RESUMEN
Decades of research describe myriad redox enzymes that contain cofactors arranged in tightly packed chains facilitating rapid and controlled intra-protein electron transfer. Many such enzymes participate in extracellular electron transfer (EET), a process which allows microorganisms to conserve energy in anoxic environments by exploiting mineral oxides and other extracellular substrates as terminal electron acceptors. In this work, we describe the properties of the triheme cytochrome PgcA from Geobacter sulfurreducens. PgcA has been shown to play an important role in EET but is unusual in containing three CXXCH heme binding motifs that are separated by repeated (PT)x motifs, suggested to enhance binding to mineral surfaces. Using a combination of structural, electrochemical, and biophysical techniques, we experimentally demonstrate that PgcA adopts numerous conformations stretching as far as 180 Å between the ends of domains I and III, without a tightly packed cofactor chain. Furthermore, we demonstrate a distinct role for its domain III as a mineral reductase that is recharged by domains I and II. These findings show PgcA to be the first of a new class of electron transfer proteins, with redox centers separated by some nanometers but tethered together by flexible linkers, facilitating electron transfer through a tethered diffusion mechanism rather than a fixed, closely packed electron transfer chain.
Asunto(s)
Proteínas Bacterianas , Citocromos , Geobacter , Hemo , Transporte de Electrón , Geobacter/enzimología , Geobacter/metabolismo , Geobacter/química , Hemo/química , Hemo/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Citocromos/química , Citocromos/metabolismo , Dominios Proteicos , Modelos Moleculares , Oxidación-ReducciónRESUMEN
Expanded graphite (EG) electrodes gather several advantages for their utilization in microbial electrochemical technologies (MET). Unfortunately, the low microbial electroactivity makes them non-practical for implementing them as electrodes. The objective of this work is to explore the enhancement of microbial electroactivity of expanded graphite (commercial PV15) through the generation of nanopores by CO2 treatment. The changes in properties were thoroughly analysed by TG, XRD, Raman, XPS, gas adsorption, SEM and AFM, as well as microbial electroactivity in the presence of Geobacter sulfurreducens. Nanopores remarkably enhance the microbially derived electrical current (60-fold increase). Given the inaccessibility of micron-sized bacteria to these nanopores, it is suggested that the electric charge exchanged by electroactive microorganisms might be greatly affected by the capability of the electrode to compensate these charges through ion adsorption. The increased microbial current density produced on activated PV15 opens the possibility of using such materials as promising electrodes in MET.
Asunto(s)
Fuentes de Energía Bioeléctrica , Geobacter , Grafito , Grafito/química , Porosidad , Biopelículas , Geobacter/química , ElectrodosRESUMEN
OmcZ nanowires produced by Geobacter species have high electron conductivity (>30 S cm-1). Of 111 cytochromes present in G. sulfurreducens, OmcZ is the only known nanowire-forming cytochrome essential for the formation of high-current-density biofilms that require long-distance (>10 µm) extracellular electron transport. However, the mechanisms underlying OmcZ nanowire assembly and high conductivity are unknown. Here we report a 3.5-Å-resolution cryogenic electron microscopy structure for OmcZ nanowires. Our structure reveals linear and closely stacked haems that may account for conductivity. Surface-exposed haems and charge interactions explain how OmcZ nanowires bind to diverse extracellular electron acceptors and how organization of nanowire network re-arranges in different biochemical environments. In vitro studies explain how G. sulfurreducens employ a serine protease to control the assembly of OmcZ monomers into nanowires. We find that both OmcZ and serine protease are widespread in environmentally important bacteria and archaea, thus establishing a prevalence of nanowire biogenesis across diverse species and environments.
Asunto(s)
Geobacter , Nanocables , Geobacter/química , Geobacter/metabolismo , Citocromos/metabolismo , Transporte de Electrón , Serina Proteasas/metabolismoRESUMEN
Anaerobic reduction processes in natural waters can be promoted by dead microalgae that have been attributed to nutrient substances provided by the decomposition of dead microalgae for other microorganisms. However, previous reports have not considered that dead microalgae may also serve as photosensitizers to drive microbial reduction processes. Here we demonstrate a photoelectric synergistic linkage between dead microalgae and bacteria capable of extracellular electron transfer (EET). Illumination of dead Raphidocelis subcapitata resulted in two-fold increase in the rate of anaerobic bioreduction by pure Geobacter sulfurreducens, suggesting that photoelectrons generated from the illuminated dead microalgae were transferred to the EET-capable microorganisms. Similar phenomena were observed in NO3- reduction driven by irradiated dead Chlorella vulgaris and living Shewanella oneidensis, and Cr(VI) reduction driven by irradiated dead Raphidocelis subcapitata and living Bacillus subtilis. Enhancement of bioreduction was also seen when the killed microalgae were illuminated in mixed-culture lake water, suggesting that EET-capable bacteria were naturally present and this phenomenon is common in post-bloom systems. The intracellular ferredoxin-NADP+-reductase is inactivated in the dead microalgae, allowing the production and extracellular transfer of photoelectrons. The use of mutant strains confirmed that the electron transport pathway requires multiheme cytochromes. Taken together, these results suggest a heretofore overlooked biophotoelectrochemical process jointly mediated by illumination of dead microalgae and live EET-capable bacteria in natural ecosystems, which may add an important component in the energetics of bioreduction phenomena particularly in microalgae-enriched environments.
Asunto(s)
Chlorophyceae , Geobacter , Microalgas , Fotosíntesis , Microalgas/química , Microalgas/metabolismo , Transporte de Electrón , Chlorophyceae/química , Chlorophyceae/metabolismo , Geobacter/química , Geobacter/metabolismo , Geobacter/efectos de la radiación , Compuestos Azo/química , Compuestos Azo/metabolismo , Oxidación-Reducción , Anaerobiosis , Eliminación de GenRESUMEN
A dynamic field of study has emerged involving long-range electron transport by extracellular filaments in anaerobic bacteria, with Geobacter sulfurreducens being used as a model system. The interest in this topic stems from the potential uses of such systems in bioremediation, energy generation, and new bio-based nanotechnology for electronic devices. These conductive extracellular filaments were originally thought, based upon low-resolution observations of dried samples, to be type IV pili (T4P). However, the recently published atomic structure for the T4P from G. sulfurreducens, obtained by cryo-electron microscopy (cryo-EM), is incompatible with the numerous models that have been put forward for electron conduction. As with all high-resolution structures of T4P, the G. sulfurreducens T4P structure shows a partial melting of the α-helix that substantially impacts the aromatic residue positions such that they are incompatible with conductivity. Furthermore, new work using high-resolution cryo-EM shows that conductive filaments thought to be T4P are actually polymerized cytochromes, with stacked heme groups forming a continuous conductive wire, or extracellular DNA. Recent atomic structures of three different cytochrome filaments from G. sulfurreducens suggest that such polymers evolved independently on multiple occasions. The expectation is that such polymerized cytochromes may be found emanating from other anaerobic organisms.
Asunto(s)
Citocromos , Fimbrias Bacterianas , Geobacter , Nanocables , Nanocables/química , Nanocables/ultraestructura , Transporte de Electrón , Geobacter/química , Geobacter/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/ultraestructura , Citocromos/química , Citocromos/ultraestructura , Microscopía por CrioelectrónRESUMEN
Biological redox reactions often use a set-up in which final redox partners are localized in different compartments and electron transfer (ET) among them is mediated by redox-active molecules. In enzymes, these ET processes occur over nm distances, whereas multi-protein filaments bridge µm ranges. Electrons are transported over cm ranges in cable bacteria, which are formed by thousands of cells. In this review, we describe molecular mechanisms that explain how respiration in a compartmentalized set-up ensures redox homeostasis. We highlight mechanistic studies on ET through metal-free peptides and proteins demonstrating that long-distance ET is possible because amino acids Tyr, Trp, Phe, and Met can act as relay stations. This cuts one long ET into several short reaction steps. The chances and challenges of long-distance ET for cellular redox reactions are then discussed.
Asunto(s)
Electrones , Geobacter , Transporte de Electrón , Oxidación-Reducción , Péptidos/metabolismo , Geobacter/química , Geobacter/metabolismoRESUMEN
Extracellular electron transport (EET) is an important metabolic process used by many bacteria to remove excess electrons generated through cellular metabolism. However, there is still limited understanding about how the molecular mechanisms used to export electrons impact cellular metabolism. Here the EET pathways of two of the best-studied electrogenic organisms, Shewanella oneidensis and Geobacter sulferreducens, are described. Both organisms have superficially similar overall EET routes, but differ in the mechanisms used to oxidise menaquinol, transfer electrons across the outer membrane and reduce extracellular substrates. These mechanistic differences substantially impact both substrate choice and bacterial lifestyle.
Asunto(s)
Geobacter , Nanocables , Transporte de Electrón , Electrones , Geobacter/química , Oxidación-ReducciónRESUMEN
As the core of microbial fuel cells (MFCs), the components and structure of electroactive biofilms (EABs) are essential for MFC performance. Bacterial adhesion plays a vital role in shaping the structure of EABs, but the effect of bacterial adhesion under selection pressure on EABs has not been systematically studied. Here, the response of the composition, structure, and electrochemical performance of EABs to the selective adhesion pressure due to the selective coordination of Fe(III) and Co(II) with thiol and the different affinities for bacteria on hybrid electrodes (Fe1Co, Fe4Co, and Fe10Co) were comprehensively investigated. Compared with carbon cloth (CC), the appropriate selective adhesion pressure of Fe4Co activated the dead inner core of EABs and optimized their viability stratification structure. Both the total viability and the viability of the inner core layer in the Fe4Co EAB (0.67, 0.70 ± 0.01) were higher than those of the CC (0.46, 0.54 ± 0.01), Fe1Co (0.50, 0.48 ± 0.03), and Fe10Co (0.51, 0.51 ± 0.03). Moreover, a higher proportion of proteins was detected in the Fe4Co EAB, enhancing the redox activity of extracellular polymeric substances. Fe4Co enriched Geobacter and stimulated microbial metabolism. Electrochemical analysis revealed that the Fe4Co EAB was the most electroactive EAB, with a maximum power density of 2032.4 mW m-2, which was 1.7, 1.3, and 1.1 times that of the CC (1202.6 mW m-2), Fe1Co (1610.3 mW m-2), and Fe10Co (1824.4 mW m-2) EABs, respectively. Our findings confirmed that highly active EABs could be formed by imposing selection pressure on bacterial adhesion.
Asunto(s)
Materiales Biocompatibles/química , Biopelículas , Cobalto/química , Geobacter/química , Hierro/química , Adhesión Bacteriana , Fuentes de Energía Bioeléctrica , Electrodos , Geobacter/metabolismo , Ensayo de Materiales , PresiónRESUMEN
A strain of Geobacter sulfurreducens, an organism capable of respiring solid extracellular substrates, lacking four of five outer membrane cytochrome complexes (extABCD+ strain) grows faster and produces greater current density than the wild type grown under identical conditions. To understand cellular and biofilm modifications in the extABCD+ strain responsible for this increased performance, biofilms grown using electrodes as terminal electron acceptors were sectioned and imaged using electron microscopy to determine changes in thickness and cell density, while parallel biofilms incubated in the presence of nitrogen and carbon isotopes were analyzed using NanoSIMS (nanoscale secondary ion mass spectrometry) to quantify and localize anabolic activity. Long-distance electron transfer parameters were measured for wild-type and extABCD+ biofilms spanning 5-µm gaps. Our results reveal that extABCD+ biofilms achieved higher current densities through the additive effects of denser cell packing close to the electrode (based on electron microscopy), combined with higher metabolic rates per cell compared to the wild type (based on increased rates of 15N incorporation). We also observed an increased rate of electron transfer through extABCD+ versus wild-type biofilms, suggesting that denser biofilms resulting from the deletion of unnecessary multiheme cytochromes streamline electron transfer to electrodes. The combination of imaging, physiological, and electrochemical data confirms that engineered electrogenic bacteria are capable of producing more current per cell and, in combination with higher biofilm density and electron diffusion rates, can produce a higher final current density than the wild type. IMPORTANCE Current-producing biofilms in microbial electrochemical systems could potentially sustain technologies ranging from wastewater treatment to bioproduction of electricity if the maximum current produced could be increased and current production start-up times after inoculation could be reduced. Enhancing the current output of microbial electrochemical systems has been mostly approached by engineering physical components of reactors and electrodes. Here, we show that biofilms formed by a Geobacter sulfurreducens strain producing â¼1.4× higher current than the wild type results from a combination of denser cell packing and higher anabolic activity, enabled by an increased rate of electron diffusion through the biofilms. Our results confirm that it is possible to engineer electrode-specific G. sulfurreducens strains with both faster growth on electrodes and streamlined electron transfer pathways for enhanced current production.
Asunto(s)
Biopelículas , Espacio Extracelular/metabolismo , Geobacter/química , Geobacter/fisiología , Electricidad , Electrodos , Transporte de Electrón , Espacio Extracelular/química , Geobacter/crecimiento & desarrolloRESUMEN
Cytochrome c nitrite reductases (CcNIR or NrfA) play important roles in the global nitrogen cycle by conserving the usable nitrogen in the soil. Here, the electron storage and distribution properties within the pentaheme scaffold of Geobacter lovleyi NrfA were investigated via electron paramagnetic resonance (EPR) spectroscopy coupled with chemical titration experiments. Initially, a chemical reduction method was established to sequentially add electrons to the fully oxidized protein, 1 equiv at a time. The step-by-step reduction of the hemes was then followed using ultraviolet-visible absorption and EPR spectroscopy. EPR spectral simulations were used to elucidate the sequence of heme reduction within the pentaheme scaffold of NrfA and identify the signals of all five hemes in the EPR spectra. Electrochemical experiments ascertain the reduction potentials for each heme, observed in a narrow range from +10 mV (heme 5) to -226 mV (heme 3) (vs the standard hydrogen electrode). On the basis of quantitative analysis and simulation of the EPR data, we demonstrate that hemes 4 and 5 are reduced first (before the active site heme 1) and serve the purpose of an electron storage unit within the protein. To probe the role of the central heme 3, an H108M NrfA variant was generated where the reduction potential of heme 3 is shifted positively (from -226 to +48 mV). The H108M mutation significantly impacts the distribution of electrons within the pentaheme scaffold and the reduction potentials of the hemes, reducing the catalytic activity of the enzyme to 1% compared to that of the wild type. We propose that this is due to heme 3's important role as an electron gateway in the wild-type enzyme.
Asunto(s)
Grupo Citocromo c/metabolismo , Citocromos a1/metabolismo , Citocromos c1/metabolismo , Geobacter/metabolismo , Nitrato Reductasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X/métodos , Grupo Citocromo c/química , Citocromos a1/química , Citocromos c1/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Electrones , Geobacter/química , Hemo/química , Hemo/metabolismo , Modelos Moleculares , Nitrato Reductasas/química , Nitrito Reductasas/química , Nitrito Reductasas/metabolismo , Oxidación-Reducción , Conformación ProteicaRESUMEN
Among all the proteins of Periplasmic C type Cytochrome family obtained from cytochrome C7 found in Geobacter sulfurreducens, only the Periplasmic C type Cytochrome A (PPCA) protein can recognize the deoxycholate (DXCA), while its other paralogs do not, as observed from the crystal structures. Though some existing works have used graph-theoretic approaches to realize the 3-D structural properties of proteins, its usage in the rationalisation of the physiochemical behavior of proteins has been very limited. To understand the driving force towards the recognition of DXCA exclusively by PPCA among its paralogs, in this work, we propose two graph theoretic models based on the combinatorial properties, namely, base-pair-type and impact, of the nucleotide bases and the amino acid residues, respectively. Combinatorial analysis of the binding sequences using the proposed base-pair type based graph theoretic model reveals the differential behaviour of PPCA among its other paralogs. Further, to investigate the underlying chemical phenomenon, another graph theoretic model has been developed based on impact. Analysis of the results obtained from impact-based model clearly indicates towards the helix formation of PPCA which is essential for the recognition of DXCA, making PPCA a completely different entity from its paralogs.
Asunto(s)
Grupo Citocromo c/química , Ácido Desoxicólico/química , Geobacter/química , Modelos Químicos , Proteínas Bacterianas/química , Conformación ProteicaRESUMEN
Microbial nanowires are fascinating biological structures that allow bacteria to transport electrons over micrometers for reduction of extracellular substrates. It was recently established that the nanowires of both Shewanella and Geobacter are made of multi-heme proteins; but, while Shewanella employs the 20-heme protein complex MtrCAB, Geobacter uses a redox polymer made of the hexa-heme protein OmcS, begging the question as to which protein architecture is more efficient in terms of long-range electron transfer. Using a multiscale computational approach we find that OmcS supports electron flows about an order of magnitude higher than MtrCAB due to larger heme-heme electronic couplings and better insulation of hemes from the solvent. We show that heme side chains are an essential structural element in both protein complexes, accelerating rate-limiting electron tunnelling steps up to 1000-fold. Our results imply that the alternating stacked/T-shaped heme arrangement present in both protein complexes may be an evolutionarily convergent design principle permitting efficient electron transfer over very long distances.
Asunto(s)
Proteínas Bacterianas/química , Hemo/química , Hemoproteínas/química , Transporte de Electrón , Geobacter/química , Nanocables/química , Oxidación-Reducción , Conformación Proteica , Shewanella/química , Solventes/química , Relación Estructura-ActividadRESUMEN
In this work, we aim to provide a better understanding of the reasons behind electron transfer inefficiencies between electrogenic bacteria and the electrode in microbial fuel cells. We do so using a self-doped conjugated polyelectrolyte (CPE) as the electrode surface, onto which Geobacter sulfurreducens is placed, then using conductive atomic force microscopy (C-AFM) to directly visualize and quantify the electrons that are transferring from each bacterium to the electrode, thereby helping us gain a better understanding for the overpotential losses in MFCs. In doing so, we obtain images that show G. sulfurreducens can directly transfer electrons to an electrode surface without the use of pili, and that overpotential losses are likely due to cell death and poor distribution or performance of individual bacterium's OmcB cytochromes. This unique combination of CPEs with C-AFM can also be used for other studies where electron transfer loss mechanisms need to be understood on the nanoscale, allowing for direct visualization of potential issues in these systems.
Asunto(s)
Geobacter/química , Polímeros/química , Conductividad Eléctrica , Electrodos , Transporte de Electrón , Microscopía de Fuerza Atómica , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
Cytochrome c nitrite reductase (NrfA) catalyzes the reduction of nitrite to ammonium in the dissimilatory nitrate reduction to ammonium (DNRA) pathway, a process that competes with denitrification, conserves nitrogen, and minimizes nutrient loss in soils. The environmental bacterium Geobacter lovleyi has recently been recognized as a key driver of DNRA in nature, but its enzymatic pathway is still uncharacterized. To address this limitation, here we overexpressed, purified, and characterized G. lovleyi NrfA. We observed that the enzyme crystallizes as a dimer but remains monomeric in solution. Importantly, its crystal structure at 2.55-Å resolution revealed the presence of an arginine residue in the region otherwise occupied by calcium in canonical NrfA enzymes. The presence of EDTA did not affect the activity of G. lovleyi NrfA, and site-directed mutagenesis of this arginine reduced enzymatic activity to <3% of the WT levels. Phylogenetic analysis revealed four separate emergences of Arg-containing NrfA enzymes. Thus, the Ca2+-independent, Arg-containing NrfA from G. lovleyi represents a new subclass of cytochrome c nitrite reductase. Most genera from the exclusive clades of Arg-containing NrfA proteins are also represented in clades containing Ca2+-dependent enzymes, suggesting convergent evolution.
Asunto(s)
Proteínas Bacterianas/metabolismo , Citocromos a1/metabolismo , Citocromos c1/metabolismo , Geobacter/metabolismo , Nitrato Reductasas/metabolismo , Compuestos de Amonio/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Citocromos a1/química , Citocromos a1/genética , Citocromos c1/química , Citocromos c1/genética , Geobacter/química , Geobacter/genética , Cinética , Modelos Moleculares , Nitrato Reductasas/química , Nitrato Reductasas/genética , Nitratos/metabolismo , Filogenia , Conformación ProteicaRESUMEN
Biological electron transfer (ET) is one of the most studied biochemical processes due to its immense importance in biology. For many years, biological ET was explained using the classical incoherent transport mechanism, i.e. sequential hopping. One of the relatively recent major observations in this field is long-range extracellular ET (EET), where some bacteria were shown to mediate electrons for extremely long distances on the micrometer length scales across individual nanowires. This fascinating finding has resulted in several suggested mechanisms that might explain this intriguing EET. More recently, the structure of a conductive G. sulfurreducens nanowire has been solved, which showed a highly ordered quasi-1D wire of a hexaheme cytochrome protein, named OmcS. Based on this new structure, we suggest here several electron diffusion models for EET, involving either purely hopping or several degrees of mixed hopping and coherent transport, in which the coherent part is due to a local rigidification of the protein structure, associated with a decrease in the local reorganization energy. The effect is demonstrated for two closely packed heme sites as well as for longer chains containing up to several dozens porphyrins. We show that the pure hopping model probably cannot explain the reported conductivity values of the G. sulfurreducens nanowire using conventional values of reorganization energy and electronic coupling. On the other hand, we show that for a wide range of the latter energy values, the mixed hopping-coherent model results in superior electron diffusion compared to the pure hopping model, and especially for long-range coherent transport, involving multiple porphyrin sites.
Asunto(s)
Proteínas Bacterianas/química , Geobacter/metabolismo , Proteínas de Unión al Hemo/química , Porfirinas/metabolismo , Conductividad Eléctrica , Transporte de Electrón , Geobacter/química , Modelos Moleculares , NanocablesRESUMEN
Geobacter sulfurreducens' pilin-based electrically conductive protein nanowires (e-PNs) are a revolutionary electronic material. They offer novel options for electronic sensing applications and have the remarkable ability to harvest electrical energy from atmospheric humidity. However, technical constraints limit mass cultivation and genetic manipulation of G. sulfurreducens. Therefore, we designed a strain of Escherichia coli to express e-PNs by introducing a plasmid that contained an inducible operon with E. coli genes for type IV pili biogenesis machinery and a synthetic gene designed to yield a peptide monomer that could be assembled into e-PNs. The e-PNs expressed in E. coli and harvested with a simple filtration method had the same diameter (3 nm) and conductance as e-PNs expressed in G. sulfurreducens. These results, coupled with the robustness of E. coli for mass cultivation and the extensive E. coli toolbox for genetic manipulation, greatly expand the opportunities for large-scale fabrication of novel e-PNs.
Asunto(s)
Escherichia coli/genética , Proteínas Fimbrias/metabolismo , Geobacter/química , Nanocables/química , Ingeniería de Proteínas/métodos , Conductividad Eléctrica , Escherichia coli/metabolismo , Proteínas Fimbrias/genética , Fimbrias Bacterianas/genética , Geobacter/genética , Geobacter/metabolismo , Grafito , Microorganismos Modificados Genéticamente , Microscopía de Fuerza Atómica , OperónRESUMEN
Ste24 enzymes, a family of eukaryotic integral membrane proteins, are zinc metalloproteases (ZMPs) originally characterized as "CAAX proteases" targeting prenylated substrates, including a-factor mating pheromone in yeast and prelamin A in humans. Recently, Ste24 was shown to also cleave nonprenylated substrates. Reduced activity of the human ortholog, HsSte24, is linked to multiple disease states (laminopathies), including progerias and lipid disorders. Ste24 possesses a unique "α-barrel" structure consisting of seven transmembrane (TM) α-helices encircling a large intramembranous cavity (~14 000 Å3 ). The catalytic zinc, coordinated via a HExxH E/H motif characteristic of gluzincin ZMPs, is positioned at one of the cavity's bases. The interrelationship between Ste24 as a gluzincin, a long-studied class of soluble ZMPs, and as a novel cavity-containing integral membrane protein protease has been minimally explored to date. Informed by homology to well-characterized soluble, gluzincin ZMPs, we develop a model of Ste24 that provides a conceptual framework for this enzyme family, suitable for development and interpretation of structure/function studies. The model consists of an interfacial, zinc-containing "ZMP Core" module surrounded by a "ZMP Accessory" module, both capped by a TM helical "α-barrel" module of as yet unknown function. Multiple sequence alignment of 58 Ste24 orthologs revealed 38 absolutely conserved residues, apportioned unequally among the ZMP Core (18), ZMP Accessory (13), and α-barrel (7) modules. This Tripartite Architecture representation of Ste24 provides a unified image of this enzyme family.
Asunto(s)
Proteínas de la Membrana/química , Metaloendopeptidasas/química , Neprilisina/química , Termolisina/química , Secuencia de Aminoácidos , Bacillus/química , Bacillus/enzimología , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Geobacter/química , Geobacter/enzimología , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Modelos Moleculares , Neprilisina/genética , Neprilisina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces/química , Saccharomyces/enzimología , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termolisina/genética , Termolisina/metabolismoRESUMEN
Microorganisms can transfer electrons directly to extracellular acceptors, during which organic compounds are oxidized to carbon dioxide. One of these microbes, Geobacter sulfurreducens, is well known for the "metallic-like" conductivity of its type IV pili. However, there is no consensus on what the mechanism for electron transfer along these conductive pili is. Based on the aromatic distances and orientations of our predicted models, the mechanism of electron transfer in the Geobacter sulfurreducens (GS) pili was explored by quantum chemical calculations with Marcus theory of electron transfer reactions. Three aromatic residues from the N-terminal α-helix of the GS pilin subunit are packed together, resulting in a continuous pi-pi interaction chain. The theoretical conductance (4.69 µS/3.85 µS) of the predicted models is very similar to that in the experiments reported recently (3.40 µS). These findings offer a new concept that the GS pili belongs to a new class of proteins that can transport electrons through pi-pi interaction between aromatic residues and also provide a valuable tool for guiding further researches of these conductive pili, to investigate their roles in biogeochemical cycling, and potential applications in biomaterials, bioelectronics, and bioenergy.
Asunto(s)
Aminoácidos Aromáticos , Transporte de Electrón/fisiología , Espacio Extracelular , Fimbrias Bacterianas , Geobacter , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/metabolismo , Conductividad Eléctrica , Espacio Extracelular/química , Espacio Extracelular/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Geobacter/química , Geobacter/citología , Geobacter/metabolismo , Simulación de Dinámica MolecularRESUMEN
The rising interest in the use of Geobacter bacteria for biotechnological applications demands a deep understanding of how these bacteria are able to thrive in a variety of environments and perform extracellular electron transfer. The Geobacter metallireducens bacterium can couple the oxidation of a wide range of compounds to the reduction of several extracellular acceptors, including heavy metals, toxic organic compounds or electrode surfaces. The periplasmic c-type cytochrome PpcA from this bacterium is a member of a family composed of five periplasmic triheme cytochromes, which are important to bridge the electron transfer between the cytoplasm and the extracellular environment. To better understand the functional mechanism of PpcA it is essential to obtain structural data for this cytochrome. In this work, the geometry of the heme axial ligands, as well as the magnetic properties of the hemes were determined for the oxidized form of the cytochrome, using the 13C NMR chemical shifts of the heme α-substituents. The results were further compared with those previously obtained for the homologous cytochrome from Geobacter sulfurreducens. The orientations of the axial histidine planes and the magnetic properties of the hemes are conserved in both proteins. Overall, the results obtained allowed the definition of the orientation of the magnetic axes of PpcA from G. metallireducens, which will be used as constraints to assist the solution structure determination of the cytochrome in the oxidized form.
Asunto(s)
Proteínas Bacterianas/química , Grupo Citocromo c/química , Geobacter/química , Hemo/química , Proteínas Bacterianas/aislamiento & purificación , Grupo Citocromo c/aislamiento & purificación , Espectroscopía de Resonancia por Spin del Electrón , Histidina/química , Ligandos , Fenómenos Magnéticos , Estructura MolecularRESUMEN
The electrically conductive pili of Geobacter sulfurreducens are of both fundamental and practical interest. They facilitate extracellular and interspecies electron transfer (ET) and also provide an electrical interface between living and nonliving systems. We examine the possible mechanisms of G. sulfurreducens electron transfer in regimes ranging from incoherent to coherent transport. For plausible ET parameters, electron transfer in G. sulfurreducens bacterial nanowires mediated only by the protein is predicted to be dominated by incoherent hopping between phenylalanine (Phe) and tyrosine (Tyr) residues that are 3 to 4 Å apart, where Phe residues in the hopping pathways may create delocalized "islands." This mechanism could be accessible in the presence of strong oxidants that are capable of oxidizing Phe and Tyr residues. We also examine the physical requirements needed to sustain biological respiration via nanowires. We find that the hopping regimes with ET rates on the order of 108 s-1 between Phe islands and Tyr residues, and conductivities on the order of mS/cm, can support ET fluxes that are compatible with cellular respiration rates, although sustaining this delocalization in the heterogeneous protein environment may be challenging. Computed values of fully coherent electron fluxes through the pili are orders of magnitude too low to support microbial respiration. We suggest experimental probes of the transport mechanism based on mutant studies to examine the roles of aromatic amino acids and yet to be identified redox cofactors.