Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(13): eadk1577, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536908

RESUMEN

Bactericidal antibiotics can cause metabolic perturbations that contribute to antibiotic-induced lethality. The molecular mechanism underlying these downstream effects remains unknown. Here, we show that ofloxacin, a fluoroquinolone that poisons DNA gyrase, induces a cascade of metabolic changes that are dependent on an active SOS response. We identified the SOS-regulated TisB protein as the unique molecular determinant responsible for cytoplasmic condensation, proton motive force dissipation, loss of pH homeostasis, and H2O2 accumulation in Escherichia coli cells treated with high doses of ofloxacin. However, TisB is not required for high doses of ofloxacin to interfere with the function of DNA gyrase or the resulting rapid inhibition of DNA replication and lethal DNA damage. Overall, the study sheds light on the molecular mechanisms by which ofloxacin affects bacterial cells and highlights the role of the TisB protein in mediating these effects.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Ofloxacino/farmacología , Proteínas de Escherichia coli/química , Girasa de ADN/metabolismo , Girasa de ADN/farmacología , Peróxido de Hidrógeno/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo
2.
Eur J Pharm Sci ; 192: 106632, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37949194

RESUMEN

Antimicrobial resistance caused by the excessive and inappropriate use of antibacterial drugs is a global health concern. Currently, we are walking a fine line between the fact that most bacterial infections can still be cured with the antibiotics known so far, and the emergence of infections with bacteria resistant to several drugs at the same time, against which we no longer have an effective drug. Therefore, new antibacterial drugs are urgently needed to curb the hard-to-treat infections. Our group has developed new antibacterials from the class of novel bacterial topoisomerase inhibitors (NBTIs) that exhibit broad-spectrum antibacterial activity. This article reviews our efforts in developing highly potent NBTIs over the past decade. Following the discovery of an initial hit with potent enzyme inhibitory and broad-spectrum antibacterial activity, an extensive hit-to-lead campaign was conducted with the goal of optimizing physicochemical properties, reducing hERG inhibition, and maintaining antibacterial activity against both Gram-positive and Gram-negative bacteria, with a focus on methicillin-resistant Staphylococcus aureus (MRSA). This optimization strategy resulted in an amide-containing, focused NBTI library with compounds exhibiting potent antibacterial activity against Gram-positive bacteria, reduced hERG inhibition, no cardiotoxicity in in vivo zebrafish model, and favorable in vivo efficacy in a neutropenic murine thigh infection model for MRSA infections.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Inhibidores de Topoisomerasa , Ratones , Animales , Inhibidores de Topoisomerasa/farmacología , Inhibidores de Topoisomerasa/uso terapéutico , Inhibidores de Topoisomerasa/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Girasa de ADN/química , Girasa de ADN/farmacología , Pez Cebra , Bacterias Grampositivas , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico
3.
Drug Dev Res ; 84(6): 1204-1230, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37165799

RESUMEN

An efficient one-pot reaction utilizing readily available chemical reagents was used to prepare novel 2-amino-1,5-diaryl-1H-pyrrole-3-carbonitrile derivatives and the structures of these compounds were validated by spectroscopic data and elemental analyses. All the synthetic compounds were evaluated for their antimicrobial activities (MZI assay). The tested compounds proved high activities on Staphylococcus aureus (Gram-positive bacteria) and Candida albicans (Pathogenic fungi). However, they did not show any activity on Escherichia coli (Gram-negative bacteria). The most effective compounds in MZI assay 7c, 9a, 9b, 11a, and 11b were selected to determine their MIC on S. aureus and C. albicans. Furthermore, DNA gyrase and 14-α demethylase inhibitory assays were performed to study the inhibitory activities of 7c, 9a, 9b, 11a, and 11b. The results illustrated that compound 9b was the most DNA gyrase inhibitor (IC50 of 0.0236 ± 0.45 µM, which was 1.3- fold higher than gentamicin reference IC50 values of 0.0323 ± 0.81 µM). In addition, compound 9b demonstrated the highest 14-α demethylase inhibitory effect with IC50 of 0.0013 ± 0.02 µM, compared to ketoconazole (IC50 of 0.0008 ± 0.03 µM) and fluconazole (IC50 of 0.00073 ± 0.01 µM), as antifungal reference drugs. Lastly, docking studies were performed to rationalize the dual inhibitory activities of the highly active compounds on both DNA gyrase and 14-α demethylase enzymes.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa , Girasa de ADN , Simulación del Acoplamiento Molecular , Inhibidores de 14 alfa Desmetilasa/farmacología , Girasa de ADN/metabolismo , Girasa de ADN/farmacología , Staphylococcus aureus , Antibacterianos/química , Pirroles/farmacología , Pirroles/química , Antifúngicos/farmacología , Antifúngicos/química , Escherichia coli , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
4.
Molecules ; 28(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37241923

RESUMEN

Infectious diseases caused by viruses and bacteria are a major public health concern worldwide, with the emergence of antibiotic resistance, biofilm-forming bacteria, viral epidemics, and the lack of effective antibacterial and antiviral agents exacerbating the problem. In an effort to search for new antimicrobial agents, this study aimed to screen antibacterial and antiviral activity of the total methanol extract and its various fractions of Pulicaria crispa (P. crispa) aerial parts. The P. crispa hexane fraction (HF) was found to have the strongest antibacterial effect against both Gram-positive and Gram-negative bacteria, including biofilm producers. The HF fraction reduced the expression levels of penicillin binding protein (PBP2A) and DNA gyrase B enzymes in Staphylococcus aureus and Pseudomonas aeruginosa, respectively. Additionally, the HF fraction displayed the most potent antiviral activity, especially against influenza A virus, affecting different stages of the virus lifecycle. Gas chromatography/mass spectrometry (GC/MS) analysis of the HF fraction identified 27 compounds, mainly belonging to the sterol class, with ß-sitosterol, phytol, stigmasterol, and lupeol as the most abundant compounds. The in silico study revealed that these compounds were active against influenza A nucleoprotein and polymerase, PBP2A, and DNA gyrase B. Overall, this study provides valuable insights into the chemical composition and mechanism of action of the P. crispa HF fraction, which may lead to the development of more effective treatments for bacterial and viral infections.


Asunto(s)
Asteraceae , Pulicaria , Virus , Antibacterianos/farmacología , Antibacterianos/química , Antivirales/farmacología , Pulicaria/química , Girasa de ADN/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Bacterias , Biopelículas , Extractos Vegetales/farmacología , Extractos Vegetales/química
5.
Lancet Microbe ; 4(4): e247-e254, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36868257

RESUMEN

BACKGROUND: The aetiological bacterial agent of gonorrhoea, Neisseria gonorrhoeae, has become resistant to each of the first-line antibiotics used to treat it, including ciprofloxacin. One diagnostic approach to identify ciprofloxacin-susceptible isolates is to determine codon 91 in the gene encoding the A subunit of DNA gyrase, gyrA, where coding for the wild-type serine (gyrA91S) is associated with ciprofloxacin susceptibility and phenylalanine (gyrA91F) with resistance. The aim of this study was to investigate the possibility of diagnostic escape from gyrA susceptibility testing. METHODS: We used bacterial genetics to introduce pairwise substitutions in GyrA positions 91 (S or F) and 95 (D, G, or N), which is a second site in GyrA associated with ciprofloxacin resistance, into five clinical isolates of N gonorrhoeae. All five isolates encoded GyrA S91F, an additional substitution in GyrA at position 95, substitutions in ParC that are known to cause an increased minimum inhibitory concentration (MIC) to ciprofloxacin, and GyrB 429D, which is associated with susceptibility to zoliflodacin (a spiropyrimidinetrione-class antibiotic in phase 3 trials for treatment of gonorrhoea). We evolved these isolates to assess for the existence of pathways to ciprofloxacin resistance (MIC ≥1 µg/mL) and measured MICs for ciprofloxacin and zoliflodacin. In parallel, we searched metagenomic data for 11 355 N gonorrhoeae clinical isolates with reported ciprofloxacin MICs that were publicly available from the European Nucleotide Archive for strains that would be identified as susceptible by gyrA codon 91-based assays. FINDINGS: Three clinical isolates of N gonorrhoeae with substitutions in GyrA position 95 associated with resistance (G or N) maintained intermediate ciprofloxacin MICs (0·125-0·5 µg/mL), which has been associated with treatment failure, despite reversion of GyrA position 91 from phenylalanine to serine. From an in-silico analysis of the 11 355 genomes from N gonorrhoeae clinical isolates, we identified 30 isolates with gyrA codon 91 encoding a serine and a ciprofloxacin resistance-associated mutation at codon 95. The reported MICs for these isolates varied from 0·023 µg/mL to 0·25 µg/mL, including four with intermediate ciprofloxacin MICs (associated with substantially increased risk of treatment failure). Finally, through experimental evolution, one clinical isolate of N gonorrhoeae bearing GyrA 91S acquired ciprofloxacin resistance through mutations in the gene encoding for the B subunit of DNA gyrase (gyrB) that also conferred reduced susceptibility to zoliflodacin (ie, MIC ≥2 µg/mL). INTERPRETATION: Diagnostic escape from gyrA codon 91 diagnostics could occur through either reversion of the gyrA allele or expansion of circulating lineages. N gonorrhoeae genomic surveillance efforts might benefit from including gyrB, given its potential for contributing to ciprofloxacin and zoliflodacin resistance, and diagnostic strategies that reduce the likelihood of escape, such as the incorporation of multiple target sites, should be investigated. Diagnostics that guide antibiotic therapy can have unintended consequences, including novel resistance determinants and antibiotic cross-resistance. FUNDING: US National Institutes of Health National Institute of Allergy and Infectious Diseases, National Institute of General Medical Sciences, and the Smith Family Foundation.


Asunto(s)
Ciprofloxacina , Gonorrea , Humanos , Ciprofloxacina/farmacología , Neisseria gonorrhoeae/genética , Gonorrea/epidemiología , Gonorrea/genética , Gonorrea/microbiología , Girasa de ADN/genética , Girasa de ADN/farmacología , Antibacterianos/farmacología
6.
Drug Dev Res ; 84(3): 433-457, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36779381

RESUMEN

A series of coumarin derivatives were designed, synthesized, and evaluated for their antiproliferative activity. Compound 3e exhibited significant antiproliferative activity and was further evaluated at five doses at the National Cancer Institute. It effectively inhibited vascular endothelial growth factor receptor-2 (VEGFR-2) with an IC50 value of 0.082 ± 0.004 µM compared with sorafenib. While compound 3e significantly downregulated total VEGFR-2 and its phosphorylation, it markedly reduced the HUVEC's migratory potential, resulting in a significant disruption in wound healing. Furthermore, compound 3e caused a 22.51-fold increment in total apoptotic level in leukemia cell line HL-60(TB) and a 6.91-fold increase in the caspase-3 level. Compound 3e also caused cell cycle arrest, mostly at the G1/S phase. Antibacterial activity was evaluated against Gram-positive and Gram-negative bacterial strains. Compound 3b was the most active derivative, with the same minimum inhibitory concentration and minimum bactericidal concentration value of 128 µg/mL against K. pneumonia and high stability in mammalian plasma. Moreover, compounds 3b and 3f inhibited Gram-negative DNA gyrase with IC50 = 0.73 ± 0.05 and 1.13 ± 0.07 µM, respectively, compared to novobiocin with an IC50 value of 0.17 ± 0.02 µM. The binding affinity and pattern of derivative 3e toward the VEGFR-2 active site and compounds 3a-c and 3f in the DNA gyrase active site were evaluated using molecular modeling. Overall, ADME studies of the synthesized coumarin derivatives displayed promising pharmacokinetic properties.


Asunto(s)
Antineoplásicos , Girasa de ADN , Antibacterianos/química , Antineoplásicos/química , Proliferación Celular , Cumarinas/farmacología , Girasa de ADN/metabolismo , Girasa de ADN/farmacología , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Factor A de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Humanos
7.
J Enzyme Inhib Med Chem ; 37(1): 1620-1631, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36278813

RESUMEN

Emerging drug resistance is generating an urgent need for novel and effective antibiotics. A promising target that has not yet been addressed by approved antibiotics is the bacterial DNA gyrase subunit B (GyrB), and GyrB inhibitors could be effective against drug-resistant bacteria, such as methicillin-resistant S. aureus (MRSA). Here, we used the 4-hydroxy-2-quinolone fragment to search the Specs database of purchasable compounds for potential inhibitors of GyrB and identified AG-690/11765367, or f1, as a novel and potent inhibitor of the target protein (IC50: 1.21 µM). Structural modification was used to further identify two more potent GyrB inhibitors: f4 (IC50: 0.31 µM) and f14 (IC50: 0.28 µM). Additional experiments indicated that compound f1 is more potent than the others in terms of antibacterial activity against MRSA (MICs: 4-8 µg/mL), non-toxic to HUVEC and HepG2 (CC50: approximately 50 µM), and metabolically stable (t1/2: > 372.8 min for plasma; 24.5 min for liver microsomes). In summary, this study showed that the discovered N-quinazolinone-4-hydroxy-2-quinolone-3-carboxamides are novel GyrB-targeted antibacterial agents; compound f1 is promising for further development.


Asunto(s)
Girasa de ADN , Staphylococcus aureus Resistente a Meticilina , Girasa de ADN/metabolismo , Girasa de ADN/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Quinazolinonas/farmacología , ADN Bacteriano , Pruebas de Sensibilidad Microbiana , Bacterias
8.
J Comput Chem ; 43(26): 1771-1782, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36054249

RESUMEN

Drug resistant Mycobacterium tuberculosis, which mostly results from single nucleotide polymorphisms in antibiotic target genes, poses a major threat to tuberculosis treatment outcomes. Relative binding free energy (RBFE) calculations can rapidly predict the effects of mutations, but this approach has not been tested on large, complex proteins. We use RBFE calculations to predict the effects of M. tuberculosis RNA polymerase and DNA gyrase mutations on rifampicin and moxifloxacin susceptibility respectively. These mutations encompass a range of amino acid substitutions with known effects and include large steric perturbations and charged moieties. We find that moderate numbers (n = 3-15) of short RBFE calculations can predict resistance in cases where the mutation results in a large change in the binding free energy. We show that the method lacks discrimination in cases with either a small change in energy or that involve charged amino acids, and we investigate how these calculation errors may be decreased.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Girasa de ADN/genética , Girasa de ADN/metabolismo , Girasa de ADN/farmacología , Farmacorresistencia Microbiana , Humanos , Moxifloxacino/farmacología , Moxifloxacino/uso terapéutico , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
9.
Drug Dev Res ; 83(6): 1305-1330, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35716118

RESUMEN

Developing novel antimicrobial agents has become a necessitate due to the increasing rate of microbial resistance to antibiotics. All the newly adamantane derivatives were evaluated for their antimicrobial activities against six MDR clinical pathogenic isolates. The results exhibited that 13 compounds have from potent to good activity. Among those, five derivatives (6, 7, 9, 14a, and 14b) displayed the potent activities against the different isolates tested (MIC < 0.25 µg/ml with bacteria and <8 µg/ml with fungi) compared with Ciprofloxacin (CIP) and Fluconazole (FCA). Additionally, the potent adamantanes showed bactericidal and fungicidal effects based on (MBCs and MFCs) and the time-kill assay. The most active adamantane derivatives 7 and 14b exhibited a synergistic effect of ΣFIC ≤ 0.5 with CIP and FCA against the bacterial and fungal isolates. Moreover, no antagonistic effect appeared for the tested derivatives. Additionally, the interaction of DNA gyrase and topoisomerase IV enzymes with the compounds 6, 7, 9, 14a, and 14b exhibited potent antimicrobial activity using in vitro biochemical assays and gel-based DNA-supercoiling inhibition method. The activity of DNA gyrase and topoisomerase IV enzymes showed inhibitory activity (IC50 ) of 6.20 µM and 9.40 µM with compound 7 and 10.14 µM and 13.28 µM with compound 14b, respectively. Surprisingly, exposing compound 7 to gamma irradiation sterilized and increased its activity. Finally, the in-silico analysis predicted that the most active derivatives had good drug-likeness and safe properties. Besides, molecular docking and quantum chemical studies revealed several important interactions inside the active sites and showed the structural features necessary for activity.


Asunto(s)
Adamantano , Antiinfecciosos , Adamantano/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Bacterias , Ciprofloxacina/farmacología , Girasa de ADN/genética , Girasa de ADN/farmacología , Topoisomerasa de ADN IV/genética , Topoisomerasa de ADN IV/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología
10.
J Org Chem ; 87(11): 7446-7455, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35608344

RESUMEN

The emerging field of photopharmacology has offered a promising alternative to guard against the bacterial resistance by effectively avoiding antibiotic accumulation in the body or environment. However, the degradation, toxicity, and thermal reversibility have always been an ongoing concern for potential applications of azobenzene-based photopharmacology. Developing novel photopharmacological agents based on a more matched switch is highly in demand and remains a major challenge. Herein, two novel dithienylethene-bridged dual-fluoroquinolone derivatives have been developed by introducing two fluoroquinolone drugs into both ends of the dithienylethene (DTE) switch, in which the fluoroquinolone acts as a fluorophore except for the pharmacodynamic component. For comparison, two monofluoroquinolone-DTE hybrids were also prepared by a similar strategy. As expected, these resultant DTE-based antibacterial agents displayed efficient photochromism and fluorescence switching behavior in dimethyl sulfoxide. Moreover, improved antibacterial activities compared to those of monofluoroquinolone derivatives and a maximum fourfold active difference against Escherichia coli (E. coli) for open and closed isomers and photoswitchable bacterial imaging for Staphylococcus aureus and E. coli were observed. The molecular docking to DNA gyrase gave a rationale for the discrepancies in antibacterial activity for both isomers. Therefore, these fluoroquinolone derivatives can act as interesting imaging-guided photopharmacological agents for further in vivo studies.


Asunto(s)
Escherichia coli , Fluoroquinolonas , Antibacterianos/farmacología , Girasa de ADN/metabolismo , Girasa de ADN/farmacología , Fluoroquinolonas/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular
11.
Molecules ; 26(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34443405

RESUMEN

In this study, a new synthetic 1,2,3-triazole-containing disulfone compound was derived from dapsone. Its chemical structure was confirmed using microchemical and analytical data, and it was tested for its in vitro antibacterial potential. Six different pathogenic bacteria were selected. MICs values and ATP levels were determined. Further, toxicity performance was measured using MicroTox Analyzer. In addition, a molecular docking study was performed against two vital enzymes: DNA gyrase and Dihydropteroate synthase. The results of antibacterial abilities showed that the studied synthetic compound had a strong bactericidal effect against all tested bacterial strains, as Gram-negative species were more susceptible to the compound than Gram-positive species. Toxicity results showed that the compound is biocompatible and safe without toxic impact. The molecular docking of the compound showed interactions within the pocket of two enzymes, which are able to stabilize the compound and reveal its antimicrobial activity. Hence, from these results, this study recommends that the established compound could be an outstanding candidate for fighting a broad spectrum of pathogenic bacterial strains, and it might therefore be used for biomedical and pharmaceutical applications.


Asunto(s)
Antibacterianos/química , Dihidropteroato Sintasa/antagonistas & inhibidores , Sulfonas/química , Triazoles/química , Antibacterianos/farmacología , Girasa de ADN/química , Girasa de ADN/farmacología , Dapsona/química , Dihidropteroato Sintasa/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/enzimología , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/enzimología , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Sulfonas/farmacología , Inhibidores de Topoisomerasa II/química , Triazoles/farmacología
12.
Antimicrob Agents Chemother ; 47(2): 682-8, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12543678

RESUMEN

Most Yersinia enterocolitica strains are resistant to beta-lactam antibiotics due to the production of one or two chromosomally encoded beta-lactamases. Strain Y56 is a Y. enterocolitica O:3 serotype natural isolate that is resistant to moderate amounts of penicillins and that produces a single class A beta-lactamase. To select mutants with increased levels of resistance to beta-lactam antibiotics, strain Y56 was grown on plates containing increasing amounts of ampicillin, and variants resistant to up to 500 micro g of ampicillin per ml were obtained. Chromosomal DNA from hyperresistant isolates was analyzed by Southern hybridization with a blaA-specific probe to detect gene rearrangements. The use of pulsed-field gel electrophoresis revealed that the increase in the resistance level correlated with the amplification in tandem of a DNA fragment of about 28 kb containing the blaA gene. The phenotype of these isolates was not stable, and they recovered the basal low resistance level when the ampicillin used for selection was withdrawn from the growth medium. This loss of resistance was followed by the recovery of the original chromosomal structure. To understand this amplification process, the 28-kb amplification unit was cloned, and the ends were sequenced. The analysis of these sequences did not reveal the presence of either repeats or transposable elements to explain this process. However, we found short sequences similar to some DNA gyrase target sequences that have been described. In addition, we observed that the frequency of appearance of ampicillin-hyperresistant isolates by amplification of the blaA locus was lowered in the presence of the gyrase inhibitor novobiocin. These findings suggest that the DNA gyrase could be involved in this amplification event.


Asunto(s)
Proteínas Bacterianas , Girasa de ADN/farmacología , Proteínas de Unión al ADN/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Yersinia enterocolitica/genética , Antibacterianos/farmacología , Girasa de ADN/fisiología , Lactamas , Fenotipo , Yersinia enterocolitica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...