Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biophys J ; 120(23): 5395-5407, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34688593

RESUMEN

Geobacter sulfurreducens possesses over 100 cytochromes that assure an effective electron transfer to the cell exterior. The most abundant group of cytochromes in this microorganism is the PpcA family, composed of five periplasmic triheme cytochromes with high structural homology and identical heme coordination (His-His). GSU0105 is a periplasmic triheme cytochrome synthetized by G. sulfurreducens in Fe(III)-reducing conditions but is not present in cultures grown on fumarate. This cytochrome has a low sequence identity with the PpcA family cytochromes and a different heme coordination, based on the analysis of its amino acid sequence. In this work, amino acid sequence analysis, site-directed mutagenesis, and complementary biophysical techniques, including ultraviolet-visible, circular dichroism, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopies, were used to characterize GSU0105. The cytochrome has a low percentage of secondary structural elements, with features of α-helices and ß-sheets. Nuclear magnetic resonance shows that the protein contains three low-spin hemes (Fe(II), S = 0) in the reduced state. Electron paramagnetic resonance shows that, in the oxidized state, one of the hemes becomes high-spin (Fe(III), S = 5/2), whereas the two others remain low-spin (Fe(III), S = 1/2). The data obtained also indicate that the heme groups have distinct axial coordination. The apparent midpoint reduction potential of GSU0105 (-154 mV) is pH independent in the physiological range. However, the pH modulates the reduction potential of the heme that undergoes the low- to high-spin interconversion. The reduction potential values of cytochrome GSU0105 are more distinct compared to those of the PpcA family members, providing the protein with a larger functional working redox potential range. Overall, the results obtained, together with an amino acid sequence analysis of different multiheme cytochrome families, indicate that GSU0105 is a member of a new group of triheme cytochromes.


Asunto(s)
Proteínas Bacterianas , Citocromos , Compuestos Férricos , Geobacter/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Citocromos/química , Citocromos/genética , Hemo/metabolismo , Espectroscopía de Resonancia Magnética , Oxidación-Reducción
2.
Arch Biochem Biophys ; 712: 109025, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34506758

RESUMEN

In many bacteria, the reactions of proline catabolism are catalyzed by the bifunctional enzyme known as proline utilization A (PutA). PutA catalyzes the two-step oxidation of l-proline to l-glutamate using distinct proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH) active sites, which are separated by over 40 Å and connected by a complex tunnel system. The tunnel system consists of a main tunnel that connects the two active sites and functions in substrate channeling, plus six ancillary tunnels whose functions are unknown. Here we used tunnel-blocking mutagenesis to probe the role of a dynamic ancillary tunnel (tunnel 2a) whose shape is modulated by ligand binding to the PRODH active site. The 1.90 Å resolution crystal structure of Geobacter sulfurreducens PutA variant A206W verified that the side chain of Trp206 cleanly blocks tunnel 2a without perturbing the surrounding structure. Steady-state kinetic measurements indicate the mutation impaired PRODH activity without affecting the GSALDH activity. Single-turnover experiments corroborated a severe impairment of PRODH activity with flavin reduction decreased by nearly 600-fold in A206W relative to wild-type. Substrate channeling is also significantly impacted as A206W exhibited a 3000-fold lower catalytic efficiency in coupled PRODH-GSALDH activity assays, which measure NADH formation as a function of proline. The structure suggests that Trp206 inhibits binding of the substrate l-proline by preventing the formation of a conserved glutamate-arginine ion pair and closure of the PRODH active site. Our data are consistent with tunnel 2a serving as an open space through which the glutamate of the ion pair travels during the opening and closing of the active site in response to binding l-proline. These results confirm the essentiality of the conserved ion pair in binding l-proline and support the hypothesis that the ion pair functions as a gate that controls access to the PRODH active site.


Asunto(s)
Proteínas Bacterianas/química , Glutamato-5-Semialdehído Deshidrogenasa/química , Proteínas de la Membrana/química , Complejos Multienzimáticos/química , Prolina Oxidasa/química , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Geobacter/enzimología , Glutamato-5-Semialdehído Deshidrogenasa/genética , Proteínas de la Membrana/genética , Complejos Multienzimáticos/genética , Mutagénesis Sitio-Dirigida , Mutación , Prolina Oxidasa/genética , Conformación Proteica
3.
Nature ; 598(7881): 515-520, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34588691

RESUMEN

Prokaryotes adapt to challenges from mobile genetic elements by integrating spacers derived from foreign DNA in the CRISPR array1. Spacer insertion is carried out by the Cas1-Cas2 integrase complex2-4. A substantial fraction of CRISPR-Cas systems use a Fe-S cluster containing Cas4 nuclease to ensure that spacers are acquired from DNA flanked by a protospacer adjacent motif (PAM)5,6 and inserted into the CRISPR array unidirectionally, so that the transcribed CRISPR RNA can guide target searching in a PAM-dependent manner. Here we provide a high-resolution mechanistic explanation for the Cas4-assisted PAM selection, spacer biogenesis and directional integration by type I-G CRISPR in Geobacter sulfurreducens, in which Cas4 is naturally fused with Cas1, forming Cas4/Cas1. During biogenesis, only DNA duplexes possessing a PAM-embedded 3'-overhang trigger Cas4/Cas1-Cas2 assembly. During this process, the PAM overhang is specifically recognized and sequestered, but is not cleaved by Cas4. This 'molecular constipation' prevents the PAM-side prespacer from participating in integration. Lacking such sequestration, the non-PAM overhang is trimmed by host nucleases and integrated to the leader-side CRISPR repeat. Half-integration subsequently triggers PAM cleavage and Cas4 dissociation, allowing spacer-side integration. Overall, the intricate molecular interaction between Cas4 and Cas1-Cas2 selects PAM-containing prespacers for integration and couples the timing of PAM processing with the stepwise integration to establish directionality.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Geobacter/enzimología , Bases de Datos Genéticas , Modelos Moleculares , Conformación Molecular , Motivos de Nucleótidos
4.
J Biol Chem ; 296: 100711, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33915126

RESUMEN

Geobacter bacteria are able to transfer electrons to the exterior of the cell and reduce extracellular electron acceptors including toxic/radioactive metals and electrode surfaces, with potential applications in bioremediation or electricity harvesting. The triheme c-type cytochrome PpcA from Geobacter metallireducens plays a crucial role in bridging the electron transfer from the inner to the outer membrane, ensuring an effective extracellular electron transfer. This cytochrome shares 80% identity with PpcA from Geobacter sulfurreducens, but their redox properties are markedly different, thus determining the distinctive working redox potential ranges in the two bacteria. PpcA from G. metallireducens possesses two extra aromatic amino acids (Phe-6 and Trp-45) in its hydrophobic heme core, whereas PpcA from G. sulfurreducens has a leucine and a methionine in the equivalent positions. Given the different nature of these residues in the two cytochromes, we have hypothesized that the extra aromatic amino acids could be partially responsible for the observed functional differences. In this work, we have replaced Phe-6 and Trp-45 residues by their nonaromatic counterparts in PpcA from G. sulfurreducens. Using redox titrations followed by UV-visible and NMR spectroscopy we observed that residue Trp-45 shifted the redox potential range 33% toward that of PpcA from G. sulfurreducens, whereas Phe-6 produced a negligible effect. For the first time, it is shown that the inclusion of an aromatic residue at the heme core can modulate the working redox range in abundant periplasmic proteins, paving the way to engineer bacterial strains for optimal microbial bioelectrochemical applications.


Asunto(s)
Citocromos/química , Citocromos/metabolismo , Geobacter/citología , Geobacter/enzimología , Hemo , Periplasma/enzimología , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Oxidación-Reducción , Dominios Proteicos
5.
Appl Environ Microbiol ; 87(2)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158892

RESUMEN

Growth of Geobacter sulfurreducens PCA on lactate was enhanced by laboratory adaptive evolution. The enhanced growth was considered to be attributed to increased expression of the sucCD genes, encoding a succinyl-coenzyme A (CoA) synthetase. To further investigate the function of the succinyl-CoA synthetase, the sucCD genes were deleted from G. sulfurreducens The mutant showed defective growth on lactate but not on acetate. Introduction of the sucCD genes into the mutant restored the full potential to grow on lactate. These results verify the importance of the succinyl-CoA synthetase in growth on lactate. Genome analysis of Geobacter species identified candidate genes, GSU1623, GSU1624, and GSU1620, for lactate dehydrogenase. Deletion mutants of the identified genes for d-lactate dehydrogenase (ΔGSU1623 ΔGSU1624 mutant) or l-lactate dehydrogenase (ΔGSU1620 mutant) could not grow on d-lactate or l-lactate but could grow on acetate and l- or d-lactate, respectively. Introduction of the respective genes into the mutants allowed growth on the corresponding lactate stereoisomer. These results suggest that the identified genes were essential for d- or l-lactate utilization. The lacZ reporter assay demonstrated that the putative promoter regions were more active during growth on lactate than during growth on acetate, indicating that the genes for the lactate dehydrogenases were expressed more during growth on lactate than during growth on acetate. The gene deletion phenotypes and the expression profiles indicate that there are metabolic switches between lactate and acetate. This study advances the understanding of anaerobic lactate utilization in G. sulfurreducensIMPORTANCE Lactate is a microbial fermentation product as well as a source of carbon and electrons for microorganisms in the environment. Furthermore, lactate is a common amendment for stimulation of microbial growth in environmental biotechnology applications. However, anaerobic metabolism of lactate has been poorly studied for environmentally relevant microorganisms. Geobacter species are found in various environments and environmental biotechnology applications. By employing genomic and genetic approaches, succinyl-CoA synthetase and lactate dehydrogenase were identified as key enzymes in anaerobic metabolism of lactate in Geobacter sulfurreducens, a representative Geobacter species. Differential gene expression during growth on lactate and acetate was observed, demonstrating that G. sulfurreducens could metabolically switch to adapt to available substrates in the environment. The findings provide new insights into basic physiology in lactate metabolism as well as cellular responses to growth conditions in the environment and can be informative for the application of lactate in environmental biotechnology.


Asunto(s)
Proteínas Bacterianas/metabolismo , Geobacter/enzimología , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Succinato-CoA Ligasas/metabolismo , Anaerobiosis , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Geobacter/genética , Geobacter/metabolismo , L-Lactato Deshidrogenasa/genética , Succinato-CoA Ligasas/genética
6.
Proteins ; 88(4): 604-615, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31644822

RESUMEN

Ste24 enzymes, a family of eukaryotic integral membrane proteins, are zinc metalloproteases (ZMPs) originally characterized as "CAAX proteases" targeting prenylated substrates, including a-factor mating pheromone in yeast and prelamin A in humans. Recently, Ste24 was shown to also cleave nonprenylated substrates. Reduced activity of the human ortholog, HsSte24, is linked to multiple disease states (laminopathies), including progerias and lipid disorders. Ste24 possesses a unique "α-barrel" structure consisting of seven transmembrane (TM) α-helices encircling a large intramembranous cavity (~14 000 Å3 ). The catalytic zinc, coordinated via a HExxH…E/H motif characteristic of gluzincin ZMPs, is positioned at one of the cavity's bases. The interrelationship between Ste24 as a gluzincin, a long-studied class of soluble ZMPs, and as a novel cavity-containing integral membrane protein protease has been minimally explored to date. Informed by homology to well-characterized soluble, gluzincin ZMPs, we develop a model of Ste24 that provides a conceptual framework for this enzyme family, suitable for development and interpretation of structure/function studies. The model consists of an interfacial, zinc-containing "ZMP Core" module surrounded by a "ZMP Accessory" module, both capped by a TM helical "α-barrel" module of as yet unknown function. Multiple sequence alignment of 58 Ste24 orthologs revealed 38 absolutely conserved residues, apportioned unequally among the ZMP Core (18), ZMP Accessory (13), and α-barrel (7) modules. This Tripartite Architecture representation of Ste24 provides a unified image of this enzyme family.


Asunto(s)
Proteínas de la Membrana/química , Metaloendopeptidasas/química , Neprilisina/química , Termolisina/química , Secuencia de Aminoácidos , Bacillus/química , Bacillus/enzimología , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Geobacter/química , Geobacter/enzimología , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Modelos Moleculares , Neprilisina/genética , Neprilisina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces/química , Saccharomyces/enzimología , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termolisina/genética , Termolisina/metabolismo
7.
Biosens Bioelectron ; 146: 111748, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31586764

RESUMEN

Flagella are widely expressed in electroactive biofilms; however, their actual role is unknown. To understand the role of flagella, two Geobacter sulfurreducens strains (KN400 and PCA, with and without flagella, respectively) were selected. We restored flagellum expression in trans in strain PCA and prevented flagellum expression in strain KN400. Electrochemical results showed that flagellum restoration in strain PCA promoted current generation, while flagellum deletion in strain KN400 impaired current production. However, the expression of conductive pili and outer surface c-type cytochromes was not affected. Further microscopic analyses demonstrated that flagella promoted the formation of thicker biofilms and served as biofilm matrix scaffolds to accommodate more extracellular cytochromes with an orderly arrangement, which increased the electron diffusion rate within the biofilm. Our findings reveal an unprecedented structural role for flagella in stabilizing electroactive biofilms and highlight the importance of cytochromes in electron transfer across biofilms, which will deepen our understanding of biofilm conductivity.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Flagelos/fisiología , Geobacter/fisiología , Citocromos/genética , Citocromos/metabolismo , Conductividad Eléctrica , Transporte de Electrón , Electrones , Flagelos/genética , Geobacter/enzimología , Geobacter/genética , Mutación
8.
Biomol NMR Assign ; 13(2): 321-326, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31119489

RESUMEN

Microbial electrosynthesis is an emerging green technology that explores the capability of a particular group of microorganisms to drive their metabolism toward the production of hydrogen or value-added chemicals from electrons supplied by electrode surfaces. The cytochrome PccH showed the largest increase in transcription when electrons are supplied to Geobacter sulfurreducens biofilms. Gene knock-out experiments have shown that the electron transfer toward G. sulfurreducens cells was completely inhibited by the deletion of the gene encoding for cytochrome PccH. This identifies a crucial role for this protein in G. sulfurreducens microbial electrosynthesis mechanisms, which are currently unknown. In this work, we present the backbone (1H, 13C and 15N) and heme assignment for PccH in the oxidized state. The data obtained paves the way to identify and structurally map the molecular interaction regions between the cytochrome PccH and its physiological redox partners.


Asunto(s)
Citocromos/química , Citocromos/metabolismo , Geobacter/enzimología , Resonancia Magnética Nuclear Biomolecular , Geobacter/metabolismo , Hemo/química , Oxidación-Reducción
9.
Elife ; 82019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30964001

RESUMEN

A newfound signaling pathway employs a GGDEF enzyme with unique activity compared to the majority of homologs associated with bacterial cyclic di-GMP signaling. This system provides a rare opportunity to study how signaling proteins natively gain distinct function. Using genetic knockouts, riboswitch reporters, and RNA-Seq, we show that GacA, the Hypr GGDEF in Geobacter sulfurreducens, specifically regulates cyclic GMP-AMP (3',3'-cGAMP) levels in vivo to stimulate gene expression associated with metal reduction separate from electricity production. To reconcile these in vivo findings with prior in vitro results that showed GacA was promiscuous, we developed a full kinetic model combining experimental data and mathematical modeling to reveal mechanisms that contribute to in vivo specificity. A 1.4 Å-resolution crystal structure of the Geobacter Hypr GGDEF domain was determined to understand the molecular basis for those mechanisms, including key cross-dimer interactions. Together these results demonstrate that specific signaling can result from a promiscuous enzyme.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Geobacter/enzimología , Geobacter/metabolismo , Metales/metabolismo , Nucleótidos Cíclicos/metabolismo , Transducción de Señal , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica , Cinética , Modelos Teóricos , Oxidación-Reducción , Conformación Proteica
10.
Biochem J ; 475(17): 2861-2875, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30072494

RESUMEN

The Geobacter metallireducens bacterium can couple the oxidation of a wide range of compounds to the reduction of several extracellular electron acceptors, including pollutants or electrode surfaces for current production in microbial fuel cells. For these reasons, G. metallireducens are of interest for practical biotechnological applications. The use of such electron acceptors relies on a mechanism that permits electrons to be transferred to the cell exterior. The cytochrome PpcA from G. metallireducens is a member of a family composed of five periplasmic triheme cytochromes, which are important to bridge the electron transfer from the cytoplasmic donors to the extracellular acceptors. Using NMR and visible spectroscopic techniques, a detailed thermodynamic characterization of PpcA was obtained, including the determination of the heme reduction potentials and their redox and redox-Bohr interactions. These parameters revealed unique features for PpcA from G. metallireducens compared with other triheme cytochromes from different microorganisms, namely the less negative heme reduction potentials and concomitant functional working potential ranges. It was also shown that the order of oxidation of the hemes is pH-independent, but the protein is designed to couple e-/H+ transfer exclusively at physiological pH.


Asunto(s)
Citocromos/química , Geobacter/enzimología , Proteínas Periplasmáticas/química , Espectroscopía de Resonancia Magnética , Oxidación-Reducción , Termodinámica
11.
FEBS J ; 285(18): 3402-3421, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30066435

RESUMEN

Type IVa pili are bacterial appendages involved in diverse physiological processes, including electron transfer in Geobacter sulfurreducens. ATP hydrolysis coupled with conformational changes powers the extension (PilB) and retraction (PilT) motors in the pilus machinery. We report the unliganded crystal structures of the core ATPase domain of PilB and PilT-4 from G. sulfurreducens at 3.1 and 2.6 Å resolution, respectively. PilB structure revealed three distinct conformations, that is, open, closed, and open' which were previously proposed to be mediated by ATP/ADP binding. PilT-4 subunits, on the other hand, were observed in the closed state conformation. We further report that both PilB and PilT-4 hexamers have two high-affinity ATP-binding sites. Comparative structural analysis and solution data presented here supports the "symmetric rotary model" for these ATPase motors. Our data further suggest that pores of these motors rotate either clockwise or counterclockwise to facilitate assembly or disassembly of right-handed or left-handed pilus. DATABASE: Structural data are available in the RCSB PDB database under the PDB ID 5ZFQ (PilT-4), 5ZFR (PilB).


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Proteínas Fimbrias/química , Fimbrias Bacterianas/fisiología , Geobacter/enzimología , Proteínas Motoras Moleculares/química , Oxidorreductasas/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Proteínas Fimbrias/metabolismo , Modelos Moleculares , Proteínas Motoras Moleculares/metabolismo , Oxidorreductasas/metabolismo , Unión Proteica , Conformación Proteica , Homología de Secuencia
12.
Biochem J ; 475(6): 1141-1158, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29519958

RESUMEN

Membrane-bound pyrophosphatases (mPPases), which couple pyrophosphate hydrolysis to transmembrane transport of H+ and/or Na+ ions, are divided into K+,Na+-independent, Na+-regulated, and K+-dependent families. The first two families include H+-transporting mPPases (H+-PPases), whereas the last family comprises one Na+-transporting, two Na+- and H+-transporting subfamilies (Na+-PPases and Na+,H+-PPases, respectively), and three H+-transporting subfamilies. Earlier studies of the few available model mPPases suggested that K+ binds to a site located adjacent to the pyrophosphate-binding site, but is substituted by the ε-amino group of an evolutionarily acquired lysine residue in the K+-independent mPPases. Here, we performed a systematic analysis of the K+/Lys cationic center across all mPPase subfamilies. An Ala → Lys replacement in K+-dependent mPPases abolished the K+ dependence of hydrolysis and transport activities and decreased these activities close to the level (4-7%) observed for wild-type enzymes in the absence of monovalent cations. In contrast, a Lys → Ala replacement in K+,Na+-independent mPPases conferred partial K+ dependence on the enzyme by unmasking an otherwise conserved K+-binding site. Na+ could partially replace K+ as an activator of K+-dependent mPPases and the Lys → Ala variants of K+,Na+-independent mPPases. Finally, we found that all mPPases were inhibited by excess substrate, suggesting strong negative co-operativity of active site functioning in these homodimeric enzymes; moreover, the K+/Lys center was identified as part of the mechanism underlying this effect. These findings suggest that the mPPase homodimer possesses an asymmetry of active site performance that may be an ancient prototype of the rotational binding-change mechanism of F-type ATPases.


Asunto(s)
Membrana Celular/metabolismo , Lisina/metabolismo , Potasio/metabolismo , Multimerización de Proteína , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Catálisis , Cationes , Desulfitobacterium/enzimología , Desulfitobacterium/genética , Escherichia coli , Geobacter/enzimología , Geobacter/genética , Transporte Iónico/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Filogenia , Estructura Cuaternaria de Proteína , Pirofosfatasas/genética
13.
Arch Biochem Biophys ; 644: 8-16, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29486160

RESUMEN

G. metallireducens bacterium has highly versatile respiratory pathways that provide the microorganism an enormous potential for many biotechnological applications. However, little is known about the structural and functional properties of its electron transfer components. In this work, the periplasmic cytochrome PpcA from G. metallireducens was studied in detail for the first time using complementary biophysical techniques, including UV-visible, CD and NMR spectroscopy. The results obtained showed that PpcA contains three low-spin c-type heme groups with His-His axial coordination, a feature also observed for its homologue in G. sulfurreducens. However, despite the high sequence homology between the two cytochromes, important structural and functional differences were observed. The comparative analysis of the backbone, side chain and heme substituents NMR signals revealed differences in the relative orientation of the hemes I and III. In addition, redox titrations followed by visible spectroscopy showed that the redox potential values for PpcA from G. metallireducens (-78 and -93 mV at pH 7 and 8, respectively) are considerably less negative. Overall, this study provides biochemical and biophysical data of a key cytochrome from G. metallireducens, paving the way to understand the extracellular electron transfer mechanisms in these bacteria.


Asunto(s)
Proteínas Bacterianas/química , Citocromos/química , Geobacter/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dicroismo Circular , Citocromos/genética , Citocromos/metabolismo , Geobacter/genética , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Espectrofotometría Ultravioleta , Homología Estructural de Proteína
14.
Appl Microbiol Biotechnol ; 102(5): 2425-2439, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29380032

RESUMEN

Bioinformatics has revealed the presence of putative laccase genes in diverse bacteria, including extremophiles, autotrophs, and, interestingly, anaerobes. Integrity of laccase genes in anaerobes has been questioned, since laccases oxidize a variety of compounds using molecular oxygen as the electron acceptor. The genome of the anaerobe Geobacter metallireducens GS-15 contains five genes for laccase-like multicopper oxidases. In order to show whether one of the predicted genes encodes a functional laccase, the protein encoded by GMET_RS10855 was heterologously expressed in Escherichia coli cells. The His6-tagged enzyme (named GeoLacc) was purified to a large extent in the apoprotein, inactive form: incubation with CuSO4 allowed a 43-fold increase of the specific activity yielding a metallo-enzyme. The purified enzyme oxidized some of the typical laccase substrates, including 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine, and 2,6-dimethoxyphenol (2,6-DMP), along with pyrogallol and K4[Fe(CN)6]. Temperature optimum was 75 °C and pH optimum for ABTS and 2,6-DMP oxidation was ~ 6.0. As observed for other laccases, the enzyme was inhibited by halide anions and was sensitive to increasing concentrations of dimethyl sulfoxide and Tween-80. Notably, GeoLacc possesses a very high affinity for dioxygen: a similar activity was measured performing the reaction at air-saturated or microaerophilic conditions.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Expresión Génica , Geobacter/enzimología , Lacasa/química , Lacasa/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Geobacter/química , Geobacter/genética , Calor , Concentración de Iones de Hidrógeno , Lacasa/genética , Lacasa/metabolismo , Especificidad por Sustrato
15.
Biochemistry ; 57(11): 1722-1732, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29298044

RESUMEN

Periplasmic cytochrome A (PpcA) is a representative of a broad class of multiheme cytochromes functioning as protein "nanowires" for storage and extracellular transfer of multiple electrons in the δ-proteobacterium Geobacter sulfurreducens. PpcA contains three bis-His coordinated hemes held in a spatial arrangement that is highly conserved among the multiheme cytochromes c3 and c7 families, carries low potential hemes, and is notable for having one of the lowest number of amino acids utilized to maintain a characteristic protein fold and site-specific heme function. Low temperature X-band electron paramagnetic resonance (EPR) spectroscopy has been used to characterize the electronic configuration of the Fe(III) and the ligation mode for each heme. The three sets of EPR signals are assigned to individual hemes in the three-dimensional crystal structure. The relative energy levels of the Fe(III) 3d orbitals for individual hemes were estimated from the principal g-values. The observed g-tensor anisotropy was used as a probe of electronic structure of each heme, and differences were determined by specifics of axial ligation. To ensure unambiguous assignment of highly anisotropic low-spin (HALS) signal to individual hemes, EPR analyses of iron atom electronic configurations have been supplemented with investigation of porphyrin macrocycles by one-dimensional 1H NMR chemical shift patterns for the methyl substituents. Within optimized geometry of hemes in PpcA, the magnetic interactions between hemes were found to be minimal, similar to the c3 family of tetraheme cytochromes.


Asunto(s)
Citocromos a/química , Geobacter/enzimología , Hemo/química , Proteínas Periplasmáticas/química , Espectroscopía de Resonancia por Spin del Electrón
16.
J Am Chem Soc ; 139(41): 14488-14500, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28918628

RESUMEN

Aromatic compounds are environmental pollutants with toxic and carcinogenic properties. Despite the stability of aromatic rings, bacteria are able to degrade the aromatic compounds into simple metabolites and use them as growth substrates under oxic or even under anoxic conditions. In anaerobic microorganisms, most monocyclic aromatic growth substrates are converted to the central intermediate benzoyl-coenzyme A, which is enzymatically reduced to cyclohexa-1,5-dienoyl-CoA. The strictly anaerobic bacterium Geobacter metallireducens uses the class II benzoyl-CoA reductase complex for this reaction. The catalytic BamB subunit of this complex harbors an active site tungsten-bis-pyranopterin cofactor with the metal being coordinated by five protein/cofactor-derived sulfur atoms and a sixth, so far unknown, ligand. Although BamB has been biochemically and structurally characterized, its mechanism still remains elusive. Here we use continuum electrostatic and QM/MM calculations to model benzoyl-CoA reduction by BamB. We aim to elucidate the identity of the sixth ligand of the active-site tungsten ion together with the interplay of the electron and proton transfer events during the aromatic ring reduction. On the basis of our calculations, we propose that benzoyl-CoA reduction is initiated by a hydrogen atom transfer from a W(IV) species with an aqua ligand, yielding W(V)-[OH-] and a substrate radical intermediate. In the next step, a proton-assisted second electron transfer takes place with a conserved active-site histidine serving as the second proton donor. Interestingly, our calculations suggest that the electron for the second reduction step is taken from the pyranopterin cofactors rather than from the tungsten ion. The resulting cationic radical, which is distributed over both pyranopterins, is stabilized by conserved anionic amino acid residues. The stepwise mechanism of the reduction shows similarities to the Birch reduction known from organic chemistry. However, the strict coupling of protons and electrons allows the reaction to proceed under milder conditions.


Asunto(s)
Benceno/química , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Tungsteno/metabolismo , Acilcoenzima A/metabolismo , Dominio Catalítico , Transporte de Electrón , Geobacter/enzimología , Histidina/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Protones , Pterinas/metabolismo , Teoría Cuántica
17.
Annu Rev Microbiol ; 71: 643-664, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28697668

RESUMEN

Direct interspecies electron transfer (DIET) has biogeochemical significance, and practical applications that rely on DIET or DIET-based aspects of microbial physiology are growing. Mechanisms for DIET have primarily been studied in defined cocultures in which Geobacter species are one of the DIET partners. Electrically conductive pili (e-pili) can be an important electrical conduit for DIET. However, there may be instances in which electrical contacts are made between electron transport proteins associated with the outer membranes of the partners. Alternatively, DIET partners can plug into conductive carbon materials, such as granular activated carbon, carbon cloth, and biochar, for long-range electron exchange without the need for e-pili. Magnetite promotes DIET, possibly by acting as a substitute for outer-surface c-type cytochromes. DIET is the primary mode of interspecies electron exchange in some anaerobic digesters converting wastes to methane. Promoting DIET with conductive materials shows promise for stabilizing and accelerating methane production in digesters, permitting higher organic loading rates. Various lines of evidence suggest that DIET is important in terrestrial wetlands, which are an important source of atmospheric methane. DIET may also have a role in anaerobic methane oxidation coupled to sulfate reduction, an important control on methane releases. The finding that DIET can serve as the source of electrons for anaerobic photosynthesis further broadens its potential environmental significance. Microorganisms capable of DIET are good catalysts for several bioelectrochemical technologies and e-pili are a promising renewable source of electronic materials. The study of DIET is in its early stages, and additional investigation is required to better understand the diversity of microorganisms that are capable of DIET, the importance of DIET to carbon and electron flow in anaerobic environments, and the biochemistry and physiology of DIET.


Asunto(s)
Citocromos/metabolismo , Geobacter/enzimología , Geobacter/metabolismo , Metano/metabolismo , Anaerobiosis , Transporte de Electrón , Microbiología Ambiental , Microbiología Industrial , Oxidación-Reducción
18.
FEBS Lett ; 591(12): 1657-1666, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28542725

RESUMEN

Geobacter sulfurreducens is a dissimilatory metal-reducing bacterium with notable properties and significance in biotechnological applications. Biochemical studies suggest that the inner membrane-associated diheme cytochrome MacA and the periplasmic triheme cytochrome PpcA from G. sulfurreducens can exchange electrons. In this work, NMR chemical shift perturbation measurements were used to map the interface region and to measure the binding affinity between PpcA and MacA. The results show that MacA binds to PpcA in a cleft defined by hemes I and IV, favoring the contact between PpcA heme IV and the MacA high-potential heme. The dissociation constant values indicate the formation of a low-affinity complex between the proteins, which is consistent with the transient interaction observed in electron transfer complexes.


Asunto(s)
Citocromo-c Peroxidasa/metabolismo , Citocromos c/metabolismo , Geobacter/enzimología , Hemo/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Periplasmáticas/metabolismo , Algoritmos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Citocromo-c Peroxidasa/química , Citocromo-c Peroxidasa/genética , Citocromos c/química , Citocromos c/genética , Bases de Datos de Proteínas , Transporte de Electrón , Hemo/química , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Simulación del Acoplamiento Molecular , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
19.
Biochem J ; 474(2): 231-246, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28062839

RESUMEN

The periplasmic triheme cytochrome PpcA from Geobacter sulfurreducens is highly abundant; it is the likely reservoir of electrons to the outer surface to assist the reduction of extracellular terminal acceptors; these include insoluble metal oxides in natural habitats and electrode surfaces from which electricity can be harvested. A detailed thermodynamic characterization of PpcA showed that it has an important redox-Bohr effect that might implicate the protein in e-/H+ coupling mechanisms to sustain cellular growth. This functional mechanism requires control of both the redox state and the protonation state. In the present study, isotope-labeled PpcA was produced and the three-dimensional structure of PpcA in the oxidized form was determined by NMR. This is the first solution structure of a G. sulfurreducens cytochrome in the oxidized state. The comparison of oxidized and reduced structures revealed that the heme I axial ligand geometry changed and there were other significant changes in the segments near heme I. The pH-linked conformational rearrangements observed in the vicinity of the redox-Bohr center, both in the oxidized and reduced structures, constitute the structural basis for the differences observed in the pKa values of the redox-Bohr center, providing insights into the e-/H+ coupling molecular mechanisms driven by PpcA in G. sulfurreducens.


Asunto(s)
Proteínas Bacterianas/química , Citocromos c/química , Electrones , Geobacter/química , Hemo/química , Protones , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Citocromos c/genética , Citocromos c/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Geobacter/enzimología , Hemo/metabolismo , Concentración de Iones de Hidrógeno , Marcaje Isotópico , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica
20.
ACS Chem Biol ; 11(6): 1729-36, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27071000

RESUMEN

Base deamination is a common type of DNA damage that occurs in all organisms. DNA repair mechanisms are critical to maintain genome integrity, in which the base excision repair pathway plays an essential role. In the BER pathway, the uracil DNA glycosylase superfamily is responsible for removing the deaminated bases from DNA and generates apurinic/apyrimidinic (AP) sites. Geobacter metallireducens SMUG1 (GmeSMUG1) is an interesting family 3 enzyme in the UDG superfamily, with dual substrate specificities for DNA with uracil or xanthine. In contrast, the mutant G63P of GmeSMUG1 has exclusive activity for uracil, while N58D is inactive for both substrates, as we have reported previously. However, the structural bases for these substrate specificities are not well understood. In this study, we solved a series of crystal structures of WT and mutants of GmeSMUG1 at relatively high resolutions. These structures provide insight on the molecular mechanism of xanthine recognition for GmeSMUG1 and indicate that H210 plays a key role in xanthine recognition, which is in good agreement with the results of our EMSA and activity assays. More importantly, our mutant structures allow us to build models to rationalize our previous experimental observations of altered substrate activities of these mutants.


Asunto(s)
Geobacter/enzimología , Uracil-ADN Glicosidasa/química , Cristalografía por Rayos X , Estructura Molecular , Especificidad por Sustrato , Xantina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...