RESUMEN
Neural stem cells (NSCs) in the subventricular zone (SVZ) located along the lateral ventricles (LVs) of the mammalian brain continue to self-renew to produce new neurons after birth and into adulthood. Quiescent LV cells, which are situated close to the ependymal cells lining the LVs, are activated by choline acetyltransferase-positive (ChAT+) neurons within the subependymal (subep) region of the SVZ when these neurons are stimulated by projections from the anterior cingulate cortex (ACC). Here, we uncovered a signaling pathway activated by the ACC-subep-ChAT+ circuit responsible for the activation and proliferation of quiescent LV NSCs specifically in the ventral area of the SVZ. This circuit activated muscarinic M3 receptors on quiescent LV NSCs, which subsequently induced signaling mediated by the inositol 1,4,5-trisphosphate receptor type 1 (IP3R1). Downstream of IP3R1 activation, which would be expected to increase intracellular Ca2+, Ca2+-/calmodulin-dependent protein kinase II δ and the MAPK10 signaling pathway were stimulated and required for the proliferation of quiescent LV NSCs in the SVZ. These findings reveal the mechanisms that regulate quiescent LV NSCs and underscore the critical role of projections from the ACC in promoting their proliferative activity within the ventral SVZ.
Asunto(s)
Receptores de Inositol 1,4,5-Trifosfato , Ventrículos Laterales , Células-Madre Neurales , Transducción de Señal , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ventrículos Laterales/metabolismo , Ventrículos Laterales/citología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones , Colina O-Acetiltransferasa/metabolismo , Colina O-Acetiltransferasa/genética , Proliferación Celular , Receptor Muscarínico M3/metabolismo , Receptor Muscarínico M3/genética , Giro del Cíngulo/metabolismo , Giro del Cíngulo/citología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismoRESUMEN
Cortical neurons store information across different timescales, from seconds to years. Although information stability is variable across regions, it can vary within a region as well. Association areas are known to multiplex behaviorally relevant variables, but the stability of their representations is not well understood. Here, we longitudinally recorded the activity of neuronal populations in the mouse retrosplenial cortex (RSC) during the performance of a context-choice association task. We found that the activity of neurons exhibits different levels of stability across days. Using linear classifiers, we quantified the stability of three task-relevant variables. We find that RSC representations of context and trial outcome display higher stability than motor choice, both at the single cell and population levels. Together, our findings show an important characteristic of association areas, where diverse streams of information are stored with varying levels of stability, which may balance representational reliability and flexibility according to behavioral demands.
Asunto(s)
Neuronas , Animales , Neuronas/fisiología , Ratones , Masculino , Ratones Endogámicos C57BL , Conducta de Elección/fisiología , Corteza Cerebral/fisiología , Corteza Cerebral/citología , Giro del Cíngulo/fisiología , Giro del Cíngulo/citología , Conducta Animal/fisiologíaRESUMEN
Egocentric neural representations of environmental features, such as edges and vertices, are important for constructing a geometrically detailed egocentric cognitive map for goal-directed navigation and episodic memory. While egocentric neural representations of edges like egocentric boundary/border cells exist, those that selectively represent vertices egocentrically are yet unknown. Here we report that granular retrosplenial cortex (RSC) neurons in male mice generate spatial receptive fields exclusively near the vertices of environmental geometries during free exploration, termed vertex cells. Their spatial receptive fields occurred at a specific orientation and distance relative to the heading direction of mice, indicating egocentric vector coding of vertex. Removing physical boundaries defining the environmental geometry abolished the egocentric vector coding of vertex, and goal-directed navigation strengthened the egocentric vector coding at the goal-located vertex. Our findings suggest that egocentric vector coding of vertex by granular RSC neurons helps construct an egocentric cognitive map that guides goal-directed navigation.
Asunto(s)
Neuronas , Animales , Masculino , Neuronas/fisiología , Ratones , Ratones Endogámicos C57BL , Percepción Espacial/fisiología , Corteza Cerebral/fisiología , Corteza Cerebral/citología , Giro del Cíngulo/fisiología , Giro del Cíngulo/citología , Orientación/fisiología , Navegación Espacial/fisiologíaRESUMEN
Placebo effects are notable demonstrations of mind-body interactions1,2. During pain perception, in the absence of any treatment, an expectation of pain relief can reduce the experience of pain-a phenomenon known as placebo analgesia3-6. However, despite the strength of placebo effects and their impact on everyday human experience and the failure of clinical trials for new therapeutics7, the neural circuit basis of placebo effects has remained unclear. Here we show that analgesia from the expectation of pain relief is mediated by rostral anterior cingulate cortex (rACC) neurons that project to the pontine nucleus (rACCâPn)-a precerebellar nucleus with no established function in pain. We created a behavioural assay that generates placebo-like anticipatory pain relief in mice. In vivo calcium imaging of neural activity and electrophysiological recordings in brain slices showed that expectations of pain relief boost the activity of rACCâPn neurons and potentiate neurotransmission in this pathway. Transcriptomic studies of Pn neurons revealed an abundance of opioid receptors, further suggesting a role in pain modulation. Inhibition of the rACCâPn pathway disrupted placebo analgesia and decreased pain thresholds, whereas activation elicited analgesia in the absence of placebo conditioning. Finally, Purkinje cells exhibited activity patterns resembling those of rACCâPn neurons during pain-relief expectation, providing cellular-level evidence for a role of the cerebellum in cognitive pain modulation. These findings open the possibility of targeting this prefrontal cortico-ponto-cerebellar pathway with drugs or neurostimulation to treat pain.
Asunto(s)
Vías Nerviosas , Percepción del Dolor , Dolor , Efecto Placebo , Animales , Femenino , Masculino , Ratones , Analgesia , Anticipación Psicológica/fisiología , Señalización del Calcio , Cerebelo/citología , Cerebelo/fisiología , Cognición/fisiología , Electrofisiología , Perfilación de la Expresión Génica , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Ratones Endogámicos C57BL , Neuronas/fisiología , Dolor/fisiopatología , Dolor/prevención & control , Dolor/psicología , Manejo del Dolor/métodos , Manejo del Dolor/psicología , Manejo del Dolor/tendencias , Percepción del Dolor/fisiología , Umbral del Dolor/fisiología , Umbral del Dolor/psicología , Puente/citología , Puente/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Células de Purkinje/fisiología , Receptores Opioides/metabolismo , Transmisión SinápticaRESUMEN
It is well established that the medial prefrontal cortex (mPFC) exerts top-down control of many behaviors, but little is known regarding how cross-talk between distinct areas of the mPFC influences top-down signaling. We performed virus-mediated tracing and functional studies in male mice, homing in on GABAergic projections whose axons are located mainly in layer 1 and that connect two areas of the mPFC, namely the prelimbic area (PrL) with the cingulate area 1 and 2 (Cg1/2). We revealed the identity of the targeted neurons that comprise two distinct types of layer 1 GABAergic interneurons, namely single-bouquet cells (SBCs) and neurogliaform cells (NGFs), and propose that this connectivity links GABAergic projection neurons with cortical canonical circuits. In vitro electrophysiological and in vivo calcium imaging studies support the notion that the GABAergic projection neurons from the PrL to the Cg1/2 exert a crucial role in regulating the activity in the target area by disinhibiting layer 5 output neurons. Finally, we demonstrated that recruitment of these projections affects impulsivity and mechanical responsiveness, behaviors which are known to be modulated by Cg1/2 activity.
Asunto(s)
Neuronas GABAérgicas , Giro del Cíngulo , Interneuronas , Corteza Prefrontal , Animales , Corteza Prefrontal/fisiología , Corteza Prefrontal/citología , Masculino , Giro del Cíngulo/fisiología , Giro del Cíngulo/citología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Ratones , Interneuronas/fisiología , Ratones Endogámicos C57BL , Red Nerviosa/fisiología , Vías Nerviosas/fisiologíaRESUMEN
Humans and animals exhibit various forms of prosocial helping behaviour towards others in need1-3. Although previous research has investigated how individuals may perceive others' states4,5, the neural mechanisms of how they respond to others' needs and goals with helping behaviour remain largely unknown. Here we show that mice engage in a form of helping behaviour towards other individuals experiencing physical pain and injury-they exhibit allolicking (social licking) behaviour specifically towards the injury site, which aids the recipients in coping with pain. Using microendoscopic imaging, we found that single-neuron and ensemble activity in the anterior cingulate cortex (ACC) encodes others' state of pain and that this representation is different from that of general stress in others. Furthermore, functional manipulations demonstrate a causal role of the ACC in bidirectionally controlling targeted allolicking. Notably, this behaviour is represented in a population code in the ACC that differs from that of general allogrooming, a distinct type of prosocial behaviour elicited by others' emotional stress. These findings advance our understanding of the neural coding and regulation of helping behaviour.
Asunto(s)
Conducta Animal , Empatía , Giro del Cíngulo , Conducta de Ayuda , Dolor , Conducta Social , Animales , Ratones , Empatía/fisiología , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Conducta Animal/fisiología , Heridas y Lesiones , Habilidades de Afrontamiento , Estrés Psicológico , Aseo AnimalRESUMEN
Human-specific genomic changes contribute to the unique functionalities of the human brain1-5. The cellular heterogeneity of the human brain6,7 and the complex regulation of gene expression highlight the need to characterize human-specific molecular features at cellular resolution. Here we analysed single-nucleus RNA-sequencing and single-nucleus assay for transposase-accessible chromatin with sequencing datasets for human, chimpanzee and rhesus macaque brain tissue from posterior cingulate cortex. We show a human-specific increase of oligodendrocyte progenitor cells and a decrease of mature oligodendrocytes across cortical tissues. Human-specific regulatory changes were accelerated in oligodendrocyte progenitor cells, and we highlight key biological pathways that may be associated with the proportional changes. We also identify human-specific regulatory changes in neuronal subtypes, which reveal human-specific upregulation of FOXP2 in only two of the neuronal subtypes. We additionally identify hundreds of new human accelerated genomic regions associated with human-specific chromatin accessibility changes. Our data also reveal that FOS::JUN and FOX motifs are enriched in the human-specifically accessible chromatin regions of excitatory neuronal subtypes. Together, our results reveal several new mechanisms underlying the evolutionary innovation of human brain at cell-type resolution.
Asunto(s)
Evolución Molecular , Giro del Cíngulo , Animales , Humanos , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Conjuntos de Datos como Asunto , Genoma Humano/genética , Genómica , Giro del Cíngulo/citología , Giro del Cíngulo/metabolismo , Macaca mulatta/genética , Neuronas/clasificación , Neuronas/citología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Pan troglodytes/genética , Análisis de Expresión Génica de una Sola Célula , Células Madre/citología , Transposasas/metabolismo , Ensamble y Desensamble de CromatinaRESUMEN
Dynamics and functions of neural circuits depend on interactions mediated by receptors. Therefore, a comprehensive map of receptor organization across cortical regions is needed. In this study, we used in vitro receptor autoradiography to measure the density of 14 neurotransmitter receptor types in 109 areas of macaque cortex. We integrated the receptor data with anatomical, genetic and functional connectivity data into a common cortical space. We uncovered a principal gradient of receptor expression per neuron. This aligns with the cortical hierarchy from sensory cortex to higher cognitive areas. A second gradient, driven by serotonin 5-HT1A receptors, peaks in the anterior cingulate, default mode and salience networks. We found a similar pattern of 5-HT1A expression in the human brain. Thus, the macaque may be a promising translational model of serotonergic processing and disorders. The receptor gradients may enable rapid, reliable information processing in sensory cortical areas and slow, flexible integration in higher cognitive areas.
Asunto(s)
Mapeo Encefálico , Corteza Cerebral , Receptores de Neurotransmisores , Anciano , Animales , Femenino , Humanos , Masculino , Ratas , Autorradiografía , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Cognición , Espinas Dendríticas , Giro del Cíngulo/citología , Giro del Cíngulo/metabolismo , Macaca fascicularis , Ratas Endogámicas Lew , Receptor de Serotonina 5-HT1A/análisis , Receptor de Serotonina 5-HT1A/metabolismo , Receptores Colinérgicos/análisis , Receptores Colinérgicos/metabolismo , Receptores Dopaminérgicos/análisis , Receptores Dopaminérgicos/metabolismo , Receptores de Neurotransmisores/análisis , Receptores de Neurotransmisores/metabolismo , Serotonina/metabolismo , Especificidad de la Especie , Vaina de Mielina/metabolismoRESUMEN
The anterior cingulate cortex (ACC) plays a crucial role in encoding, consolidating and retrieving memories related to emotionally salient experiences, such as aversive and rewarding events. Various studies have highlighted its importance for fear memory processing, but its circuit mechanisms are still poorly understood. Cortical layer 1 (L1) of the ACC might be a particularly important site of signal integration, since it is a major entry point for long-range inputs, which is tightly controlled by local inhibition. Many L1 interneurons express the ionotropic serotonin receptor 3a (5HT3aR), which has been implicated in post-traumatic stress disorder and in models of anxiety. Hence, unraveling the response dynamics of L1 interneurons and subtypes thereof during fear memory processing may provide important insights into the microcircuit organization regulating this process. Here, using 2-photon laser scanning microscopy of genetically encoded calcium indicators through microprisms in awake mice, we longitudinally monitored over days the activity of L1 interneurons in the ACC in a tone-cued fear conditioning paradigm. We observed that tones elicited responses in a substantial fraction of the imaged neurons, which were significantly modulated in a bidirectional manner after the tone was associated to an aversive stimulus. A subpopulation of these neurons, the neurogliaform cells (NGCs), displayed a net increase in tone-evoked responses following fear conditioning. Together, these results suggest that different subpopulations of L1 interneurons may exert distinct functions in the ACC circuitry regulating fear learning and memory.
Asunto(s)
Condicionamiento Clásico , Miedo , Giro del Cíngulo , Interneuronas , Animales , Ratones , Miedo/fisiología , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Interneuronas/fisiología , Memoria/fisiología , Condicionamiento Clásico/fisiología , Masculino , Señalización del Calcio , Receptores de Serotonina/metabolismo , Neuroglía/fisiologíaRESUMEN
When faced with predatory threats, escape towards shelter is an adaptive action that offers long-term protection against the attacker. Animals rely on knowledge of safe locations in the environment to instinctively execute rapid shelter-directed escape actions1,2. Although previous work has identified neural mechanisms of escape initiation3,4, it is not known how the escape circuit incorporates spatial information to execute rapid flights along the most efficient route to shelter. Here we show that the mouse retrosplenial cortex (RSP) and superior colliculus (SC) form a circuit that encodes the shelter-direction vector and is specifically required for accurately orienting to shelter during escape. Shelter direction is encoded in RSP and SC neurons in egocentric coordinates and SC shelter-direction tuning depends on RSP activity. Inactivation of the RSP-SC pathway disrupts the orientation to shelter and causes escapes away from the optimal shelter-directed route, but does not lead to generic deficits in orientation or spatial navigation. We find that the RSP and SC are monosynaptically connected and form a feedforward lateral inhibition microcircuit that strongly drives the inhibitory collicular network because of higher RSP input convergence and synaptic integration efficiency in inhibitory SC neurons. This results in broad shelter-direction tuning in inhibitory SC neurons and sharply tuned excitatory SC neurons. These findings are recapitulated by a biologically constrained spiking network model in which RSP input to the local SC recurrent ring architecture generates a circular shelter-direction map. We propose that this RSP-SC circuit might be specialized for generating collicular representations of memorized spatial goals that are readily accessible to the motor system during escape, or more broadly, during navigation when the goal must be reached as fast as possible.
Asunto(s)
Reacción de Fuga , Giro del Cíngulo , Vías Nerviosas , Neuronas , Navegación Espacial , Colículos Superiores , Animales , Ratones , Reacción de Fuga/fisiología , Neuronas/fisiología , Conducta Predatoria , Memoria Espacial , Navegación Espacial/fisiología , Colículos Superiores/citología , Colículos Superiores/fisiología , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Factores de Tiempo , ObjetivosRESUMEN
Memory formation involves binding of contextual features into a unitary representation1-4, whereas memory recall can occur using partial combinations of these contextual features. The neural basis underlying the relationship between a contextual memory and its constituent features is not well understood; in particular, where features are represented in the brain and how they drive recall. Here, to gain insight into this question, we developed a behavioural task in which mice use features to recall an associated contextual memory. We performed longitudinal imaging in hippocampus as mice performed this task and identified robust representations of global context but not of individual features. To identify putative brain regions that provide feature inputs to hippocampus, we inhibited cortical afferents while imaging hippocampus during behaviour. We found that whereas inhibition of entorhinal cortex led to broad silencing of hippocampus, inhibition of prefrontal anterior cingulate led to a highly specific silencing of context neurons and deficits in feature-based recall. We next developed a preparation for simultaneous imaging of anterior cingulate and hippocampus during behaviour, which revealed robust population-level representation of features in anterior cingulate, that lag hippocampus context representations during training but dynamically reorganize to lead and target recruitment of context ensembles in hippocampus during recall. Together, we provide the first mechanistic insights into where contextual features are represented in the brain, how they emerge, and how they access long-range episodic representations to drive memory recall.
Asunto(s)
Giro del Cíngulo , Hipocampo , Recuerdo Mental , Modelos Neurológicos , Animales , Mapeo Encefálico , Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Hipocampo/citología , Hipocampo/fisiología , Estudios Longitudinales , Recuerdo Mental/fisiología , Ratones , Inhibición NeuralRESUMEN
The retrieval of recent and remote memories are thought to rely on distinct brain circuits and mechanisms. The retrosplenial cortex (RSC) is robustly activated during the retrieval of remotely acquired contextual fear memories (CFMs), but the contribution of particular subdivisions [granular (RSG) vs agranular retrosplenial area (RSA)] and the circuit mechanisms through which they interact to retrieve remote memories remain unexplored. In this study, using both anterograde and retrograde viral tracing approaches, we identified excitatory projections from layer 5 pyramidal neurons of the RSG to the CA1 stratum radiatum/lacunosum-moleculare of the dorsal hippocampus and the superficial layers of the RSA in male mice. We found that chemogenetic or optogenetic inhibition of the RSG-to-CA1, but not the RSG-to-RSA, pathway selectively impairs the retrieval of remote CFMs. Collectively, our results uncover a specific role for the RSG in remote CFM recall and provide circuit evidence that RSG-mediated remote CFM retrieval relies on direct RSG-to-CA1 connectivity. The present study provides a better understanding of brain circuit mechanisms underlying the retrieval of remote CFMs and may help guide the development of therapeutic strategies to attenuate remote traumatic memories that lead to mental health issues such as post-traumatic stress disorder.SIGNIFICANCE STATEMENT The RSC is implicated in contextual information processing and remote recall. However, how different subdivisions of the RSC and circuit mechanisms through which they interact to underlie remote memory recall remain unexplored. This study shows that granular subdivision of the RSC and its input to hippocampal area CA1 contributes to the retrieval of remote contextual fear memories. Our results support the hypothesis that the RSC and hippocampus require each other to preserve fear memories and may provide a novel therapeutic avenue to attenuate remote traumatic memories in patients with post-traumatic stress disorder.
Asunto(s)
Miedo , Giro del Cíngulo/fisiología , Recuerdo Mental , Células Piramidales/fisiología , Animales , Giro del Cíngulo/citología , Hipocampo/citología , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Synaptic pruning during adolescence is important for appropriate neurodevelopment and synaptic plasticity. Aberrant synaptic pruning may underlie a variety of brain disorders such as schizophrenia, autism and anxiety. Dopamine D2 receptor (Drd2) is associated with several neuropsychiatric diseases and is the target of some antipsychotic drugs. Here we generate self-reporting Drd2 heterozygous (SR-Drd2+/-) rats to simultaneously visualize Drd2-positive neurons and downregulate Drd2 expression. Time course studies on the developing anterior cingulate cortex (ACC) from control and SR-Drd2+/- rats reveal important roles of Drd2 in regulating synaptic pruning rather than synapse formation. Drd2 also regulates LTD, a form of synaptic plasticity which includes some similar cellular/biochemical processes as synaptic pruning. We further demonstrate that Drd2 regulates synaptic pruning via cell-autonomous mechanisms involving activation of mTOR signaling. Deficits of Drd2-mediated synaptic pruning in the ACC during adolescence lead to hyper-glutamatergic function and anxiety-like behaviors in adulthood. Taken together, our results demonstrate important roles of Drd2 in cortical synaptic pruning.
Asunto(s)
Giro del Cíngulo/fisiología , Plasticidad Neuronal/fisiología , Receptores de Dopamina D2/fisiología , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Espinas Dendríticas/genética , Espinas Dendríticas/fisiología , Técnicas de Inactivación de Genes , Giro del Cíngulo/citología , Giro del Cíngulo/metabolismo , Heterocigoto , Potenciales Postsinápticos Inhibidores/genética , Potenciales Postsinápticos Inhibidores/fisiología , Mutación , Plasticidad Neuronal/genética , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp/métodos , Ratas Sprague-Dawley , Receptores de Dopamina D2/genética , Transducción de Señal/genética , Sinapsis/genética , Sinapsis/fisiología , Factores de TiempoRESUMEN
The subgenual (sgACC) and perigenual (pgACC) anterior cingulate are important afferents of the amygdala, with different cytoarchitecture, connectivity, and function. The sgACC is associated with arousal mechanisms linked to salient cues, whereas the pgACC is engaged in conflict decision-making, including in social contexts. After placing same-size, small volume tracer injections into sgACC and pgACC of the same hemisphere in male macaques, we examined anterogradely labeled fiber distribution to understand how these different functional systems communicate in the main amygdala nuclei at both mesocopic and cellular levels. The sgACC has broad-based termination patterns. In contrast, the pgACC has a more restricted pattern, which was always nested in sgACC terminals. Terminal overlap occurred in subregions of the accessory basal and basal nuclei, which we termed "hotspots." In triple-labeling confocal studies, the majority of randomly selected CaMKIIα-positive cells (putative amygdala glutamatergic neurons) in hotspots received dual contacts from the sgACC and pgACC. The ratio of dual contacts occurred over a surprisingly narrow range, suggesting a consistent, tight balance of afferent contacts on postsynaptic neurons. Large boutons, which are associated with greater synaptic strength, were â¼3 times more frequent on sgACC versus pgACC axon terminals in hotspots, consistent with a fast "driver" function. Together, the results reveal a nested interaction in which pgACC ("conflict/social monitoring") terminals converge with the broader sgACC ("salience") terminals at both the mesoscopic and cellular level. The presynaptic organization in hotspots suggests that shifts in arousal states can rapidly and flexibly influence decision-making functions in the amygdala.SIGNIFICANCE STATEMENT The subgenual (sgACC) and perigenual cingulate (pgACC) have distinct structural and functional characteristics and are important afferent modulators of the amygdala. The sgACC is critical for arousal, whereas the pgACC mediates conflict-monitoring, including in social contexts. Using dual tracer injections in the same monkey, we found that sgACC inputs broadly project in the main amygdala nuclei, whereas pgACC inputs were more restricted and nested in zones containing sgACC terminals (hotspots). The majority of CaMKIIα + (excitatory) amygdala neurons in hotspots received converging contacts, which were tightly balanced. pgACC and sgACC afferent streams are therefore highly interdependent in these specific amygdala subregions, permitting "internal arousal" states to rapidly shape responses of amygdala neurons involved in conflict and social monitoring networks.
Asunto(s)
Amígdala del Cerebelo/citología , Giro del Cíngulo/citología , Vías Nerviosas/citología , Neuronas Aferentes/citología , Células Piramidales/citología , Amígdala del Cerebelo/fisiología , Animales , Nivel de Alerta/fisiología , Giro del Cíngulo/fisiología , Macaca fascicularis , Masculino , Vías Nerviosas/fisiología , Neuronas Aferentes/fisiología , Células Piramidales/fisiologíaRESUMEN
Lactate transport is an important means of communication between astrocytes and neurons and is implicated in a variety of neurobiological processes. However, the connection between astrocyte-neuron lactate transport and nociceptive modulation has not been well established. Here, we found that Complete Freund's adjuvant (CFA)-induced inflammation pain leads to a significant increase in extracellular lactate levels in the anterior cingulate cortex (ACC). Inhibition of glycogenolysis and lactate release in the ACC disrupted the persistent, but not acute, inflammation pain induced by CFA, and this effect was reversed by exogenous L-lactate administration. Knocking down the expression of lactate transporters (MCT1, MCT4, or MCT2) also disrupted the long lasting inflammation pain induced by CFA. Moreover, glycogenolysis in the ACC is critical for the induction of molecular changes related to neuronal plasticity, including the induction of phospho- (p-) ERK, p-CREB, and Fos. Taken together, our findings indicate that astrocyte-neuron lactate transport in the ACC is critical for the occurrence of persistent inflammation pain, suggesting a novel mechanism underlying chronic pain.
Asunto(s)
Arabinosa/farmacología , Comunicación Celular/inmunología , Dolor Crónico/inmunología , Giro del Cíngulo/patología , Iminofuranosas/farmacología , Ácido Láctico/metabolismo , Alcoholes del Azúcar/farmacología , Animales , Arabinosa/uso terapéutico , Astrocitos/metabolismo , Comunicación Celular/efectos de los fármacos , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/patología , Modelos Animales de Enfermedad , Adyuvante de Freund/administración & dosificación , Adyuvante de Freund/inmunología , Glucogenólisis/efectos de los fármacos , Glucogenólisis/inmunología , Giro del Cíngulo/citología , Giro del Cíngulo/efectos de los fármacos , Giro del Cíngulo/inmunología , Humanos , Iminofuranosas/uso terapéutico , Masculino , Ratones , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/inmunología , Neuronas/metabolismo , Alcoholes del Azúcar/uso terapéuticoRESUMEN
Decision-making and representations of arousal are intimately linked. Behavioral investigations have classically shown that either too little or too much bodily arousal is detrimental to decision-making, indicating that there is an inverted "U" relationship between bodily arousal and performance. How these processes interact at the level of single neurons as well as the neural circuits involved are unclear. Here we recorded neural activity from orbitofrontal cortex (OFC) and dorsal anterior cingulate cortex (dACC) of macaque monkeys while they made reward-guided decisions. Heart rate (HR) was also recorded and used as a proxy for bodily arousal. Recordings were made both before and after subjects received excitotoxic lesions of the bilateral amygdala. In intact monkeys, higher HR facilitated reaction times (RTs). Concurrently, a set of neurons in OFC and dACC selectively encoded trial-by-trial variations in HR independent of reward value. After amygdala lesions, HR increased, and the relationship between HR and RTs was altered. Concurrent with this change, there was an increase in the proportion of dACC neurons encoding HR. Applying a population-coding analysis, we show that after bilateral amygdala lesions, the balance of encoding in dACC is skewed away from signaling either reward value or choice direction toward HR coding around the time that choices are made. Taken together, the present results provide insight into how bodily arousal and decision-making are signaled in frontal cortex.
Asunto(s)
Nivel de Alerta/fisiología , Toma de Decisiones/fisiología , Giro del Cíngulo/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Amígdala del Cerebelo/patología , Amígdala del Cerebelo/fisiología , Animales , Electrocardiografía , Giro del Cíngulo/citología , Frecuencia Cardíaca , Macaca mulatta , Masculino , Corteza Prefrontal/citología , RecompensaRESUMEN
Inhibitory interneurons are believed to realize critical gating functions in cortical circuits, but it has been difficult to ascertain the content of gated information for well-characterized interneurons in primate cortex. Here, we address this question by characterizing putative interneurons in primate prefrontal and anterior cingulate cortex while monkeys engaged in attention demanding reversal learning. We find that subclasses of narrow spiking neurons have a relative suppressive effect on the local circuit indicating they are inhibitory interneurons. One of these interneuron subclasses showed prominent firing rate modulations and (35-45 Hz) gamma synchronous spiking during periods of uncertainty in both, lateral prefrontal cortex (LPFC) and anterior cingulate cortex (ACC). In LPFC, this interneuron subclass activated when the uncertainty of attention cues was resolved during flexible learning, whereas in ACC it fired and gamma-synchronized when outcomes were uncertain and prediction errors were high during learning. Computational modeling of this interneuron-specific gamma band activity in simple circuit motifs suggests it could reflect a soft winner-take-all gating of information having high degree of uncertainty. Together, these findings elucidate an electrophysiologically characterized interneuron subclass in the primate, that forms gamma synchronous networks in two different areas when resolving uncertainty during adaptive goal-directed behavior.
Asunto(s)
Rayos gamma , Giro del Cíngulo , Interneuronas , Aprendizaje/fisiología , Corteza Prefrontal , Animales , Atención/fisiología , Células Cultivadas , Sincronización Cortical/fisiología , Señales (Psicología) , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Interneuronas/citología , Interneuronas/fisiología , Macaca mulatta , Masculino , Corteza Prefrontal/citología , Corteza Prefrontal/fisiologíaRESUMEN
Pathological impulsivity is a debilitating symptom of multiple psychiatric diseases with few effective treatment options. To identify druggable receptors with anti-impulsive action we developed a systematic target discovery approach combining behavioural chemogenetics and gene expression analysis. Spatially restricted inhibition of three subdivisions of the prefrontal cortex of mice revealed that the anterior cingulate cortex (ACC) regulates premature responding, a form of motor impulsivity. Probing three G-protein cascades with designer receptors, we found that the activation of Gi-signalling in layer-5 pyramidal cells (L5-PCs) of the ACC strongly, reproducibly, and selectively decreased challenge-induced impulsivity. Differential gene expression analysis across murine ACC cell-types and 402 GPCRs revealed that - among Gi-coupled receptor-encoding genes - Grm2 is the most selectively expressed in L5-PCs while alternative targets were scarce. Validating our approach, we confirmed that mGluR2 activation reduced premature responding. These results suggest Gi-coupled receptors in ACC L5-PCs as therapeutic targets for impulse control disorders.
Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Células Piramidales/fisiología , Animales , Clozapina/análogos & derivados , Clozapina/farmacología , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Expresión Génica/efectos de los fármacos , Giro del Cíngulo/efectos de los fármacos , Humanos , Conducta Impulsiva/efectos de los fármacos , Conducta Impulsiva/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/fisiología , Transducción de SeñalRESUMEN
The main aim was to describe interneuronal population expressing calcium binding proteins calretinin (CR) and parvalbumin (PV) in the perirhinal (PRC) and retrosplenial (RSC) cortex of the rat. These two cortical areas differ strikingly in their connectivity and function, which could be caused also by different structure of the interneuronal populations. Having a precise knowledge of the cellular composition of any cerebral area forms one of the basic input parameters and tenets for computational modelling of neuronal networks and for understanding some pathological conditions, like generating and spreading of epileptic activity. PRC possesses higher absolute and relative densities of CR+ and PV+ neurons than RSC, but the CR : PV ratio is higher in the RSC, which is similar to the neocortex. The bipolar/bitufted neurons are most common type of CR+ population, while the majority of PV+ neurons show multipolar morphology. Current results indicate that main difference between analysed areas is in density of CR+ neurons, which was significantly higher in the PRC. Our results coupled with works of other authors show that there are significant differences in the interneuronal composition and distribution of heretofore seemingly similar transitional cortical areas. These results may contribute to the better understanding of the mechanism of function of this cortical region in normal and diseased states.
Asunto(s)
Calbindina 2/metabolismo , Giro del Cíngulo/metabolismo , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Corteza Perirrinal/metabolismo , Animales , Giro del Cíngulo/citología , Inmunohistoquímica , Masculino , Corteza Perirrinal/citología , Ratas WistarRESUMEN
Successful pursuit and evasion require rapid and precise coordination of navigation with adaptive motor control. We hypothesize that the dorsal anterior cingulate cortex (dACC), which communicates bidirectionally with both the hippocampal complex and premotor/motor areas, would serve a mapping role in this process. We recorded responses of dACC ensembles in two macaques performing a joystick-controlled continuous pursuit/evasion task. We find that dACC carries two sets of signals, (1) world-centric variables that together form a representation of the position and velocity of all relevant agents (self, prey, and predator) in the virtual world, and (2) avatar-centric variables, i.e. self-prey distance and angle. Both sets of variables are multiplexed within an overlapping set of neurons. Our results suggest that dACC may contribute to pursuit and evasion by computing and continuously updating a multicentric representation of the unfolding task state, and support the hypothesis that it plays a high-level abstract role in the control of behavior.