Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.127
Filtrar
1.
Methods Mol Biol ; 2808: 57-70, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743362

RESUMEN

RNA viruses generate defective genomes naturally during virus replication. Defective genomes that interfere with the infection dynamics either through resource competition or by interferon stimulation are known as defective interfering (DI) genomes. DI genomes can be successfully packaged into virus-like-particles referred to as defective interfering particles (DIPs). Such DIPs can sustainably coexist with the full-length virus particles and have been shown to negatively impact virus replication in vitro and in vivo. Here, we describe a method to generate a clonal DI genome population by reverse genetics. This method is applicable to other RNA viruses and will enable assessment of DIPs for their antiviral properties.


Asunto(s)
Virus Defectuosos , Genoma Viral , Morbillivirus , Genética Inversa , Replicación Viral , Genética Inversa/métodos , Virus Defectuosos/genética , Animales , Replicación Viral/genética , Morbillivirus/genética , Humanos , Virión/genética , Células Vero , Chlorocebus aethiops , ARN Viral/genética
2.
Methods Mol Biol ; 2808: 89-103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743364

RESUMEN

The study of virus-host interactions is essential to achieve a comprehensive understanding of the viral replication process. The commonly used methods are yeast two-hybrid approach and transient expression of a single tagged viral protein in host cells followed by affinity purification of interacting cellular proteins and mass spectrometry analysis (AP-MS). However, by these approaches, virus-host protein-protein interactions are detected in the absence of a real infection, not always correctly compartmentalized, and for the yeast two-hybrid approach performed in a heterologous system. Thus, some of the detected protein-protein interactions may be artificial. Here we describe a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect protein partners during the infection (AP-MS in viral context). This way, virus-host protein-protein interacting co-complexes can be purified directly from infected cells for further characterization.


Asunto(s)
Interacciones Huésped-Patógeno , Virus del Sarampión , Genética Inversa , Proteínas Virales , Virus del Sarampión/genética , Humanos , Interacciones Huésped-Patógeno/genética , Genética Inversa/métodos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Técnicas del Sistema de Dos Híbridos , Replicación Viral , Espectrometría de Masas , Mapeo de Interacción de Proteínas/métodos , Sarampión/virología , Sarampión/metabolismo , Animales , Unión Proteica
3.
Viruses ; 16(4)2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38675907

RESUMEN

Rotavirus A (RVA) is the leading cause of diarrhea requiring hospitalization in children and causes over 100,000 annual deaths in Sub-Saharan Africa. In order to generate next-generation vaccines against African RVA genotypes, a reverse genetics system based on a simian rotavirus strain was utilized here to exchange the antigenic capsid proteins VP4, VP7 and VP6 with those of African human rotavirus field strains. One VP4/VP7/VP6 (genotypes G9-P[6]-I2) triple-reassortant was successfully rescued, but it replicated poorly in the first cell culture passages. However, the viral titer was enhanced upon further passaging. Whole genome sequencing of the passaged virus revealed a single point mutation (A797G), resulting in an amino acid exchange (E263G) in VP4. After introducing this mutation into the VP4-encoding plasmid, a VP4 mono-reassortant as well as the VP4/VP7/VP6 triple-reassortant replicated to high titers already in the first cell culture passage. However, the introduction of the same mutation into the VP4 of other human RVA strains did not improve the rescue of those reassortants, indicating strain specificity. The results show that specific point mutations in VP4 can substantially improve the rescue and replication of recombinant RVA reassortants in cell culture, which may be useful for the development of novel vaccine strains.


Asunto(s)
Proteínas de la Cápside , Virus Reordenados , Rotavirus , Replicación Viral , Rotavirus/genética , Proteínas de la Cápside/genética , Humanos , Virus Reordenados/genética , Animales , Mutación , Línea Celular , Genética Inversa/métodos , Genotipo , Mutación Puntual , Infecciones por Rotavirus/virología , Genoma Viral , Antígenos Virales/genética , Antígenos Virales/inmunología
4.
BMC Vet Res ; 20(1): 162, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678249

RESUMEN

BACKGROUND: Canine distemper virus (CDV) is a pathogen with the capability of cross-species transmission. It has crossed the species barrier to infect many other species, and its host range is expanding. The reverse genetic platform, a useful tool for scientific research, allows the generation of recombinant viruses from genomic cDNA clones in vitro. METHODS: To improve the reverse genetic system of CDV, a plasmid containing three independent expression cassettes was constructed for co-expression of the N, P, and L genes and then transfected with a full-length cDNA clone of CDV into Vero cells. RESULTS: The results indicated that the established rescue system has the advantages of being more convenient, easy to control the transfection ratio, and high rescue efficiency compared with the conventional reverse genetics system. CONCLUSION: This method not only reduces the number of transfection plasmids, but also improves the rescue efficiency of CDV, which could provide a reference for the recovery of other morbilliviruses.


Asunto(s)
Virus del Moquillo Canino , Plásmidos , Virus del Moquillo Canino/genética , Animales , Células Vero , Chlorocebus aethiops , Plásmidos/genética , Transfección , Genética Inversa/métodos , ADN Complementario/genética , Moquillo/virología
5.
Viruses ; 16(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38543754

RESUMEN

The H274Y substitution (N2 numbering) in neuraminidase (NA) N1 confers oseltamivir resistance to A(H1N1) influenza viruses. This resistance has been associated with reduced N1 expression using transfected cells, but the effect of this substitution on the enzymatic properties and on the expression of other group-1-NA subtypes is unknown. The aim of the present study was to evaluate the antiviral resistance, enzymatic properties, and expression of wild-type (WT) and H274Y-substituted NA for each group-1-NA. To this end, viruses with WT or H274Y-substituted NA (N1pdm09 or avian N4, N5 or N8) were generated by reverse genetics, and for each reverse-genetic virus, antiviral susceptibility, NA affinity (Km), and maximum velocity (Vm) were measured. The enzymatic properties were coupled with NA quantification on concentrated reverse genetic viruses using mass spectrometry. The H274Y-NA substitution resulted in highly reduced inhibition by oseltamivir and normal inhibition by zanamivir and laninamivir. This resistance was associated with a reduced affinity for MUNANA substrate and a conserved Vm in all viruses. NA quantification was not significantly different between viruses carrying WT or H274Y-N1, N4 or N8, but was lower for viruses carrying H274Y-N5 compared to those carrying a WT-N5. In conclusion, the H274Y-NA substitution of different group-1-NAs systematically reduced their affinity for MUNANA substrate without a significant impact on NA Vm. The impact of the H274Y-NA substitution on viral NA expression was different according to the studied NA.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Humanos , Oseltamivir/farmacología , Antivirales/farmacología , Virus de la Influenza A/genética , Neuraminidasa/genética , Neuraminidasa/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Genética Inversa , Farmacorresistencia Viral/genética , Sustitución de Aminoácidos , Inhibidores Enzimáticos/farmacología
6.
Viruses ; 16(3)2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38543776

RESUMEN

Rotaviruses are a significant cause of severe, potentially life-threatening gastroenteritis in infants and the young of many economically important animals. Although vaccines against porcine rotavirus exist, both live oral and inactivated, their effectiveness in preventing gastroenteritis is less than ideal. Thus, there is a need for the development of new generations of porcine rotavirus vaccines. The Ohio State University (OSU) rotavirus strain represents a Rotavirus A species with a G5P[7] genotype, the genotype most frequently associated with rotavirus disease in piglets. Using complete genome sequences that were determined via Nanopore sequencing, we developed a robust reverse genetics system enabling the recovery of recombinant (r)OSU rotavirus. Although rOSU grew to high titers (~107 plaque-forming units/mL), its growth kinetics were modestly decreased in comparison to the laboratory-adapted OSU virus. The reverse genetics system was used to generate the rOSU rotavirus, which served as an expression vector for a foreign protein. Specifically, by engineering a fused NSP3-2A-UnaG open reading frame into the segment 7 RNA, we produced a genetically stable rOSU virus that expressed the fluorescent UnaG protein as a functional separate product. Together, these findings raise the possibility of producing improved live oral porcine rotavirus vaccines through reverse-genetics-based modification or combination porcine rotavirus vaccines that can express neutralizing antigens for other porcine enteric diseases.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Humanos , Animales , Porcinos , Genética Inversa , Ohio , Universidades , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/veterinaria , Gastroenteritis/prevención & control , Gastroenteritis/veterinaria
7.
J Virol ; 98(3): e0163823, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38353536

RESUMEN

Reverse genetics systems have played a central role in developing recombinant viruses for a wide spectrum of virus research. The circular polymerase extension reaction (CPER) method has been applied to studying positive-strand RNA viruses, allowing researchers to bypass molecular cloning of viral cDNA clones and thus leading to the rapid generation of recombinant viruses. However, thus far, the CPER protocol has only been established using cap-dependent RNA viruses. Here, we demonstrate that a modified version of the CPER method can be successfully applied to positive-strand RNA viruses that use cap-independent, internal ribosomal entry site (IRES)-mediated translation. As a proof-of-concept, we employed mammalian viruses with different types (classes I, II, and III) of IRES to optimize the CPER method. Using the hepatitis C virus (HCV, class III), we found that inclusion in the CPER assembly of an RNA polymerase I promoter and terminator, instead of those from polymerase II, allowed greater viral production. This approach was also successful in generating recombinant bovine viral diarrhea virus (class III) following transfection of MDBK/293T co-cultures to overcome low transfection efficiency. In addition, we successfully generated the recombinant viruses from clinical specimens. Our modified CPER could be used for producing hepatitis A virus (HAV, type I) as well as de novo generation of encephalomyocarditis virus (type II). Finally, we generated recombinant HCV and HAV reporter viruses that exhibited replication comparable to that of the wild-type parental viruses. The recombinant HAV reporter virus helped evaluate antivirals. Taking the findings together, this study offers methodological advances in virology. IMPORTANCE: The lack of versatility of reverse genetics systems remains a bottleneck in viral research. Especially when (re-)emerging viruses reach pandemic levels, rapid characterization and establishment of effective countermeasures using recombinant viruses are beneficial in disease control. Indeed, numerous studies have attempted to establish and improve the methods. The circular polymerase extension reaction (CPER) method has overcome major obstacles in generating recombinant viruses. However, this method has not yet been examined for positive-strand RNA viruses that use cap-independent, internal ribosome entry site-mediated translation. Here, we engineered a suitable gene cassette to expand the CPER method for all positive-strand RNA viruses. Furthermore, we overcame the difficulty of generating recombinant viruses because of low transfection efficiency. Using this modified method, we also successfully generated reporter viruses and recombinant viruses from a field sample without virus isolation. Taking these findings together, our adapted methodology is an innovative technology that could help advance virologic research.


Asunto(s)
Hepatitis C , Biosíntesis de Proteínas , Genética Inversa , Animales , Hepatitis C/metabolismo , Sitios Internos de Entrada al Ribosoma/genética , Mamíferos/genética , Virus ARN Monocatenarios Positivos/genética , Virus ARN Monocatenarios Positivos/metabolismo , Genética Inversa/métodos , ARN Viral/genética
8.
Methods Mol Biol ; 2751: 47-68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38265709

RESUMEN

The most important advances in our understanding of the viral life cycle, such as genome replication, packaging, transmission, and host interactions, have been made via the development of viral infectious full-length clones. Here, we describe the detailed protocols for the construction of an infectious clone derived from Botrytis virus F (BVF), a mycoflexivirus infecting the plant pathogenic fungus Botrytis cinerea, the determination of the complete sequence of the cloned mycovirus, the preparation of fungal protoplasts, and the transfection of protoplasts using transcripts derived from the BVF infectious clone.


Asunto(s)
Enfermedades Transmisibles , Virus Fúngicos , Botrytis , Genética Inversa
9.
J Virol ; 98(2): e0196423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289100

RESUMEN

Guanarito virus (GTOV) is the causative agent of Venezuelan hemorrhagic fever. GTOV belongs to the genus Mammarenavirus, family Arenaviridae and has been classified as a Category A bioterrorism agent by the United States Centers for Disease Control and Prevention. Despite being a high-priority agent, vaccines and drugs against Venezuelan hemorrhagic fever are not available. GTOV S-26764, isolated from a non-fatal human case, produces an unclear cytopathic effect (CPE) in Vero cells, posing a significant obstacle to research and countermeasure development efforts. Vero cell-adapted GTOV S-26764 generated in this study produced clear CPE and demonstrated rapid growth and high yield in Vero cells compared to the original GTOV S-26764. We developed a reverse genetics system for GTOV to study amino acid changes acquired through Vero cell adaptation and leading to virus phenotype changes. The results demonstrated that E1497K in the L protein was responsible for the production of clear plaques as well as enhanced viral RNA replication and transcription efficiency. Vero cell-adapted GTOV S-26764, capable of generating CPE, will allow researchers to easily perform neutralization assays and anti-drug screening against GTOV. Moreover, the developed reverse genetics system will accelerate vaccine and antiviral drug development.IMPORTANCEGuanarito virus (GTOV) is a rodent-borne virus. GTOV causes fever, prostration, headache, arthralgia, cough, sore throat, nausea, vomiting, diarrhea, epistaxis, bleeding gums, menorrhagia, and melena in humans. The lethality rate is 23.1% or higher. Vero cell-adapted GTOV S-26764 shows a clear cytopathic effect (CPE), whereas the parental virus shows unclear CPE in Vero cells. We generated a reverse genetics system to rescue recombinant GTOVs and found that E1497K in the L protein was responsible for the formation of clear plaques as well as enhanced viral RNA replication and transcription efficiency. This reverse genetic system will accelerate vaccine and antiviral drug developments, and the findings of this study contribute to the understanding of the function of GTOV L as an RNA polymerase.


Asunto(s)
Arenaviridae , Genética Inversa , Animales , Femenino , Humanos , Arenaviridae/genética , Infecciones por Arenaviridae/virología , Arenavirus del Nuevo Mundo/genética , Chlorocebus aethiops , Fiebres Hemorrágicas Virales/virología , Fenotipo , Genética Inversa/métodos , Vacunas , Células Vero
10.
Phytopathology ; 114(1): 282-293, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37366568

RESUMEN

Hibiscus green spot virus 2 (HGSV-2), a member of the genus Higrevirus (family Kitaviridae), is a positive-stranded RNA virus associated with leprosis-like symptoms in citrus and green spots on leaves in hibiscus. HGSV-2 has only been reported in Hawaii, and while it is speculated that mites in the genus Brevipalpus might be responsible for its transmission, proper transmission assays have yet to be conducted. This study characterizes additional citrus and hibiscus isolates of HGSV-2 collected from two Hawaiian Islands. We constructed an infectious cDNA clone from a hibiscus isolate of HGSV-2 collected on Oahu and demonstrated its ability to infect several experimental hosts, including Phaseolus vulgaris, Nicotiana tabacum, and N. benthamiana, as well as natural hosts, Citrus reticulata and Hibiscus arnottianus. Bacilliform virions with varied sizes of 33 to 120 nm (length) and 14 to 70 nm (diameter) were observed in partially purified preparations obtained from agroinoculated leaves. Virus progeny from the infectious cDNA clone was found to be infectious after mechanical transmission to N. benthamiana and to cause local lesions. Finally, an isoline colony of the mite Brevipalpus azores had vector competence to transmit a citrus isolate of HGSV-2 collected from Maui to citrus and hibiscus plants, demonstrating the mite-borne nature of HGSV-2. The infectious cDNA clone developed in this study is the first reverse-genetics system for a kitavirid and will be fundamental to better characterize basic biology of HGSV-2 and its interactions with host plants and mite vectors.


Asunto(s)
Citrus , Hibiscus , Ácaros , Virus de Plantas , Virus ARN , Animales , Hibiscus/genética , ADN Complementario/genética , Genética Inversa , Virus de Plantas/genética , Enfermedades de las Plantas , Virus ARN/genética , Ácaros/genética
11.
Methods Mol Biol ; 2733: 155-174, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064032

RESUMEN

The infectious clone has been constructed for years via various mechanisms using reverse genetics of viral RNA into cDNA. The mechanism of construction has evolved to DNA-launch plasmids which simplify infectious clone manipulation and expression in mammalian cells. Infectious clones have enormously allowed manipulation of the enterovirus genome to discover antivirals, viral replication mechanisms, and functions of essential viral proteins. Here we will be discussing methods for the production of DNA-launch human enterovirus infectious clones and viral genome engineered with a fluorescent reporter gene.


Asunto(s)
Enterovirus , Humanos , Células Clonales , Clonación Molecular , ADN Complementario/genética , Enterovirus/genética , Plásmidos/genética , Genética Inversa , ARN Viral/genética
12.
Methods Mol Biol ; 2733: 75-86, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064027

RESUMEN

New World fruit bats were recently found to harbor two distinct and previously unknown influenza A viruses (IAVs) of the subtypes H17N10 and H18N11. Although viral genome sequences were detected in the liver, intestine, lung, and kidney of infected bats and the complete genome sequences have been isolated from their rectal swab samples, all attempts to isolate an infectious virus from bats in nature have failed. The lack of an infectious bat IAV isolate was overcome by reverse genetic approaches that led to the generation of an infectious virus in vitro. Using such synthetic bat IAVs enabled the identification of their unconventional cell entry via major histocompatibility complex II (MCH-II) molecules and their ability to replicate in mice, ferrets, and bats. Importantly, we also showed that these synthetic recombinant bat IAVs are not able to reassort with conventional IAVs, preventing the acquisition of enhanced transmission properties in non-bat species by reassortment with conventional IAVs. As authentic viruses are key for understanding the molecular biology of bat IAVs, in this chapter, we describe our recently established reverse genetics protocol for generating H17N10 and H18N11 in vitro. This step-by-step protocol starts with cloning of cDNA copies of the viral RNA segments into reverse genetics plasmids, followed by the generation of a highly concentrated stock and finally a method to determine viral titers.


Asunto(s)
Quirópteros , Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Ratones , Virus de la Influenza A/genética , Genética Inversa , Hurones/genética
13.
Methods Mol Biol ; 2733: 1-14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064023

RESUMEN

Filoviruses are causative agents of severe hemorrhagic fevers with high case fatality rates in humans. For studies of virus biology and the subsequent development of countermeasures, reverse genetic systems, and especially those facilitating the generation of recombinant filoviruses, are indispensable. Here, we describe the generation of recombinant filoviruses from cDNA.


Asunto(s)
Ebolavirus , Filoviridae , Fiebre Hemorrágica Ebola , Humanos , Filoviridae/genética , Genética Inversa , ADN Complementario/genética , Ebolavirus/genética
14.
Methods Mol Biol ; 2733: 101-113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064029

RESUMEN

Rift Valley fever virus (RVFV) is an important mosquito-borne virus that can cause severe disease manifestations in humans including ocular damage, vision loss, late-onset encephalitis, and hemorrhagic fever. In ruminants, RVFV can cause high mortality rates in young animals and high rates of abortion in pregnant animals resulting in an enormous negative impact on the economy of affected regions. To date, no licensed vaccines in humans or anti-RVFV therapeutics for animal or human use are available. The development of reverse genetics has facilitated the generation of recombinant infectious viruses that serve as powerful tools for investigating the molecular biology and pathogenesis of RVFV. Infectious recombinant RVFV can be rescued entirely from cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis and generate live-attenuated vaccines. In this chapter, we will describe the experimental procedures for the implementation of RVFV reverse genetics.


Asunto(s)
Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Animales , Humanos , Virus de la Fiebre del Valle del Rift/genética , Fiebre del Valle del Rift/genética , Fiebre del Valle del Rift/prevención & control , Genética Inversa , Vacunas Atenuadas/genética , Mutación
15.
Methods Mol Biol ; 2733: 15-35, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064024

RESUMEN

Paramyxoviruses place significant burdens on both human and wildlife health; while some paramyxoviruses are established within human populations, others circulate within diverse animal reservoirs. Concerningly, bat-borne paramyxoviruses have spilled over into humans with increasing frequency in recent years, resulting in severe disease. The risk of future zoonotic outbreaks, as well as the persistence of paramyxoviruses that currently circulate within humans, highlights the need for efficient tools through which to interrogate paramyxovirus biology. Reverse genetics systems provide scientists with the ability to rescue paramyxoviruses de novo, offering versatile tools for implementation in both research and public health settings. Reverse genetics systems have greatly improved over the past 30 years, with several key innovations optimizing the success of paramyxovirus rescue. Here, we describe the significance of such advances and provide a generally applicable guide for the development and use of reverse genetics systems for the rescue of diverse members of Paramyxoviridae.


Asunto(s)
Infecciones por Paramyxoviridae , Paramyxoviridae , Animales , Humanos , Paramyxoviridae/genética , Genética Inversa/métodos , Animales Salvajes , Salud Pública , ARN Viral , Infecciones por Paramyxoviridae/epidemiología , Filogenia
16.
Methods Mol Biol ; 2733: 115-131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064030

RESUMEN

Several mammarenaviruses cause hemorrhagic fever (HF) disease in humans and pose a significant public health problem in their endemic regions. The Old World (OW) mammarenavirus Lassa virus (LASV) is estimated to infect several hundred thousand people yearly in West Africa, resulting in high numbers of Lassa fever (LF) cases, a disease associated with high morbidity and mortality. No licensed vaccines are available to combat LASV infection, and anti-LASV drug therapy is limited to the off-label use of ribavirin whose efficacy remains controversial. The development of reverse genetics approaches has provided investigators with a powerful approach for the investigation of the molecular, cell biology and pathogenesis of mammarenaviruses. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in viral genome replication and gene transcription, assembly, and budding, which has facilitated the identification of several anti-mammarenavirus candidate drugs. Likewise, it is possible now to rescue infectious recombinant mammarenaviruses from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of viral pathogenesis. Reverse genetics have also allowed the generation of mammarenaviruses expressing foreign genes to facilitate virus detection, to identify antiviral drugs, and to generate live-attenuated vaccine (LAV) candidates. Likewise, reverse genetics techniques have allowed the generation of single-cycle infectious, reporter-expressing mammarenaviruses to study some aspects of the biology of HF-causing human mammarenavirus without the need of high security biocontainment laboratories. In this chapter, we describe the experimental procedures to generate recombinant (r)LASV using state-of-the-art plasmid-based reverse genetics.


Asunto(s)
Arenaviridae , Fiebres Hemorrágicas Virales , Fiebre de Lassa , Humanos , Virus Lassa/genética , Genética Inversa/métodos , Arenaviridae/genética , Plásmidos/genética
17.
Methods Mol Biol ; 2733: 47-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064026

RESUMEN

Influenza A (FLUAV) and influenza B (FLUBV) viruses are human and/or animal pathogens widely studied due to their importance to public health and animal production. Both FLUAV and FLUBV possess a genome composed of eight viral gene segments. For reverse genetics of influenza viruses, transcription of the mRNA for the viral proteins is typically done from a plasmid encoding an RNA polymerase II (pol II) promoter element upstream of cloned viral cDNA and expressed like host mRNA. On the other side, the synthesis of the negative-sense, single-stranded, uncapped vRNAs can be accomplished by the host's RNA polymerase I (pol I). The reverse genetics for influenza has allowed the manipulation of influenza genomes incorporating heterogeneous sequences into different segments of the influenza genome, such as reporter genes. In this chapter, we outline the protocol from the generation of reverse genetic plasmid that can be applied for the cloning of any of the segments of FLUAV or FLUBV. Furthermore, we describe a protocol for generating FLUAV or FLUBV recombinant viruses carrying Nanoluciferase (NLuc) in the PB1 gene using reverse genetics. Finally, we delineate a microneutralization protocol using FLUAV-NLuc or FLUBV-NLuc viruses optimized for the use of antibodies from different sources (mice, ferrets, avian, etc.), which provides a more sensitive, reliable, and avidity-independent method to assess the presence of neutralizing antibodies against FLUAV or FLUBV.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Animales , Humanos , Ratones , Genética Inversa/métodos , Hurones/genética , Virus de la Influenza B/genética , Virus de la Influenza A/genética , ARN Mensajero
18.
Methods Mol Biol ; 2733: 133-153, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064031

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new member of the Coronaviridae family responsible for the coronavirus disease 19 (COVID-19) pandemic. To date, SARS-CoV-2 has been accountable for over 624 million infection cases and more than 6.5 million human deaths. The development and implementation of SARS-CoV-2 reverse genetics approaches have allowed researchers to genetically engineer infectious recombinant (r)SARS-CoV-2 to answer important questions in the biology of SARS-CoV-2 infection. Reverse genetics techniques have also facilitated the generation of rSARS-CoV-2 expressing reporter genes to expedite the identification of compounds with antiviral activity in vivo and in vitro. Likewise, reverse genetics has been used to generate attenuated forms of the virus for their potential implementation as live-attenuated vaccines (LAV) for the prevention of SARS-CoV-2 infection. Here we describe the experimental procedures for the generation of rSARS-CoV-2 using a well-established and robust bacterial artificial chromosome (BAC)-based reverse genetics system. The protocol allows to produce wild-type and mutant rSARS-CoV-2 that can be used to understand the contribution of viral proteins and/or amino acid residues in viral replication and transcription, pathogenesis and transmission, and interaction with cellular host factors.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Cromosomas Artificiales Bacterianos/genética , Genética Inversa/métodos , Replicación Viral/genética
19.
Methods Mol Biol ; 2733: 185-206, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064034

RESUMEN

Zika virus (ZIKV) is a mosquito-borne member of the Flaviviridae family that has become a global threat to human health. Although ZIKV has been known to circulate for decades causing mild febrile illness, the more recent ZIKV outbreaks in the Americas and the Caribbean have been associated with severe neurological disorders and congenital abnormalities. The development of ZIKV reverse genetics approaches have allowed researchers to address key questions on the biology of ZIKV by genetically engineering infectious recombinant (r)ZIKV. This has resulted in a better understanding of the biology of ZIKV infections, including viral pathogenesis, molecular mechanisms of viral replication and transcription, or the interaction of viral and host factors, among others aspects. In addition, reverse genetics systems have facilitated the identification of anti-ZIKV compounds and the development of new prophylactic approaches to combat ZIKV infections. Different reverse genetics strategies have been implemented for the recovery of rZIKV. All these reverse genetics systems have faced and overcome multiple challenges, including the viral genome size, the toxicity of viral sequences in bacteria, etc. In this chapter we describe the generation of a ZIKV full-length complementary (c)DNA infectious clone based on the use of a bacterial artificial chromosome (BAC) and the experimental procedures for the successful recovery of rZIKV. Importantly, the protocol described in this chapter provides a powerful method for the generation of infectious clones of other flaviviruses with genomes that have stability problems during bacterial propagation.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Humanos , Virus Zika/genética , Cromosomas Artificiales Bacterianos/genética , Genética Inversa/métodos , ADN Complementario/genética , Replicación Viral
20.
Methods Mol Biol ; 2733: 231-248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38064036

RESUMEN

Dengue virus (DENV) is one of the most important and widespread arthropod-borne viruses, causing millions of infections over the years. Considering its epidemiological importance, efforts have been directed towards understanding various aspects of DENV biology, which have been facilitated by the development of different molecular strategies for engineering viral genomes, such as reverse genetics approaches. Reverse genetic systems are a powerful tool for investigating virus-host interaction, for vaccine development, and for high-throughput screening of antiviral compounds. However, stable manipulation of DENV genomes is a major molecular challenge, especially when using conventional cloning systems. To circumvent this issue, we describe a simple and efficient yeast-based reverse genetics system to recover infectious DENV clones.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Virus del Dengue/genética , Genética Inversa , Ensayos Analíticos de Alto Rendimiento , Genoma Viral , Dengue/genética , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA