Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.350
Filtrar
1.
Environ Int ; 187: 108670, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669720

RESUMEN

Antibiotics are extensively utilized in the livestock and poultry industry and can accumulate in animals and the environment, leading to potential health risks for humans via food and water consumption. Research on antibiotic toxicity, particularly their impact as endocrine disruptors on the male reproductive system, is still in its nascent stages. This review highlights the toxic effect of antibiotics on the male reproductive system, detailing the common routes of exposure and the detrimental impact and mechanisms of various antibiotic classes. Additionally, it discusses the protective role of food-derived active substances against the reproductive toxicity induced by antibiotics. This review aims to raise awareness about the reproductive toxicity of antibiotics in males and to outline the challenges that must be addressed in future research.


Asunto(s)
Antibacterianos , Disruptores Endocrinos , Masculino , Antibacterianos/toxicidad , Animales , Humanos , Disruptores Endocrinos/toxicidad , Reproducción/efectos de los fármacos , Genitales Masculinos/efectos de los fármacos
2.
Ecotoxicol Environ Saf ; 276: 116300, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583312

RESUMEN

Bisphenol AF (BPAF), an analogue of bisphenol A (BPA), is commonly found in manufacturing industries and known for its endocrine-disrupting properties. Despite potential similarities in adverse effects with BPA, limited toxicological data exist specifically for BPAF and its impact on male reproductive physiology. This mini-review aims to elucidate the influence of BPAF on the male reproductive system, focusing on estrogenic effects, effects on the hypothalamus-pituitary-gonad (HPG) axis, steroidogenesis, spermatogenesis, and transgenerational reproductive toxicity. Additionally, we outline the current insights into the potential mechanisms underlying BPAF-induced male reproductive disorders. BPAF exposure, either directly or maternally, has been associated with detrimental effects on male reproductive functions, including damage to the blood-testis barrier (BTB) structure, disruptions in steroidogenesis, testis dysfunction, decreased anogenital distance (AGD), and defects in sperm and semen quality. Mechanistically, altered gene expression in the HPG axis, deficits in the steroidogenesis pathway, activation of the aromatase pathway, cascade effects induced by reactive oxygen species (ROS), activation of ERK signaling, and immunological responses collectively contribute to the adverse effects of BPAF on the male reproductive system. Given the high prevalence of male reproductive issues and infertility, along with the widespread environmental distribution of bisphenols, this study provides valuable insights into the negative effects of BPAF. The findings underscore the importance of considering the safe use of this compound, urging further exploration and regulatory attention to decrease potential risks associated with BPAF exposure.


Asunto(s)
Compuestos de Bencidrilo , Disruptores Endocrinos , Fluorocarburos , Fenoles , Masculino , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Humanos , Animales , Salud Reproductiva , Reproducción/efectos de los fármacos , Genitales Masculinos/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Testículo/efectos de los fármacos
3.
Artículo en Inglés | MEDLINE | ID: mdl-38240636

RESUMEN

The escalation of technological advancements, coupled with the increased use of hazardous chemicals, has emerged as a significant concern for human health. Exposure to environmental pollutants like heavy metals and pesticides (insecticides, herbicides and fungicides) is known to significantly contribute to various health problems, particularly affecting reproductive health. Disturbances in reproductive potential and reproductive toxicity in males are particularly worrisome. Existing literature suggests that exposure to these environmental pollutants significantly alters male reproductive parameters. Thus, it is imperative to thoroughly analyze, comprehend, and evaluate their impact on male reproductive toxicity. Oxidative stress and disruptions in redox equilibrium are major factors through which these pollutants induce changes in sperm parameters and affect the reproductive system. Insecticides, fungicides, and herbicides act as endocrine disruptors, interfering with the secretion and function of reproductive hormones such as testosterone and luteinizing hormone (LH), consequently impacting spermatogenesis. Additionally, heavy metals are reported to bio-accumulate in reproductive organs, acting as endocrine disruptors and triggering oxidative stress. The co-operative association of these pollutants can lead to severe damage. In this comprehensive review, we have conducted an in-depth analysis of the impact of these environmental pollutants on the male reproductive system, shedding light on the underlying mechanisms of action.


Asunto(s)
Contaminantes Ambientales , Genitales Masculinos , Metales Pesados , Plaguicidas , Humanos , Masculino , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales , Contaminantes Ambientales/toxicidad , Genitales Masculinos/efectos de los fármacos , Metales Pesados/toxicidad , Estrés Oxidativo/efectos de los fármacos , Plaguicidas/toxicidad , Reproducción/efectos de los fármacos
4.
Environ Res ; 212(Pt A): 113157, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35318009

RESUMEN

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are a large family of persistent industrial chemicals with endocrine disrupting properties. OBJECTIVES: To examine biomarkers of reproductive function in young adult males according to current environmental exposure to single and combined PFAS. METHODS: The study population consisted of young men (n = 1041, age 18-21) from the Fetal Programming of Semen Quality (FEPOS) cohort. These men were recruited from pregnancies included in the Danish National Birth Cohort (DNBC) between 1996 and 2002. From 2017 to 2019, participants answered an online questionnaire, completed a clinical examination and provided a blood and a semen sample. Exposure to 15 PFAS was measured in plasma. Six compounds were quantified above the limit of detection in at least 80% of the participants. We applied negative binomial regression and weighted quantile sum (WQS) regression models to assess associations between single and combined exposure to PFAS and measures of semen quality, testicular volume and reproductive hormones among the young men. RESULTS: We found no consistent associations between plasma concentrations of PFAS, semen quality and testicular volume. Higher levels of single and combined PFAS were associated with slightly higher levels of follicle-stimulating hormone (FSH) (WQS 4% difference, 95% confidence interval: 0, 9). Perfluorooctanoic acid (PFOA) was the main contributor to this finding with positive signals also from perfluorodecanoic acid (PFDA) and perfluorohexane sulfonic acid (PFHxS). DISCUSSION: We examined exposure to a range of common PFAS in relation to biomarkers of male reproductive function and found an association with higher levels of FSH among young men from the general population in Denmark. Further studies on especially combined exposure to PFAS are needed to expand our understanding of potential endocrine disruption from both legacy and emerging compounds in relation to male reproductive function.


Asunto(s)
Ácidos Alcanesulfónicos , Exposición a Riesgos Ambientales , Contaminantes Ambientales , Fluorocarburos , Genitales Masculinos , Adolescente , Adulto , Ácidos Alcanesulfónicos/administración & dosificación , Estudios Transversales , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/efectos adversos , Fluorocarburos/efectos adversos , Hormona Folículo Estimulante/sangre , Genitales Masculinos/efectos de los fármacos , Humanos , Masculino , Análisis de Semen , Adulto Joven
5.
Environ Sci Pollut Res Int ; 29(31): 47488-47501, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35182342

RESUMEN

Nicotine is the most abundant ingredient in cigarette smoking and has serious side effects on the lung, heart, reproductive system, and many other human organs. Saponins extracted from many plants exhibit multiple biological actions such as anti-cancer effects. Therefore, the possible protective effect of fenugreek saponin (FS) and nanofenugreek saponin (NFS) against nicotine-induced toxicity in male rats was investigated in this study. Animals were divided into a control group and the nicotine (1.5 mg/kg/day), FS (25, 50, and 100 mg/kg/day), or/and NFS (20, 40, and 80 mg/kg/day) administered groups. Micronucleus assay, histopathological, and sperm abnormality examinations as well as measurement of the acetylcholinesterase (AChE) gene expression were conducted. Our findings revealed that nicotine treatment induced significant increases in the incidence of micronucleus, sperm abnormalities, and expression levels of AChE in addition to inducing histopathological changes in rat testis. On the other hand, administration of FS or NFS with nicotine significantly decreased the incidence of micronuclei and the percentage of sperm abnormalities as well as the expression levels of AChE gene. Moreover, nicotine-induced histological alterations were reduced by given FS or NFS with nicotine. In conclusion, nicotine-induced sperm abnormalities, chromosomal damage, and histological injuries were mitigated by administration of FS or NFS with nicotine, and thus, FS and NFS could be used as ameliorating agents against nicotine toxicity.


Asunto(s)
Genitales Masculinos , Nanopartículas , Nicotina , Saponinas , Trigonella , Acetilcolinesterasa/metabolismo , Animales , Genitales Masculinos/efectos de los fármacos , Genitales Masculinos/fisiopatología , Masculino , Mutágenos/farmacología , Nicotina/efectos adversos , Ratas , Saponinas/farmacología , Semillas/química , Espermatozoides , Testículo , Trigonella/química
6.
Eur J Endocrinol ; 186(3): 307-318, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35000898

RESUMEN

CONTEXT: The time course of male reproductive hormone recovery after stopping injectable testosterone undecanoate (TU) treatment is not known. OBJECTIVE: The aim of this study was to investigate the rate, extent, and determinants of reproductive hormone recovery over 12 months after stopping TU injections. MATERIALS AND METHODS: Men (n = 303) with glucose intolerance but without pathologic hypogonadism who completed a 2-year placebo (P)-controlled randomized clinical trial of TU treatment were recruited for further 12 months while remaining blinded to treatment. Sex steroids (testosterone (T), dihydrotestosterone, oestradiol, oestrone) by liquid chromatography-mass sprectometry, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and sex hormone-binding globulin (SHBG) by immunoassays and sexual function questionnaires (Psychosexual Diary Questionnaire, International Index of Erectile Function, and short form survey (SF-12)) were measured at entry (3 months after the last injection) and 6, 12, 18, 24, 40, and 52 weeks later. RESULTS: In the nested cohort of TU-treated men, serum T was initially higher but declined at 12 weeks remaining stable thereafter with serum T and SHBG at 11 and 13%, respectively, lower than P-treated men. Similarly, both questionnaires showed initial carry-over higher scores in T-treated men but after 18 weeks showed no difference between T- and P-treated men. Initially, fully suppressed serum LH and FSH recovered slowly towards the participant's own pre-treatment baseline over 12 months since the last injection. CONCLUSIONS: After stopping 2 years of 1000 mg injectable TU treatment, full reproductive hormone recovery is slow and progressive over 15 months since the last testosterone injection but may take longer than 12 months to be complete. Persistent proportionate reduction in serum SHBG and T reflects lasting exogenous T effects on hepatic SHBG secretion rather than androgen deficiency.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Genitales Masculinos/efectos de los fármacos , Intolerancia a la Glucosa/tratamiento farmacológico , Hipogonadismo/tratamiento farmacológico , Testosterona/análogos & derivados , Anciano , Estudios de Cohortes , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/fisiopatología , Dihidrotestosterona/sangre , Hormona Folículo Estimulante/sangre , Estudios de Seguimiento , Genitales Masculinos/fisiología , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/fisiopatología , Humanos , Hipogonadismo/sangre , Hipogonadismo/fisiopatología , Hipogonadismo/rehabilitación , Inyecciones , Hormona Luteinizante/sangre , Masculino , Persona de Mediana Edad , Calidad de Vida , Recuperación de la Función/efectos de los fármacos , Conducta Sexual/efectos de los fármacos , Testosterona/administración & dosificación , Testosterona/sangre , Testosterona/farmacología , Privación de Tratamiento
7.
J Biomol Struct Dyn ; 40(13): 6027-6038, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33480323

RESUMEN

Androgen-disruptors are chemicals that interfere with the biosynthesis, metabolism or function of endogenous androgens affecting normal male reproductive development and health. Several epidemiological studies have indicated a link between exposure to androgen disrupting chemicals with reduced sperm counts and increased infertility. The actions of androgens within target cells are transduced by the androgen receptors (ARs). Chlorpyrifos (CPF), a chlorinated organophosphorus pesticide, is known to cause impairment in both male and female reproductive systems. Recent publications have shown molecular interactions of CPF and its environmental degradation products with human progesterone receptor and human estrogen receptor. Exposure to CPF causes a marked reduction in sperm counts with lowering in serum testosterone level, which suggests possible molecular interaction of CPF with AR. The investigation to reveal the possibility and the extent of binding of CPF and some of its degradation products (chlorpyrifos-oxon [CPYO], desethyl chlorpyrifos [DEC], trichloromethoxypyridine [TMP] and trichloropyridinol [TCP]) with AR using molecular docking simulation are reported. The findings of the present docking, binding energy and molecular dynamics studies reveal that CPF and its degradation products may bind to ARs and act as a potent androgen disruptor.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Cloropirifos , Genitales Masculinos , Insecticidas , Receptores Androgénicos , Andrógenos , Cloropirifos/efectos adversos , Cloropirifos/química , Femenino , Genitales Masculinos/efectos de los fármacos , Humanos , Insecticidas/efectos adversos , Insecticidas/química , Masculino , Simulación del Acoplamiento Molecular , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos , Recuento de Espermatozoides , Testosterona/sangre
8.
Front Endocrinol (Lausanne) ; 12: 696106, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803904

RESUMEN

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a well-known environmental poison that exist in the environment for many years. However, its effect on the male reproductive system has not been clearly stated. We conducted a meta-analysis of the effect of TCDD on the male reproductive system of rodents about TCDD. Results showed that that TCDD exposure reduced the testis weight (weighted mean difference [WMD]: -0.035, 95% confidence interval [CI]: -0.046 to -0.025), sperm count (WMD: -35, 95% CI: -42.980 to -27.019), and blood testosterone concentration (WMD: -0.171, 95% CI: -0.269 to -0.073). According to our research results, TCDD can cause damage to the male reproductive system of rodents through direct or indirect exposure. In order to further explore the potential hazards of TCDD to humans, more human-related research needs to be carried out.


Asunto(s)
Genitales Masculinos/efectos de los fármacos , Modelos Animales , Dibenzodioxinas Policloradas/toxicidad , Animales , Análisis de Datos , Contaminantes Ambientales/toxicidad , Genitales Masculinos/fisiología , Humanos , Masculino , Salud del Hombre , Roedores , Análisis de Semen , Pruebas de Toxicidad/estadística & datos numéricos
9.
Molecules ; 26(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500629

RESUMEN

Emerging evidence from in vivo as well as in vitro studies indicates that natural biomolecules may play important roles in the prevention or management of a wide array of chronic diseases. Furthermore, the use of natural compounds in the treatment of male sub- or infertility has been proposed as a potential alternative to conventional therapeutic options. As such, we aimed to evaluate the effects of selected natural biomolecules on the sperm production, structural integrity, and functional activity. At the same time, we reviewed their possible beneficial or adverse effects on male reproductive health. Using relevant keywords, a literature search was performed to collect currently available information regarding molecular mechanisms by which selected natural biomolecules exhibit their biological effects in the context of male reproductive dysfunction. Evidence gathered from clinical trials, in vitro experiments and in vivo studies suggest that the selected natural compounds affect key targets related to sperm mitochondrial metabolism and motion behavior, oxidative stress, inflammation, DNA integrity and cell death. The majority of reports emphasize on ameliorative, stimulating and protective effects of natural biomolecules on the sperm function. Nevertheless, possible adverse and toxic behavior of natural compounds has been indicated as well, pointing out to a possible dose-dependent impact of natural biomolecules on the sperm survival and functionality. As such, further research leading to a deeper understanding of the beneficial or adverse roles of natural compounds is necessary before these can be employed for the management of male reproductive dysfunction.


Asunto(s)
Productos Biológicos/farmacología , Espermatozoides/efectos de los fármacos , Animales , Genitales Masculinos/efectos de los fármacos , Humanos , Masculino , Motilidad Espermática/efectos de los fármacos
10.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360825

RESUMEN

Metal oxide nanoparticles (MONPs) are inorganic materials that have become a valuable tool for many industrial sectors, especially in healthcare, due to their versatility, unique intrinsic properties, and relatively inexpensive production cost. As a consequence of their wide applications, human exposure to MONPs has increased dramatically. More recently, their use has become somehow controversial. On one hand, MONPs can interact with cellular macromolecules, which makes them useful platforms for diagnostic and therapeutic interventions. On the other hand, research suggests that these MONPs can cross the blood-testis barrier and accumulate in the testis. Although it has been demonstrated that some MONPs have protective effects on male germ cells, contradictory reports suggest that these nanoparticles compromise male fertility by interfering with spermatogenesis. In fact, in vitro and in vivo studies indicate that exposure to MONPs could induce the overproduction of reactive oxygen species, resulting in oxidative stress, which is the main suggested molecular mechanism that leads to germ cells' toxicity. The latter results in subsequent damage to proteins, cell membranes, and DNA, which ultimately may lead to the impairment of the male reproductive system. The present manuscript overviews the therapeutic potential of MONPs and their biomedical applications, followed by a critical view of their potential risks in mammalian male fertility, as suggested by recent scientific literature.


Asunto(s)
Genitales Masculinos/efectos de los fármacos , Nanopartículas del Metal/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Óxidos/efectos adversos , Espermatogénesis/efectos de los fármacos , Animales , Humanos , Masculino , Compuestos Orgánicos/efectos adversos , Especies Reactivas de Oxígeno/metabolismo
11.
Front Endocrinol (Lausanne) ; 12: 656106, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122335

RESUMEN

Pyrethroids may be related to male reproductive system damage. However, the results of many previous studies are contradictory and uncertain. Therefore, a systematic review and a meta-analysis were performed to assess the relationship between pyrethroid exposure and male reproductive system damage. A total of 72 articles were identified, among which 57 were selected for meta-analysis, and 15 were selected for qualitative analysis. Pyrethroid exposure affected sperm count (SMD= -2.0424; 95% CI, -2.4699 to -1.6149), sperm motility (SMD=-3.606; 95% CI, -4.5172 to -2.6948), sperm morphology (SMD=2.686; 95% CI, 1.9744 to 3.3976), testis weight (SMD=-1.1591; 95% CI, -1.6145 to -0.7038), epididymal weight (SMD=-1.1576; 95% CI, -1.7455 to -0.5697), and serum testosterone level (SMD=-1.9194; 95% CI, -2.4589 to -1.3798) in the studies of rats. We found that gestational and lactational exposure to pyrethroids can reduce sperm count (SMD=1.8469; 95% CI, -2.9010 to -0.7927), sperm motility (SMD=-2.7151; 95% CI, -3.9574 to -1.4728), testis weight (SMD=-1.4361; 95% CI, -1.8873 to -0.9848), and epididymal weight (SMD=-0.6639; 95% CI, -0.9544 to -0.3733) of F1 offspring. Exposure to pyrethroids can increase malondialdehyde (SMD=3.3451; 95% CI 1.9914 to 4.6988) oxide in testes and can reduce the activities of glutathione (SMD=-2.075; 95% CI -3.0651 to -1.0848), superoxide dismutase (SMD=-2.4856; 95% CI -3.9612 to -1.0100), and catalase (SMD=-2.7564; 95% CI -3.9788 to -1.5340). Pyrethroid exposure and oxidative stress could damage male sperm quality. Gestational and lactational pyrethroid exposure affects the reproductive system of F1 offspring.


Asunto(s)
Genitales Masculinos/patología , Insecticidas/toxicidad , Estrés Oxidativo , Efectos Tardíos de la Exposición Prenatal/patología , Piretrinas/toxicidad , Animales , Animales Recién Nacidos , Femenino , Genitales Masculinos/efectos de los fármacos , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Roedores
12.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808818

RESUMEN

Dichlorodiphenyltrichloroethane (DDT) is the most widespread, persistent pollutant and endocrine disruptor on the planet. Although DDT has been found to block androgen receptors, the effects of its low-dose exposure in different periods of ontogeny on the male reproductive system remain unclear. We evaluate sex steroid hormone production in the pubertal period and after maturation in male Wistar rats exposed to low doses of o,p'-DDT, either during prenatal and postnatal development or postnatal development alone. Prenatally and postnatally exposed rats exhibit lower testosterone production and increased estradiol and estriol serum levels after maturation, associated with the delayed growth of gonads. Postnatally exposed rats demonstrate accelerated growth of gonads and higher testosterone production in the pubertal period. In contrast to the previous group, they do not present raised estradiol production. All of the exposed animals exhibit a reduced conversion of progesterone to 17OH-progesterone after sexual maturation, which indicates putative attenuation of sex steroid production. Thus, the study reveals age-dependent outcomes of low-dose exposure to DDT. Prenatal onset of exposure results in the later onset of androgen production and the enhanced conversion of androgens to estrogens after puberty, while postnatal exposure induces the earlier onset of androgen secretion.


Asunto(s)
Andrógenos/biosíntesis , DDT/farmacología , Disruptores Endocrinos/farmacología , Exposición a Riesgos Ambientales/efectos adversos , Estrógenos/biosíntesis , Animales , DDT/administración & dosificación , Disruptores Endocrinos/administración & dosificación , Femenino , Genitales Masculinos/efectos de los fármacos , Genitales Masculinos/metabolismo , Hormonas Esteroides Gonadales/biosíntesis , Gónadas/efectos de los fármacos , Gónadas/metabolismo , Masculino , Ratas
13.
BMC Complement Med Ther ; 21(1): 31, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441114

RESUMEN

BACKGROUND: The dysfunction of the thyroid gland is a common medical condition. Nowadays, patients frequently use medicinal herbs as complementary or alternative options to conventional drug treatments. These patients may benefit from treatment of thyroid dysfunctions with Potentilla alba L. preparations. While it has been reported that Potentilla alba preparations have low toxicity, nothing is known about their ability to affect reproductive functions in patients of childbearing age. METHODS: Male Wistar rats were orally treated with a thyrotrophic botanical drug, standardized Potentilla alba Dry Extract (PADE), at doses 8 and 40 times higher than the median therapeutic dose recommended for the clinical trials, for 60 consecutive days. Male Wistar rats receiving water (H2O) were used as controls. After completing treatment, half of the PADE-treated and control males were used to determine PADE gonadotoxicity, and the remaining half of PADE-treated and control males were mated with intact females. Two female rats were housed with one male for two estrus cycles. PADE effects on fertility and fetal/offspring development were evaluated. RESULTS: Herein, we report that oral treatment of male Wistar rats with PADE before mating with intact females instigated marked effects on male reproductive organs. Treatment significantly decreased the motility of the sperm and increased the number of pathological forms of spermatozoa. Additionally, a dose-dependent effect on Leydig cells was observed. However, these PADE effects did not significantly affect male fertility nor fetal and offspring development when PADE-treated males were mated with intact females. CONCLUSIONS: PADE treatment of male rates negatively affected sperm and testicular Leydig cell morphology. However, these changes did not affect male fertility and offspring development. It is currently not known whether PADE treatment may affect human male fertility and offspring development. Therefore, these results from an animal study need to be confirmed in humans. Results from this animal study can be used to model the exposure-response relationship and adverse outcomes in humans.


Asunto(s)
Desarrollo Fetal/efectos de los fármacos , Genitales Masculinos/efectos de los fármacos , Extractos Vegetales/toxicidad , Potentilla/química , Animales , Femenino , Fertilidad/efectos de los fármacos , Masculino , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Ratas , Ratas Wistar , Espermatozoides/efectos de los fármacos , Enfermedades de la Tiroides/tratamiento farmacológico , Aumento de Peso/efectos de los fármacos
14.
Toxicol Appl Pharmacol ; 411: 115370, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33338516

RESUMEN

BACKGROUND: Inorganic arsenic (iAs) is a worldwide environmental pollutant which exerts complicated and various toxic effects in organisms. Increasingly epidemic studies have revealed the association between iAs exposure and adult male reproductive impairment. Consistent with the proposal for toxicity testing in the 21st century (TT21C), the adverse outcome pathway (AOP) framework may help unravel the iAs-caused molecular and functional changes leading to male reproductive impairment. METHOD: Combining CTD's phenotype-disease inference data, iAs-phenotypes were anchored to five male reproductive diseases induced by iAs, and local network topological algorithm was applied in prioritizing their interference significance. Through integrating analysis in AOP Wiki knowledge base, filtered phenotypes were linked to key events consisting of AOPs and assembled together based on evidentially upstream and downstream relationships. RESULTS: A subset of 655 phenotypes were filtered from CTD as potential key events and showed a significant coherence in five reproductive diseases wherein 39 significant phenotypes showed a good clustering features involving cell cycle, ROS and mitochondria function. Two AOP subnetworks were enriched in AOP Wiki where testosterone reduction and apoptosis of sperm served as focus events respectively. Besides, a candidates list of molecular initialing events was provided of which glucocorticoid receptor activation was overall assessed as an example. CONCLUSION: This study applied computational and bioinformatics methods in generating AOPs for arsenic reproductive toxicity, which identified the imperative roles of testosterone reduction, response to ROS, spermatogenesis and provided a global view about their internal association. Furthermore, this study helped address the existing knowledge gaps for future experimental verification.


Asunto(s)
Arsénico/toxicidad , Genitales Masculinos/efectos de los fármacos , Infertilidad Masculina/inducido químicamente , Reproducción/efectos de los fármacos , Biología de Sistemas , Enfermedades Testiculares/inducido químicamente , Algoritmos , Animales , Apoptosis/efectos de los fármacos , Análisis por Conglomerados , Bases de Datos Genéticas , Fertilidad/efectos de los fármacos , Genitales Masculinos/metabolismo , Genitales Masculinos/fisiopatología , Humanos , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/fisiopatología , Masculino , Fenotipo , Enfermedades Testiculares/genética , Enfermedades Testiculares/metabolismo , Enfermedades Testiculares/fisiopatología , Testosterona/deficiencia , Toxicogenética
15.
Nat Rev Urol ; 18(1): 19-32, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33214706

RESUMEN

Marijuana is the most widely consumed recreational drug worldwide, which raises concerns for its potential effects on fertility. Many aspects of human male reproduction can be modulated by cannabis-derived extracts (cannabinoids) and their endogenous counterparts, known as endocannabinoids (eCBs). These latter molecules act as critical signals in a variety of physiological processes through receptors, enzymes and transporters collectively termed the endocannabinoid system (ECS). Increasing evidence suggests a role for eCBs, as well as cannabinoids, in various aspects of male sexual and reproductive health. Although preclinical studies have clearly shown that ECS is involved in negative modulation of testosterone secretion by acting both at central and testicular levels in animal models, the effect of in vivo exposure to cannabinoids on spermatogenesis remains a matter of debate. Furthermore, inconclusive clinical evidence does not seem to support the notion that plant-derived cannabinoids have harmful effects on human sexual and reproductive health. An improved understanding of the complex crosstalk between cannabinoids and eCBs is required before targeting of ECS for modulation of human fertility becomes a reality.


Asunto(s)
Cannabinoides/metabolismo , Endocannabinoides/metabolismo , Genitales Masculinos/metabolismo , Transducción de Señal/fisiología , Animales , Cannabinoides/administración & dosificación , Endocannabinoides/administración & dosificación , Genitales Masculinos/efectos de los fármacos , Humanos , Masculino , Receptores de Cannabinoides/metabolismo , Transducción de Señal/efectos de los fármacos , Testosterona/antagonistas & inhibidores , Testosterona/metabolismo
16.
Regul Toxicol Pharmacol ; 119: 104820, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33181237

RESUMEN

The rodent uterotrophic and Hershberger assays evaluate potential estrogenic and (anti)-androgenic effects, respectively. Both US EPA and OECD guidelines specify that test substance is administered daily either by subcutaneous injection or oral gavage. However, dietary administration is a relevant exposure route for agrochemical regulatory toxicology studies due to potential human intake via crop residues. In this study, equivalent doses of positive control chemicals administered via dietary and gavage routes of administration were compared in the uterotrophic (17α-ethinyl estradiol) and Hershberger (flutamide, linuron, dichloro-2,2-bis(4-chlorophenyl) ethane; 4,4'-DDE) assays in ovariectomized and castrated rats, respectively. For all positive control chemicals tested, statistically significant changes in organ weights and decreases in food consumption were observed by both routes of test substance administration. Decreased body weight gain observed for dietary linuron and 4,4'-DDE indicated that the maximum tolerated dose was exceeded. Hershberger dietary administration resulted in a similar blood exposure (AUC24) for each positive control chemical when compared to gavage. Overall, the correlation in organ weight changes for both the uterotrophic and Hershberger assays suggest that dietary administration is an acceptable route of exposure with similar sensitivity to oral gavage dosing for evaluation of the endocrine potential of a test substance and represents a more appropriate route of test substance administration for most environmental exposure scenarios.


Asunto(s)
Antagonistas de Andrógenos/administración & dosificación , Estrógenos/administración & dosificación , Etinilestradiol/administración & dosificación , Genitales Masculinos/efectos de los fármacos , Útero/efectos de los fármacos , Administración Oral , Antagonistas de Andrógenos/farmacocinética , Antagonistas de Andrógenos/toxicidad , Animales , Bioensayo/métodos , Dieta , Eugenol/administración & dosificación , Eugenol/análogos & derivados , Eugenol/farmacocinética , Eugenol/toxicidad , Femenino , Flutamida/administración & dosificación , Flutamida/farmacocinética , Flutamida/toxicidad , Genitales Masculinos/crecimiento & desarrollo , Linurona/administración & dosificación , Linurona/farmacocinética , Linurona/toxicidad , Masculino , Tamaño de los Órganos/efectos de los fármacos , Ratas , Útero/crecimiento & desarrollo
17.
Front Endocrinol (Lausanne) ; 11: 565731, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193084

RESUMEN

In this review, the role of oxytocin and oxytocin-like agents (acting via the oxytocin receptor and belonging to the oxytocin-family) in the male reproductive tract is considered. Previous research (dating back over 60 years) is revised and connected with recently found aspects of the role oxytocin plays in male reproductive health. The local expression of oxytocin and its receptor in the male reproductive tract of different species is summarized. Colocalization and possible crosstalk to other agents and receptors and their resulting effects are discussed. The role of the newly reported oxytocin focused signaling pathways in the male reproductive tract, other than mediating contractility, is critically examined. The structure and effect of the most promising oxytocin-agonists and -antagonists are reviewed for their potential in treating male disorders with origins in the male reproductive tract such as prostate diseases and ejaculatory disorders.


Asunto(s)
Genitales Masculinos/metabolismo , Oxitocina/metabolismo , Receptores de Oxitocina/metabolismo , Animales , Arginina Vasopresina/metabolismo , Genitales Masculinos/efectos de los fármacos , Antagonistas de Hormonas/administración & dosificación , Humanos , Masculino , Oxitocina/agonistas , Oxitocina/antagonistas & inhibidores , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Receptores de Oxitocina/agonistas , Receptores de Oxitocina/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
18.
Environ Health Perspect ; 128(11): 117005, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33236927

RESUMEN

BACKGROUND: Many pesticides can antagonize the androgen receptor (AR) or inhibit androgen synthesis in vitro but their potential to cause reproductive toxicity related to disruption of androgen action during fetal life is difficult to predict. Currently no approaches for using in vitro data to anticipate such in vivo effects exist. Prioritization schemes that limit unnecessary in vivo testing are urgently needed. OBJECTIVES: The aim was to develop a quantitative in vitro to in vivo extrapolation (QIVIVE) approach for predicting in vivo anti-androgenicity arising from gestational exposures and manifesting as a shortened anogenital distance (AGD) in male rats. METHODS: We built a physiologically based pharmacokinetic (PBK) model to simulate concentrations of chemicals in the fetus resulting from maternal dosing. The predicted fetal levels were compared with analytically determined concentrations, and these were judged against in vitro active concentrations for AR antagonism and androgen synthesis suppression. RESULTS: We first evaluated our model by using in vitro and in vivo anti-androgenic data for procymidone, vinclozolin, and linuron. Our PBK model described the measured fetal concentrations of parent compounds and metabolites quite accurately (within a factor of five). We applied the model to nine current-use pesticides, all with in vitro evidence for anti-androgenicity but missing in vivo data. Seven pesticides (fludioxonil, cyprodinil, dimethomorph, imazalil, quinoxyfen, fenhexamid, o-phenylphenol) were predicted to produce a shortened AGD in male pups, whereas two (λ-cyhalothrin, pyrimethanil) were anticipated to be inactive. We tested these expectations for fludioxonil, cyprodinil, and dimethomorph and observed shortened AGD in male pups after gestational exposure. The measured fetal concentrations agreed well with PBK-modeled predictions. DISCUSSION: Our QIVIVE model newly identified fludioxonil, cyprodinil, and dimethomorph as in vivo anti-androgens. With the examples investigated, our approach shows great promise for predicting in vivo anti-androgenicity (i.e., AGD shortening) for chemicals with in vitro activity and for minimizing unnecessary in vivo testing. https://doi.org/10.1289/EHP6774.


Asunto(s)
Antagonistas de Andrógenos/toxicidad , Genitales Masculinos/anatomía & histología , Plaguicidas/toxicidad , Antagonistas de Receptores Androgénicos/toxicidad , Animales , Compuestos Bicíclicos con Puentes/toxicidad , Genitales Masculinos/efectos de los fármacos , Genitales Masculinos/crecimiento & desarrollo , Linurona/toxicidad , Masculino , Oxazoles/toxicidad , Ratas , Receptores Androgénicos/metabolismo
19.
Fitoterapia ; 147: 104756, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33069836

RESUMEN

Male infertility has affected many families around the world. However, due to the mechanism underlying male reproductive system dysfunction are not completely elucidated, the use of drugs for male reproductive system dysfunction treatment only insignificant higher pregnancy outcomes, low-quality evidence suggests that clinical pregnancy rates may increase. Therefore, the focus in the future will be on developing more viable treatment options to prevent or treatment of male reproductive system dysfunction and achieve the purpose of improving fertility. Interestingly, natural products, as the potential inhibitors for the treatment of male reproductive system dysfunction, have shown a good therapeutic effect. Among many natural products, flavonoids have been extensively investigated for the treatment of male reproductive system dysfunction, such as testicular structural disruption, spermatogenesis disturbance and sperm quality decline. Flavonoids have been reported to have antioxidant, anti-inflammatory, immune stimulating, anti-apoptotic, anticarcinogenic, anti-allergic and antiviral activities, investigating for the treatment of male reproductive system dysfunction. In this review, we evaluate the therapeutic effects of flavonoids on male reproductive system dysfunction under different cellular scenarios and summarize the therapeutic strategies of flavonoids based on the aforementioned retrospective analysis. In the end, we describe some perspective research areas relevant to the application of flavonoids in the treatment of male reproductive system dysfunction.


Asunto(s)
Flavonoides/farmacología , Genitales Masculinos/efectos de los fármacos , Infertilidad Masculina/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Humanos , Masculino , Estructura Molecular , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos
20.
Artículo en Inglés | MEDLINE | ID: mdl-32849263

RESUMEN

Bisphenol A (BPA) is a widespread chemical agent which can exert detrimental effects on the male reproductive system. Exposure to BPA has been shown to induce several epigenetic modifications in both animal and human cells. Specifically, BPA could not only modify the methylation pattern of multiple genes encoding proteins related to reproductive physiology but also directly influence the genes responsible for DNA methylation. BPA effects include hormonal alterations, microscopic and macroscopic alteration of male reproductive organs, and inheritable epigenetic changes involving human reproduction. BPA exposure was also linked to prostate cancer. This review aims to show the current scenario of BPA-induced epigenetic changes and its effects on the male reproductive system. Possible strategies to counter the toxic effect of BPA were also addressed.


Asunto(s)
Contaminantes Ocupacionales del Aire/efectos adversos , Compuestos de Bencidrilo/efectos adversos , Disruptores Endocrinos/efectos adversos , Epigénesis Genética , Genitales Masculinos/patología , Fenoles/efectos adversos , Reproducción , Metilación de ADN , Genitales Masculinos/efectos de los fármacos , Genitales Masculinos/metabolismo , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA