Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 548
Filtrar
1.
Hippocampus ; 34(4): 168-196, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38178693

RESUMEN

Head direction (HD) cells, which fire persistently when an animal's head is pointed in a particular direction, are widely thought to underlie an animal's sense of spatial orientation and have been identified in several limbic brain regions. Robust HD cell firing is observed throughout the thalamo-parahippocampal system, although recent studies report that parahippocampal HD cells exhibit distinct firing properties, including conjunctive aspects with other spatial parameters, which suggest they play a specialized role in spatial processing. Few studies, however, have quantified these apparent differences. Here, we performed a comparative assessment of HD cell firing characteristics across the anterior dorsal thalamus (ADN), postsubiculum (PoS), parasubiculum (PaS), medial entorhinal (MEC), and postrhinal (POR) cortices. We report that HD cells with a high degree of directional specificity were observed in all five brain regions, but ADN HD cells display greater sharpness and stability in their preferred directions, and greater anticipation of future headings compared to parahippocampal regions. Additional analysis indicated that POR HD cells were more coarsely modulated by other spatial parameters compared to PoS, PaS, and MEC. Finally, our analyses indicated that the sharpness of HD tuning decreased as a function of laminar position and conjunctive coding within the PoS, PaS, and MEC, with cells in the superficial layers along with conjunctive firing properties showing less robust directional tuning. The results are discussed in relation to theories of functional organization of HD cell tuning in thalamo-parahippocampal circuitry.


Asunto(s)
Núcleos Talámicos Anteriores , Giro Parahipocampal , Animales , Giro Parahipocampal/fisiología , Corteza Cerebral , Percepción Espacial , Cabeza/fisiología
2.
Nature ; 625(7994): 338-344, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123682

RESUMEN

The medial entorhinal cortex (MEC) hosts many of the brain's circuit elements for spatial navigation and episodic memory, operations that require neural activity to be organized across long durations of experience1. Whereas location is known to be encoded by spatially tuned cell types in this brain region2,3, little is known about how the activity of entorhinal cells is tied together over time at behaviourally relevant time scales, in the second-to-minute regime. Here we show that MEC neuronal activity has the capacity to be organized into ultraslow oscillations, with periods ranging from tens of seconds to minutes. During these oscillations, the activity is further organized into periodic sequences. Oscillatory sequences manifested while mice ran at free pace on a rotating wheel in darkness, with no change in location or running direction and no scheduled rewards. The sequences involved nearly the entire cell population, and transcended epochs of immobility. Similar sequences were not observed in neighbouring parasubiculum or in visual cortex. Ultraslow oscillatory sequences in MEC may have the potential to couple neurons and circuits across extended time scales and serve as a template for new sequence formation during navigation and episodic memory formation.


Asunto(s)
Corteza Entorrinal , Neuronas , Periodicidad , Animales , Ratones , Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Neuronas/fisiología , Giro Parahipocampal/fisiología , Carrera/fisiología , Factores de Tiempo , Oscuridad , Corteza Visual/fisiología , Vías Nerviosas , Navegación Espacial/fisiología , Memoria Episódica
3.
Cereb Cortex ; 33(4): 1186-1206, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35353185

RESUMEN

Although hemispheric lateralization of creativity has been a longstanding topic of debate, the underlying neurocognitive mechanism remains poorly understood. Here we designed 2 types of novel stimuli-"novel useful and novel useless," adapted from "familiar useful" designs taken from daily life-to demonstrate how the left and right medial temporal lobe (MTL) respond to novel designs of different usefulness. Taking the "familiar useful" design as a baseline, we found that the right MTL showed increased activation in response to "novel useful" designs, followed by "novel useless" ones, while the left MTL only showed increased activation in response to "novel useful" designs. Calculating an asymmetry index suggests that usefulness processing is predominant in the left MTL, whereas the right MTL is predominantly involved in novelty processing. Moreover, the left parahippocampal gyrus (PHG) showed stronger functional connectivity with the anterior cingulate cortex when responding to "novel useless" designs. In contrast, the right PHG showed stronger connectivity with the amygdala, midbrain, and hippocampus. Critically, multivoxel representational similarity analyses revealed that the left MTL was more effective than the right MTL at distinguishing the usefulness differences in novel stimuli, while representational patterns in the left PHG positively predicted the post-behavior evaluation of "truly creative" products. These findings suggest an apparent dissociation of the left and right MTL in integrating the novelty and usefulness information and novel associative processing during creativity evaluation, respectively. Our results provide novel insights into a longstanding and controversial question in creativity research by demonstrating functional lateralization of the MTL in processing novel associations.


Asunto(s)
Imagen por Resonancia Magnética , Lóbulo Temporal , Imagen por Resonancia Magnética/métodos , Lóbulo Temporal/fisiología , Hipocampo/fisiología , Giro Parahipocampal/fisiología , Creatividad , Mapeo Encefálico
4.
Cell Rep ; 39(2): 110684, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417686

RESUMEN

Our internal sense of direction is thought to rely on the activity of head-direction (HD) neurons. We find that the mouse dorsal presubiculum (PreS), a key structure in the cortical representation of HD, displays a modular "patch-matrix" organization, which is conserved across species (including human). Calbindin-positive layer 2 neurons within the "matrix" form modular recurrent microcircuits, while inputs from the anterodorsal and laterodorsal thalamic nuclei are non-overlapping and target the "patch" and "matrix" compartments, respectively. The apical dendrites of identified HD cells are largely restricted within the "matrix," pointing to a non-random sampling of patterned inputs and to a precise structure-function architecture. Optogenetic perturbation of modular recurrent microcircuits results in a drastic tonic suppression of firing only in a subpopulation of HD neurons. Altogether, our data reveal a modular microcircuit organization of the PreS HD map and point to the existence of cell-type-specific microcircuits that support the cortical HD representation.


Asunto(s)
Neuronas , Giro Parahipocampal , Animales , Ratones , Neuronas/fisiología , Giro Parahipocampal/fisiología
5.
Nat Commun ; 13(1): 1907, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35393433

RESUMEN

An essential role of the hippocampal region is to integrate information to compute and update representations. How this transpires is highly debated. Many theories hinge on the integration of self-motion signals and the existence of continuous attractor networks (CAN). CAN models hypothesise that neurons coding for navigational correlates - such as position and direction - receive inputs from cells conjunctively coding for position, direction, and self-motion. As yet, very little data exist on such conjunctive coding in the hippocampal region. Here, we report neurons coding for angular and linear velocity, uniformly distributed across the medial entorhinal cortex (MEC), the presubiculum and the parasubiculum, except for MEC layer II. Self-motion neurons often conjunctively encoded position and/or direction, yet lacked a structured organisation. These results offer insights as to how linear/angular speed - derivative in time of position/direction - may allow the updating of spatial representations, possibly uncovering a generalised algorithm to update any representation.


Asunto(s)
Corteza Entorrinal , Giro Parahipocampal , Corteza Entorrinal/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Giro Parahipocampal/fisiología
6.
Brain Struct Funct ; 227(5): 1697-1710, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35194657

RESUMEN

Successful navigation is largely dependent on the ability to make correct decisions at navigational decision points. However, the interaction between the brain regions associated with the navigational decision point in a schematic map is unclear. In this study, we adopted a 2D subway paradigm to study the neural basis underlying decision points. Twenty-eight subjects performed a spatial navigation task using a subway map during fMRI scanning. We adopted a voxel-wise general linear model (GLM) approach and found four brain regions, the left hippocampus (HIP), left parahippocampal gyrus (PHG), left ventromedial prefrontal cortex (vmPFC), and right retrosplenial cortex (RSC), activated at a navigational decision point in a schematic map. Using a psychophysiological interactions (PPI) method, we found that (1) both the left vmPFC and right HIP interacted cooperatively with the right RSC, and (2) the left HIP and the left vmPFC interacted cooperatively at the decision point. These findings may be helpful for revealing the neural mechanisms underlying decision points in a schematic map during spatial navigation.


Asunto(s)
Navegación Espacial , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Giro Parahipocampal/fisiología , Navegación Espacial/fisiología
7.
Neuroimage ; 249: 118893, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007715

RESUMEN

Risk-taking differs between humans, and is associated with the personality measures of impulsivity and sensation-seeking. To analyse the brain systems involved, self-report risk-taking, resting state functional connectivity, and related behavioral measures were analyzed in 18,740 participants of both sexes from the UK Biobank. Functional connectivities of the medial orbitofrontal cortex, ventromedial prefrontal cortex (VMPFC), and the parahippocampal areas were significantly higher in the risk-taking group (p < 0.001, FDR corrected). The risk-taking measure was validated in that it was significantly associated with alcohol drinking amount (r = 0.08, p = 5.1×10-28), cannabis use (r = 0.12, p = 6.0×10-66), and anxious feelings (r = -0.12, p = 7.6×-98). The functional connectivity findings were cross-validated in two independent datasets. The higher functional connectivity of the medial orbitofrontal cortex and VMPFC included higher connectivity with the anterior cingulate cortex, which provides a route for these reward-related regions to have a greater influence on action in risk-taking individuals. In conclusion, the medial orbitofrontal cortex, which is involved in reward value and pleasure, was found to be related to risk-taking, which is associated with impulsivity. An implication is that risk-taking is driven by specific orbitofrontal cortex reward systems, and is different for different rewards which are represented differently in the brains of different individuals. This is an advance in understanding the bases and mechanisms of risk-taking in humans, given that the orbitofrontal cortex, VMPFC and anterior cingulate cortex are highly developed in humans, and that risk-taking can be reported in humans.


Asunto(s)
Conectoma , Giro del Cíngulo/fisiología , Conducta Impulsiva/fisiología , Giro Parahipocampal/fisiología , Corteza Prefrontal/fisiología , Recompensa , Asunción de Riesgos , Adulto , Anciano , Femenino , Giro del Cíngulo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Giro Parahipocampal/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen
9.
Neurobiol Learn Mem ; 185: 107520, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34537379

RESUMEN

Multiple paradigms indicate that the physical environment can influence spontaneous and learned behavior. In rodents, context-dependent behavior is putatively supported by the prefrontal cortex and the medial temporal lobe. A preponderance of the literature has targeted the role of the hippocampus. In addition to the hippocampus proper, the medial temporal lobe also comprises parahippocampal areas, including the perirhinal and postrhinal cortices. These parahippocampal areas directly connect with multiple regions in the prefrontal cortex. The function of these connections, however, is not well understood. This article first reviews the involvement of the perirhinal, postrhinal, and prefrontal cortices in context-dependent behavior in rodents. Then, based on functional and anatomical evidence, we suggest that perirhinal and postrhinal contributions to context-dependent behavior go beyond supporting context representation in the hippocampus. Specifically, we propose that the perirhinal and postrhinal cortices act as a contextual-support network that directly provides contextual and spatial information to the prefrontal cortex. In turn, the perirhinal and postrhinal cortices modulate prefrontal input to the hippocampus in the service of context-guided behavior.


Asunto(s)
Hipocampo/fisiología , Giro Parahipocampal/fisiología , Corteza Prefrontal/fisiología , Animales , Humanos , Aprendizaje/fisiología , Vías Nerviosas/fisiología , Reconocimiento en Psicología/fisiología
10.
Cereb Cortex ; 32(1): 76-92, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34289029

RESUMEN

The parasubiculum (PaS) is located within the parahippocampal region, where it is thought to be involved in the processing of spatial navigational information. It contains a number of functionally specialized neuron types including grid cells, head direction cells, and border cells; and provides input into layer 2 of the medial entorhinal cortex where grid cells are abundantly located. The local circuitry within the PaS remains so far undefined but may provide clues as to the emergence of spatially tuned firing properties of neurons in this region. We used simultaneous patch-clamp recordings to determine the connectivity rates between the 3 major groups of neurons found in the PaS. We find high rates of interconnectivity between the pyramidal class and interneurons, as well as features of pyramid-to-pyramid interactions indicative of a nonrandom network. The microcircuit that we uncover shares both similarities and divergences to those from other parahippocampal regions also involved in spatial navigation.


Asunto(s)
Corteza Entorrinal , Navegación Espacial , Potenciales de Acción/fisiología , Corteza Entorrinal/fisiología , Interneuronas/fisiología , Neuronas/fisiología , Giro Parahipocampal/fisiología , Navegación Espacial/fisiología
11.
J Neurosci ; 41(34): 7234-7245, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34103357

RESUMEN

Natural scenes deliver rich sensory information about the world. Decades of research has shown that the scene-selective network in the visual cortex represents various aspects of scenes. However, less is known about how such complex scene information is processed beyond the visual cortex, such as in the prefrontal cortex. It is also unknown how task context impacts the process of scene perception, modulating which scene content is represented in the brain. In this study, we investigate these questions using scene images from four natural scene categories, which also depict two types of scene attributes, temperature (warm or cold), and sound level (noisy or quiet). A group of healthy human subjects from both sexes participated in the present study using fMRI. In the study, participants viewed scene images under two different task conditions: temperature judgment and sound-level judgment. We analyzed how these scene attributes and categories are represented across the brain under these task conditions. Our findings show that scene attributes (temperature and sound level) are only represented in the brain when they are task relevant. However, scene categories are represented in the brain, in both the parahippocampal place area and the prefrontal cortex, regardless of task context. These findings suggest that the prefrontal cortex selectively represents scene content according to task demands, but this task selectivity depends on the types of scene content: task modulates neural representations of scene attributes but not of scene categories.SIGNIFICANCE STATEMENT Research has shown that visual scene information is processed in scene-selective regions in the occipital and temporal cortices. Here, we ask how scene content is processed and represented beyond the visual brain, in the prefrontal cortex (PFC). We show that both scene categories and scene attributes are represented in PFC, with interesting differences in task dependency: scene attributes are only represented in PFC when they are task relevant, but scene categories are represented in PFC regardless of the task context. Together, our work shows that scene information is processed beyond the visual cortex, and scene representation in PFC reflects how adaptively our minds extract relevant information from a scene.


Asunto(s)
Imaginación/fisiología , Naturaleza , Corteza Prefrontal/fisiología , Estimulación Acústica , Adulto , Femenino , Humanos , Juicio , Imagen por Resonancia Magnética , Masculino , Ruido , Giro Parahipocampal/fisiología , Estimulación Luminosa , Sonido , Temperatura , Sensación Térmica , Vías Visuales/fisiología , Adulto Joven
12.
Neuroimage ; 238: 118264, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34129948

RESUMEN

Humans use different spatial reference frames (allocentric or egocentric) to navigate successfully toward their destination in different spatial scale spaces (environmental or vista). However, it remains unclear how the brain represents different spatial scales and different spatial reference frames. Thus, we conducted an activation likelihood estimation (ALE) meta-analysis of 47 fMRI articles involving human spatial navigation. We found that both the environmental and vista spaces activated the parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area in the right hemisphere. The environmental space showed stronger activation than the vista space in the occipital and frontal regions. No brain region exhibited stronger activation for the vista than the environmental space. The allocentric and egocentric reference frames activated the bilateral PPA and right RSC. The allocentric frame showed more stronger activations than the egocentric frame in the right culmen, left middle frontal gyrus, and precuneus. No brain region displayed stronger activation for the egocentric than the allocentric navigation. Our findings suggest that navigation in different spatial scale spaces can evoke specific and common brain regions, and that the brain regions representing spatial reference frames are not absolutely separated.


Asunto(s)
Red Nerviosa/fisiología , Lóbulo Occipital/fisiología , Giro Parahipocampal/fisiología , Percepción Espacial/fisiología , Navegación Espacial/fisiología , Ambiente , Humanos
13.
Hum Brain Mapp ; 42(10): 3005-3022, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33951247

RESUMEN

Confidence in our retrieved memories, that is, retrospective confidence, is a metamemory process we perform daily. There is an abundance of applied research focusing on the metamemory judgments and very diverse studies including a wide range of clinical populations. However, the neural correlates that support its functioning are not well defined impeding the implementation of noninvasive neuromodulatory clinical interventions. To address the neural basis of metamemory judgments, we ran a meta-analysis, where we used the activation likelihood estimation method on the 19 eligible functional magnetic resonance imaging studies. The main analysis of retrospective confidence revealed concordant bilateral activation in the parahippocampal gyrus, left middle frontal gyrus, and right amygdala. We also run an analysis between the two extreme levels of confidence, namely, high and low. This additional analysis was exploratory, since the minimum amount of articles reporting these two levels was not reached. Activations for the exploratory high > low confidence subtraction analysis were the same as observed in the main analysis on retrospective confidence, whereas the exploratory low > high subtraction showed distinctive activations of the right precuneus. The involvement of the right precuneus emphasizes its role in the evaluation of low confidence memories, as suggested by previous studies. Overall, our study contributes to a better understanding of the specific brain structures involved in confidence evaluations. Better understanding of the neural basis of metamemory might eventually lead to designing more precise neuromodulatory interventions, significantly improving treatment of patients suffering from metamemory problems.


Asunto(s)
Amígdala del Cerebelo/fisiología , Mapeo Encefálico , Recuerdo Mental/fisiología , Metacognición/fisiología , Giro Parahipocampal/fisiología , Corteza Prefrontal/fisiología , Amígdala del Cerebelo/diagnóstico por imagen , Humanos , Juicio/fisiología , Giro Parahipocampal/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen
14.
Neuroimage ; 237: 118199, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34033914

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) of the inferior parietal cortex (IPC) increases resting-state functional connectivity (rsFC) of the hippocampus with the precuneus and other posterior cortical areas and causes proportional improvement of episodic memory. The anatomical pathway(s) responsible for the propagation of these effects from the IPC is unknown and may not be direct. In order to assess the relative contributions of candidate pathways from the IPC to the MTL via the parahippocampal cortex and precuneus, to the effects of rTMS on rsFC and memory improvement, we used diffusion tensor imaging to measure the extent to which individual differences in fractional anisotropy (FA) in these pathways accounted for individual differences in response. FA in the IPC-parahippocampal pathway and several MTL pathways predicted changes in rsFC. FA in both parahippocampal and hippocampal pathways was related to changes in episodic, but not procedural, memory. These results implicate pathways to the MTL in the enhancing effect of parietal rTMS on hippocampal rsFC and memory.


Asunto(s)
Conectoma , Hipocampo , Imagen por Resonancia Magnética , Memoria Episódica , Red Nerviosa , Giro Parahipocampal , Lóbulo Parietal , Estimulación Magnética Transcraneal , Adulto , Imagen de Difusión Tensora , Femenino , Hipocampo/anatomía & histología , Hipocampo/diagnóstico por imagen , Hipocampo/fisiología , Humanos , Individualidad , Masculino , Red Nerviosa/anatomía & histología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Giro Parahipocampal/anatomía & histología , Giro Parahipocampal/diagnóstico por imagen , Giro Parahipocampal/fisiología , Lóbulo Parietal/anatomía & histología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Adulto Joven
15.
Cereb Cortex ; 31(10): 4652-4669, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34013342

RESUMEN

The human hippocampus is involved in forming new memories: damage impairs memory. The dual stream model suggests that object "what" representations from ventral stream temporal cortex project to the hippocampus via the perirhinal and then lateral entorhinal cortex, and spatial "where" representations from the dorsal parietal stream via the parahippocampal gyrus and then medial entorhinal cortex. The hippocampus can then associate these inputs to form episodic memories of what happened where. Diffusion tractography was used to reveal the direct connections of hippocampal system areas in humans. This provides evidence that the human hippocampus has extensive direct cortical connections, with connections that bypass the entorhinal cortex to connect with the perirhinal and parahippocampal cortex, with the temporal pole, with the posterior and retrosplenial cingulate cortex, and even with early sensory cortical areas. The connections are less hierarchical and segregated than in the dual stream model. This provides a foundation for a conceptualization for how the hippocampal memory system connects with the cerebral cortex and operates in humans. One implication is that prehippocampal cortical areas such as the parahippocampal TF and TH subregions and perirhinal cortices may implement specialized computations that can benefit from inputs from the dorsal and ventral streams.


Asunto(s)
Hipocampo/fisiología , Memoria/fisiología , Vías Nerviosas/fisiología , Adulto , Corteza Entorrinal/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Memoria Episódica , Modelos Neurológicos , Giro Parahipocampal/fisiología , Corteza Perirrinal , Lóbulo Temporal/fisiología , Adulto Joven
16.
Neurobiol Learn Mem ; 183: 107461, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34015445

RESUMEN

Episodic memory involves binding stimuli and/or events together in time and place. Furthermore, memories become more complex when new experiences influence the meaning of stimuli within the original memory. Thus collectively, complex episodic memory formation and maintenance involves processes such as encoding, storage, retrieval, updating and reconsolidation, which can be studied using animal models of higher-order conditioning. In the present study aversive and appetitive sensory preconditioning paradigms were used to test the hypothesis that the postrhinal cortex (POR), which is a component of the hippocampal memory system, is involved in higher-order conditioning. Drawing on the known role of the POR in contextual learning, Experiment 1 employed a four-phase sensory preconditioning task that involved fear learning and context discrimination in rats with or without permanent lesions of the POR. In parallel, to examine POR function during higher-order conditioning in the absence of a particular spatial arrangement, Experiments 2 and 3 used a three-phase sensory preconditioning paradigm involving phasic stimuli. In Experiment 2, bilateral lesions of the POR were made and in Experiment 3, a chemogenetic approach was used to temporarily inactivate POR neurons during each phase of the paradigm. Evidence of successful sensory preconditioning was observed in sham rats which, during the critical context discrimination test, demonstrated higher levels of freezing behavior when re-exposed to the paired versus the unpaired context, whereas POR-lesioned rats did not. Data from the appetitive sensory preconditioning paradigm also confirmed the hypothesis in that during the critical auditory discrimination test, sham rats showed greater food cup responding following presentations of the paired compared to the unpaired auditory stimulus, whereas POR-lesioned rats did not. Lastly, in Experiment 3, when the POR was inactivated only during preconditioning or only during conditioning, discrimination during the critical auditory test was impaired. Thus, regardless of whether stimulus-stimulus associations were formed between static or phasic stimuli or whether revaluation of the paired stimulus occurred through association with an aversive or an appetitive unconditioned stimulus, the effects were the same; POR lesions disrupted the ability to use higher-order conditioned stimuli to guide prospective behavior.


Asunto(s)
Aprendizaje por Asociación/fisiología , Aprendizaje Discriminativo/fisiología , Consolidación de la Memoria , Memoria Episódica , Giro Parahipocampal/fisiología , Animales , Conducta Apetitiva , Reacción de Prevención , Condicionamiento Clásico/fisiología , Miedo , Estimulación Física/métodos , Ratas
17.
Neuroimage ; 236: 118028, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33930538

RESUMEN

Surprising scenarios can have different behavioural and neuronal consequences depending on the violation of the expectation. On the one hand, previous research has shown that the omission of a visual stimulus results in a robust cortical response representing that missing stimulus, a so-called negative prediction error. On the other hand, a large amount of studies revealed positive prediction error signals, entailing an increased neural response that can be attributed to the experience of a surprising, unexpected stimulus. However, there has been no evidence, so far, regarding how and when these prediction error signals co-occur. Here, we argue that the omission of an expected stimulus can and often does coincide with the appearance of an unexpected one. Therefore, we investigated whether positive and negative prediction error signals evoked by unpredicted cross-category stimulus transitions would temporally coincide during a speeded forced-choice fMRI paradigm. Foremost, our findings provide evidence of a behavioural effect regarding the facilitation of responses linked to expected stimuli. In addition, we obtained evidence for negative prediction error signals as seen in differential activation of FFA and PPA during unexpected place and face trials, respectively. Lastly, a psychophysiological interaction analysis revealed evidence for positive prediction error signals represented by context-dependent functional coupling between the right IFG and FFA or PPA, respectively, implicating a network that updates the internal representation after the appearance of an unexpected stimulus through involvement of this frontal area. The current results are consistent with a predictive coding account of cognition and underline the importance of considering the potential dual nature of expectation violations. Furthermore, our results put forward that positive and negative prediction error signalling can be directly linked to regions associated with the processing of different stimulus categories.


Asunto(s)
Anticipación Psicológica/fisiología , Giro Parahipocampal/fisiología , Reconocimiento Visual de Modelos/fisiología , Corteza Prefrontal/fisiología , Percepción Espacial/fisiología , Lóbulo Temporal/fisiología , Adolescente , Adulto , Mapeo Encefálico , Reconocimiento Facial/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Giro Parahipocampal/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Adulto Joven
18.
Neuroimage ; 236: 118081, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33882351

RESUMEN

Landmark objects are points of reference that can anchor one's internal cognitive map to the external world while navigating. They are especially useful in indoor environments where other cues such as spatial geometries are often similar across locations. We used functional magnetic resonance imaging (fMRI) and multivariate pattern analysis (MVPA) to understand how the spatial significance of landmark objects is represented in the human brain. Participants learned the spatial layout of a virtual building with arbitrary objects as unique landmarks in each room during a navigation task. They were scanned while viewing the objects before and after learning. MVPA revealed that the neural representation of landmark objects in the right parahippocampal place area (rPPA) and the hippocampus transformed systematically according to their locations. Specifically, objects in different rooms became more distinguishable than objects in the same room. These results demonstrate that rPPA and the hippocampus encode the spatial significance of landmark objects in indoor spaces.


Asunto(s)
Mapeo Encefálico , Hipocampo/fisiología , Giro Parahipocampal/fisiología , Aprendizaje Espacial/fisiología , Adulto , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Giro Parahipocampal/diagnóstico por imagen , Adulto Joven
19.
Neuroimage ; 232: 117920, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33652147

RESUMEN

Despite over two decades of research on the neural mechanisms underlying human visual scene, or place, processing, it remains unknown what exactly a "scene" is. Intuitively, we are always inside a scene, while interacting with the outside of objects. Hence, we hypothesize that one diagnostic feature of a scene may be concavity, portraying "inside", and predict that if concavity is a scene-diagnostic feature, then: 1) images that depict concavity, even non-scene images (e.g., the "inside" of an object - or concave object), will be behaviorally categorized as scenes more often than those that depict convexity, and 2) the cortical scene-processing system will respond more to concave images than to convex images. As predicted, participants categorized concave objects as scenes more often than convex objects, and, using functional magnetic resonance imaging (fMRI), two scene-selective cortical regions (the parahippocampal place area, PPA, and the occipital place area, OPA) responded significantly more to concave than convex objects. Surprisingly, we found no behavioral or neural differences between images of concave versus convex buildings. However, in a follow-up experiment, using tightly-controlled images, we unmasked a selective sensitivity to concavity over convexity of scene boundaries (i.e., walls) in PPA and OPA. Furthermore, we found that even highly impoverished line drawings of concave shapes are behaviorally categorized as scenes more often than convex shapes. Together, these results provide converging behavioral and neural evidence that concavity is a diagnostic feature of visual scenes.


Asunto(s)
Percepción de Forma , Imagen por Resonancia Magnética/métodos , Lóbulo Occipital/diagnóstico por imagen , Giro Parahipocampal/diagnóstico por imagen , Estimulación Luminosa/métodos , Adolescente , Adulto , Femenino , Percepción de Forma/fisiología , Humanos , Masculino , Lóbulo Occipital/fisiología , Giro Parahipocampal/fisiología , Adulto Joven
20.
Sci Rep ; 11(1): 2796, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531612

RESUMEN

Action is a medium of collecting sensory information about the environment, which in turn is shaped by architectural affordances. Affordances characterize the fit between the physical structure of the body and capacities for movement and interaction with the environment, thus relying on sensorimotor processes associated with exploring the surroundings. Central to sensorimotor brain dynamics, the attentional mechanisms directing the gating function of sensory signals share neuronal resources with motor-related processes necessary to inferring the external causes of sensory signals. Such a predictive coding approach suggests that sensorimotor dynamics are sensitive to architectural affordances that support or suppress specific kinds of actions for an individual. However, how architectural affordances relate to the attentional mechanisms underlying the gating function for sensory signals remains unknown. Here we demonstrate that event-related desynchronization of alpha-band oscillations in parieto-occipital and medio-temporal regions covary with the architectural affordances. Source-level time-frequency analysis of data recorded in a motor-priming Mobile Brain/Body Imaging experiment revealed strong event-related desynchronization of the alpha band to originate from the posterior cingulate complex, the parahippocampal region as well as the occipital cortex. Our results firstly contribute to the understanding of how the brain resolves architectural affordances relevant to behaviour. Second, our results indicate that the alpha-band originating from the occipital cortex and parahippocampal region covaries with the architectural affordances before participants interact with the environment, whereas during the interaction, the posterior cingulate cortex and motor areas dynamically reflect the affordable behaviour. We conclude that the sensorimotor dynamics reflect behaviour-relevant features in the designed environment.


Asunto(s)
Atención/fisiología , Corteza Motora/fisiología , Lóbulo Occipital/fisiología , Giro Parahipocampal/fisiología , Desempeño Psicomotor/fisiología , Adulto , Electroencefalografía , Potenciales Evocados/fisiología , Femenino , Humanos , Masculino , Realidad Virtual , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...