiorgánica/terapia , Vectores Genéticos , Sistema Nervioso Central/patología , Terapia GenéticaRESUMEN
GM2 gangliosidosis is a group of genetic disorders that result in the accumulation of GM2 ganglioside (GM2) in brain cells, leading to progressive central nervous system (CNS) atrophy and premature death in patients. AB-variant GM2 gangliosidosis (ABGM2) arises from loss-of-function mutations in the GM2 activator protein (GM2AP), which is essential for the breakdown of GM2 in a key catabolic pathway required for CNS lipid homeostasis. In this study, we show that intrathecal delivery of self-complementary adeno-associated virus serotype-9 (scAAV9) harbouring a functional human GM2A transgene (scAAV9.hGM2A) can prevent GM2 accumulation in in GM2AP-deficient mice (Gm2a-/- mice). Additionally, scAAV9.hGM2A efficiently distributes to all tested regions of the CNS within 14 weeks post-injection and remains detectable for the lifespan of these animals (up to 104 weeks). Remarkably, GM2AP expression from the transgene scales with increasing doses of scAAV9.hGM2A (0.5, 1.0 and 2.0 × 1011 vector genomes (vg) per mouse), and this correlates with dose-dependent correction of GM2 accumulation in the brain. No severe adverse events were observed, and comorbidities in treated mice were comparable to those in disease-free cohorts. Lastly, all doses yielded corrective outcomes. These data indicate that scAAV9.hGM2A treatment is relatively non-toxic and tolerable, and biochemically corrects GM2 accumulation in the CNS-the main cause of morbidity and mortality in patients with ABGM2. Importantly, these results constitute proof-of-principle for treating ABGM2 with scAAV9.hGM2A by means of a single intrathecal administration and establish a foundation for future preclinical research.
Asunto(s)
Gangliósido G(M2) , Gangliosidosis GM2 , Humanos , Animales , Ratones , Gangliósido G(M2)/metabolismo , Mutación , Sistema Nervioso Central/metabolismo , Encéfalo/metabolismo , Proteína Activadora de G (M2)/genética , Gangliosidosis GM2/genéticaRESUMEN
BACKGROUND: Since the results of previous studies regarding the safety and efficacy of miglustat in GM2 gangliosidosis (GM2g) were inconsistent, we aimed to assess miglustat therapy in GM2g patients. METHODS: This study followed the latest version of PRISMA. We included the observational or interventional studies reporting GM2g patients under miglustat therapy by searching PubMed, Web of Science, and Scopus. Data extracted included the natural history of individual patient data, as well as the safety and efficacy of miglustat in GM2g patients. The quality assessment was performed using the Joanna Briggs Institute Critical Appraisal checklist. RESULTS: A total of 1023 records were identified and reduced to 621 after removing duplicates. After screening and applying the eligibility criteria, 10 articles and 2 abstracts met the inclusion criteria. Overall, the studies represented 54 patients with GM2g under treatment with miglustat and 22 patients with GM2g in the control group. Among patients with available data, 14 and 54 have been diagnosed with Sandhoff disease and Tay-Sachs disease, respectively. Patients included in this review consisted of 23 infantile, 4 late-infantile, 18 juvenile, and 31 adult-onset GM2g. CONCLUSIONS: Although miglustat should not be considered a definite treatment for GM2g, it appears that patients, particularly those with infantile or late-infantile GM2g, could benefit from miglustat therapy to some extent. We also make some suggestions regarding future studies presenting their findings in a standard format to facilitate pooling the available data in such rare diseases for a more comprehensive conclusion.
Asunto(s)
Gangliosidosis GM2 , Adulto , Humanos , Gangliosidosis GM2/tratamiento farmacológico , 1-Desoxinojirimicina/efectos adversosRESUMEN
The Unfolded protein response (UPR), triggered by stress in the endoplasmic reticulum (ER), is a key driver of neurodegenerative diseases. GM2 gangliosidosis, which includes Tay-Sachs and Sandhoff disease, is caused by an accumulation of GM2, mainly in the brain, that leads to progressive neurodegeneration. Previously, we demonstrated in a cellular model of GM2 gangliosidosis that PERK, a UPR sensor, contributes to neuronal death. There is currently no approved treatment for these disorders. Chemical chaperones, such as ursodeoxycholic acid (UDCA), have been found to alleviate ER stress in cell and animal models. UDCA's ability to move across the blood-brain barrier makes it interesting as a therapeutic tool. Here, we found that UDCA significantly diminished the neurite atrophy induced by GM2 accumulation in primary neuron cultures. It also decreased the up-regulation of pro-apoptotic CHOP, a downstream PERK-signaling component. To explore its potential mechanisms of action, in vitro kinase assays and crosslinking experiments were performed with different variants of recombinant protein PERK, either in solution or in reconstituted liposomes. The results suggest a direct interaction between UDCA and the cytosolic domain of PERK, which promotes kinase phosphorylation and dimerization.
Asunto(s)
Gangliosidosis GM2 , Enfermedad de Sandhoff , Animales , Atrofia , Gangliosidosis GM2/metabolismo , Neuritas/metabolismo , Enfermedad de Sandhoff/terapia , Ácido Ursodesoxicólico/farmacología , eIF-2 Quinasa/metabolismoRESUMEN
GM2-Gangliosidosis are a group of inherited lysosomal storage pathologies characterized by a large accumulation of GM2 ganglioside in the lysosome. They are caused by mutation in HEXA or HEXB causing reduced or absent activity of a lysosomal ß-hexosaminidase A, or mutation in GM2A causing defect in GM2 activator protein (GM2AP), an essential protein for the activity of the enzyme. Biochemical diagnosis relies on the measurement of ß-hexosaminidases A and B activities, which is able to detect lysosomal enzyme deficiency but fails to identify defects in GM2AP. We developed a rapid, specific and sensitive liquid chromatography-mass spectrometry-based method to measure simultaneously GM1, GM2, GM3 and GD3 molecular species. Gangliosides were analysed in plasma from 19 patients with GM2-Gangliosidosis: Tay-Sachs (n = 9), Sandhoff (n = 9) and AB variant of GM2-Gangliosidosis (n = 1) and compared to 20 age-matched controls. Among patients, 12 have a late adult-juvenile-onset and 7 have an infantile early-onset of the disease. Plasma GM2 molecular species were increased in all GM2-Gangliosidosis patients (19/19), including the patient with GM2A mutation, compared to control individuals and compared to patients with different other lysosomal storage diseases. GM234:1 and GM234:1/GM334:1 ratio discriminated patients from controls with 100% sensitivity and specificity. GM234:1 and GM234:1/GM334:1 were higher in patients with early-onset compared to those with late-onset of the disease, suggesting a relationship with severity. Longitudinal analysis in one adult with Tay-Sachs disease over 9 years showed a positive correlation of GM234:1 and GM234:1/GM334:1 ratio with age at sampling. We propose that plasma GM2 34:1 and its ratio to GM3 34:1 could be sensitive and specific biochemical diagnostic biomarkers for GM2-Gangliosidosis including AB variant and could be useful as a first line diagnostic test and potential biomarkers for monitoring upcoming therapeutic efficacy.
Asunto(s)
Gangliosidosis GM2 , Enfermedad de Sandhoff , Enfermedad de Tay-Sachs , Adulto , Humanos , Gangliósidos/metabolismo , Gangliósido G(M2)/metabolismo , Gangliosidosis GM2/diagnóstico , Gangliosidosis GM2/genética , Enfermedad de Tay-Sachs/diagnóstico , Enfermedad de Tay-Sachs/genética , Hexosaminidasa A , Biomarcadores , Enfermedad de Sandhoff/diagnóstico , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/metabolismo , beta-N-Acetilhexosaminidasas/metabolismoRESUMEN
Treatment of monogenic disorders has historically relied on symptomatic management with limited ability to target primary molecular deficits. However, recent advances in gene therapy and related technologies aim to correct these underlying deficiencies, raising the possibility of disease management or even prevention for diseases that can be treated pre-symptomatically. Tay-Sachs disease (TSD) would be one such candidate, however very little is known about the presymptomatic stage of TSD. To better understand the effects of TSD on brain development, we evaluated the transcriptomes of human fetal brain samples with biallelic pathogenic variants in HEXA. We identified dramatic changes in the transcriptome, suggesting a perturbation of normal development. We also observed a shift in the expression of the sphingolipid metabolic pathway away from production of the HEXA substrate, GM2 ganglioside, presumptively to compensate for dysfunction of the enzyme. However, we do not observe transcriptomic signatures of end-stage disease, suggesting that developmental perturbations precede neurodegeneration. To our knowledge, this is the first report of the relationship between fetal disease pathology in juvenile onset TSD and the analysis of gene expression in fetal TSD tissues. This study highlights the need to better understand the "pre-symptomatic" stage of disease to set realistic expectations for patients receiving early therapeutic intervention.
Asunto(s)
Gangliosidosis GM2 , Enfermedad de Tay-Sachs , Humanos , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/patología , Gangliosidosis GM2/genética , Gangliosidosis GM2/metabolismo , Encéfalo/patología , Expresión GénicaRESUMEN
BACKGROUND AND OBJECTIVES: GM2 gangliosidoses (Tay-Sachs and Sandhoff diseases) are rare, autosomal recessive, neurodegenerative diseases with no available symptomatic or disease-modifying treatments. This clinical trial investigated N-acetyl-l-leucine (NALL), an orally administered, modified amino acid in pediatric (≥6 years) and adult patients with GM2 gangliosidoses. METHODS: In this phase IIb, multinational, open-label, rater-blinded study (IB1001-202), male and female patients aged ≥6 years with a genetically confirmed diagnosis of GM2 gangliosidoses received orally administered NALL for a 6-week treatment period (4 g/d in patients ≥13 years, weight-tiered doses for patients 6-12 years), followed by a 6-week posttreatment washout period. For the primary Clinical Impression of Change in Severity analysis, patient performance on a predetermined primary anchor test (the 8-Meter Walk Test or the 9-Hole Peg Test) at baseline, after 6 weeks on NALL, and again after a 6-week washout period was videoed and evaluated centrally by blinded raters. Secondary outcomes included assessments of ataxia, clinical global impression, and quality of life. RESULTS: Thirty patients between the age of 6 and 55 years were enrolled. Twenty-nine had an on-treatment assessment and were included in the primary modified intention-to-treat analysis. The study met its CI-CS primary end point (mean difference 0.71, SD = 2.09, 90% CI 0.00, 1.50, p = 0.039), as well as secondary measures of ataxia and global impression. NALL was safe and well tolerated, with no serious adverse reactions. DISCUSSION: Treatment with NALL was associated with statistically significant and clinically relevant changes in functioning and quality of life in patients with GM2 gangliosidosis. NALL was safe and well tolerated, contributing to an overall favorable risk:benefit profile. NALL is a promising, easily administered (oral) therapeutic option for these rare, debilitating diseases with immense unmet medical needs. TRIAL REGISTRATION INFORMATION: The trial is registered with ClinicalTrials.gov (NCT03759665; registered on November 30, 2018), EudraCT (2018-004406-25), and DRKS (DRKS00017539). The first patient was enrolled on June 7, 2019. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that NALL improves outcomes for patients with GM2 gangliosidoses.
Asunto(s)
Gangliosidosis GM2 , Enfermedad de Sandhoff , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Ataxia , Gangliosidosis GM2/diagnóstico , Calidad de Vida , Enfermedad de Sandhoff/metabolismo , Enfermedad de Sandhoff/terapiaRESUMEN
PURPOSE: Gangliosidoses are a group of inherited neurogenetic autosomal recessive lysosomal storage disorders usually presenting with progressive macrocephaly, developmental delay, and regression, leading to significant morbidity and premature death. A quantitative definition of the natural history would support and enable clinical development of specific therapies. METHODS: Single disease registry of 8 gangliosidoses (NCT04624789). Cross-sectional analysis of baseline data in N = 26 patients. Primary end point: disease severity assessed by the 8-in-1 score. Secondary end points: first neurologic sign or symptom observed (1) by parents and (2) by physicians, diagnostic delay, as well as phenotypical characterization. Tertiary end points: neurologic outcomes (development, ataxia, dexterity) and disability. RESULTS: The 8-in-1 score quantitatively captured severity of disease. Parents recognized initial manifestations (startle reactions) earlier than physicians (motor developmental delay and hypotonia). Median diagnostic delay was 3.16 (interquartile range 0.69-6.25) years. In total, 8 patients presented with late-infantile phenotypes. CONCLUSION: Data in this registry raise awareness of these rare and fatal conditions to accelerate diagnosis, inform counseling of afflicted families, define quantitative end points for clinical trials, and can serve as historical controls for future therapeutic studies. We provide further insight into the rare late-infantile phenotype for GM2-gangliosidosis. Longitudinal follow up is planned.
Asunto(s)
Gangliosidosis GM2 , Gangliosidosis , Enfermedad de Tay-Sachs , Humanos , Estudios Transversales , Gangliosidosis GM2/diagnóstico , Gangliosidosis GM2/terapia , Diagnóstico Tardío , Gangliosidosis/diagnóstico , Sistema de Registros , Enfermedad de Tay-Sachs/genéticaRESUMEN
The gangliosidoses GM2 are a group of pathologies mainly affecting the central nervous system due to the impaired GM2 ganglioside degradation inside the lysosome. Under physiological conditions, GM2 ganglioside is catabolized by the ß-hexosaminidase A in a GM2 activator protein-dependent mechanism. In contrast, uncharged substrates such as globosides and some glycosaminoglycans can be hydrolyzed by the ß-hexosaminidase B. Monogenic mutations on HEXA, HEXB, or GM2A genes arise in the Tay-Sachs (TSD), Sandhoff (SD), and AB variant diseases, respectively. In this work, we validated a CRISPR/Cas9-based gene editing strategy that relies on a Cas9 nickase (nCas9) as a potential approach for treating GM2 gangliosidoses using in vitro models for TSD and SD. The nCas9 contains a mutation in the catalytic RuvC domain but maintains the active HNH domain, which reduces potential off-target effects. Liposomes (LPs)- and novel magnetoliposomes (MLPs)-based vectors were used to deliver the CRISPR/nCas9 system. When LPs were used as a vector, positive outcomes were observed for the ß-hexosaminidase activity, glycosaminoglycans levels, lysosome mass, and oxidative stress. In the case of MLPs, a high cytocompatibility and transfection ratio was observed, with a slight increase in the ß-hexosaminidase activity and significant oxidative stress recovery in both TSD and SD cells. These results show the remarkable potential of CRISPR/nCas9 as a new alternative for treating GM2 gangliosidoses, as well as the superior performance of non-viral vectors in enhancing the potency of this therapeutic approach.
Asunto(s)
Gangliosidosis GM2 , Enfermedad de Tay-Sachs , Desoxirribonucleasa I/metabolismo , Fibroblastos/metabolismo , Proteína Activadora de G (M2) , Gangliósido G(M2)/genética , Gangliósido G(M2)/metabolismo , Gangliosidosis GM2/genética , Gangliosidosis GM2/metabolismo , Gangliosidosis GM2/terapia , Edición Génica , Globósidos/metabolismo , Glicosaminoglicanos/metabolismo , Hexosaminidasa A/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Liposomas/metabolismo , Enfermedad de Tay-Sachs/genética , Enfermedad de Tay-Sachs/metabolismo , Enfermedad de Tay-Sachs/terapia , beta-N-Acetilhexosaminidasas/metabolismoRESUMEN
AB variant is the rarest form of GM2 gangliosidosis, neurodegenerative diseases caused by lysosomal accumulation of GM2 gangliosides. Less than thirty cases are referenced in the literature, and to date, no late-onset form has been described. Our proband is a 22-year-old male with spinocerebellar ataxia and lower limbs motor deficiency. His symptoms started at the age of 10. A genetic analysis revealed two mutations in the GM2A gene encoding the GM2 activator protein (GM2-AP), an essential co-factor of hexosaminidase A. Both mutations, GM2A:c.79A > T:p.Lys27* and GM2A:c.415C > T:p.Pro139Ser, were inherited respectively from his father and his mother. The nonsense mutation was predicted to be likely pathogenic, but the missense mutation was of unknown significance. To establish the pathogenicity of this variant, we studied GM2 accumulation and GM2A gene expression. Electron microscopy and immunofluorescence performed on patient's fibroblasts did not reveal any lysosomal accumulation of GM2. There was also no difference in GM2A gene expression using RT-qPCR, and both mutations were found on cDNA Sanger sequencing. Measurement of plasma gangliosides by liquid-phase chromatography-tandem mass spectrometry showed an accumulation of GM2 in our patient's plasma at 83.5 nmol/L, and a GM2/GM3 ratio at 0.066 (median of negative control at 30.2 nmol/L [19.7-46.8] and 0.019 respectively). Therefore, the association of both p.Lys27* and p.Pro169Ser mutations leads to a GM2-AP functional deficiency. Whereas the first mutation is more likely to be linked with infantile form of GM2 gangliosidosis, the hypomorphic p.Pro169Ser variant may be the first associated with a late-onset form of AB variant.
Asunto(s)
Gangliosidosis GM2 , Humanos , Masculino , Adulto Joven , Proteína Activadora de G (M2)/genética , Gangliósido G(M2)/metabolismo , Gangliósidos , Gangliosidosis GM2/genética , Mutación/genéticaRESUMEN
BACKGROUND: GM2 gangliosidosis is a neurodegenerative, lysosomal storage disease caused by the deficiency of ß-hexosaminidase A enzyme (Hex A), an α/ß-subunit heterodimer. A novel variant of the human hexosaminidase α-subunit, coded by HEX M, has previously been shown to form a stable homodimer, Hex M, that hydrolyzes GM2 gangliosides (GM2) in vivo. MATERIALS & METHODS: The current study assessed the efficacy of intravenous (IV) delivery of a self-complementary adeno-associated virus serotype 9 (scAAV9) vector incorporating the HEXM transgene, scAAV9/HEXM, including the outcomes based on the dosages provided to the Sandhoff (SD) mice. Six-week-old SD mice were injected with either 2.5E+12 vector genomes (low dose, LD) or 1.0E+13 vg (high dose, HD). We hypothesized that when examining the dosage comparison for scAAV9/HEXM in adult SD mice, the HD group would have more beneficial outcomes than the LD cohort. Assessments included survival, behavioral outcomes, vector biodistribution, and enzyme activity within the central nervous system. RESULTS: Toxicity was observed in the HD cohort, with 8 of 14 mice dying within one month of the injection. As compared to untreated SD mice, which have typical survival of 16 weeks, the LD cohort and the remaining HD mice had a significant survival benefit with an average/median survival of 40.6/34.5 and 55.9/56.7 weeks, respectively. Significant behavioral, biochemical and molecular benefits were also observed. The second aim of the study was to investigate the effects of IV mannitol infusions on the biodistribution of the LD scAAV9/HEXM vector and the survival of the SD mice. Increases in both the biodistribution of the vector as well as the survival benefit (average/median of 41.6/49.3 weeks) were observed. CONCLUSION: These results demonstrate the potential benefit and critical limitations of the treatment of GM2 gangliosidosis using IV delivered AAV vectors.
Asunto(s)
Gangliosidosis GM2 , Enfermedad de Sandhoff , Animales , Hexosaminidasas , Humanos , Ratones , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , Distribución Tisular , beta-N-Acetilhexosaminidasas/genéticaRESUMEN
PURPOSE: Late-onset Tay-Sachs disease (LOTS) is a form of GM2 gangliosidosis, an autosomal recessive neurodegenerative disorder characterized by slowly progressive cerebellar ataxia, lower motor neuron disease, and psychiatric impairment due to mutations in the HEXA gene. The aim of our work was to identify the characteristic brain MRI findings in this presumably underdiagnosed disease. METHODS: Clinical data and MRI findings from 16 patients (10F/6 M) with LOTS from two centers were independently assessed by two readers and compared to 16 age- and sex-related controls. RESULTS: Lower motor neuron disease (94%), psychiatric symptoms-psychosis (31%), cognitive impairment (38%) and depression (25%)-and symptoms of cerebellar impairment including dysarthria (94%), ataxia (81%) and tremor (69%), were the most common clinical features. On MRI, pontocerebellar atrophy was a constant finding. Compared to controls, LOTS patients had smaller mean middle cerebellar peduncle diameter (p < 0.0001), mean superior cerebellar peduncle diameter (p = 0.0002), mesencephalon sagittal area (p = 0.0002), pons sagittal area (p < 0.0001), and larger 4th ventricle transversal diameter (p < 0.0001). Mild corpus callosum thinning (37.5%), mild cortical atrophy (18.8%), and white matter T2 hyperintensities (12.5%) were also present. CONCLUSION: Given the characteristic clinical course and MRI findings of the pontocerebellar atrophy, late-onset Tay-Sachs disease should be considered in the differential diagnosis of adult-onset cerebellar ataxias.
Asunto(s)
Enfermedades Cerebelosas , Gangliosidosis GM2 , Enfermedad de la Neurona Motora , Enfermedad de Tay-Sachs , Adulto , Atrofia , Humanos , Enfermedades de Inicio Tardío , Imagen por Resonancia Magnética , Enfermedad de Tay-Sachs/diagnóstico por imagen , Enfermedad de Tay-Sachs/genéticaRESUMEN
AIMS: Tay-Sachs and Sandhoff diseases (GM2 gangliosidosis) are autosomal recessive disorders of lysosomal function that cause progressive neurodegeneration in infants and young children. Impaired hydrolysis catalysed by ß-hexosaminidase A (HexA) leads to the accumulation of GM2 ganglioside in neuronal lysosomes. Despite the storage phenotype, the role of autophagy and its regulation by mTOR has yet to be explored in the neuropathogenesis. Accordingly, we investigated the effects on autophagy and lysosomal integrity using skin fibroblasts obtained from patients with Tay-Sachs and Sandhoff diseases. RESULTS: Pathological autophagosomes with impaired autophagic flux, an abnormality confirmed by electron microscopy and biochemical studies revealing the accelerated release of mature cathepsins and HexA into the cytosol, indicating increased lysosomal permeability. GM2 fibroblasts showed diminished mTOR signalling with reduced basal mTOR activity. Accordingly, provision of a positive nutrient signal by L-arginine supplementation partially restored mTOR activity and ameliorated the cytopathological abnormalities. INNOVATION: Our data provide a novel molecular mechanism underlying GM2 gangliosidosis. Impaired autophagy caused by insufficient lysosomal function might represent a new therapeutic target for these diseases. CONCLUSIONS: We contend that the expression of autophagy/lysosome/mTOR-associated molecules may prove useful peripheral biomarkers for facile monitoring of treatment of GM2 gangliosidosis and neurodegenerative disorders that affect the lysosomal function and disrupt autophagy.