Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.450
Filtrar
1.
Nat Commun ; 15(1): 4201, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760337

RESUMEN

The dorsolateral prefrontal cortex (dlPFC) is crucial for regulation of emotion that is known to aid prevention of depression. The broader fronto-cingulo-striatal (FCS) network, including cognitive dlPFC and limbic cingulo-striatal regions, has been associated with a negative evaluation bias often seen in depression. The mechanism by which dlPFC regulates the limbic system remains largely unclear. Here we have successfully induced a negative bias in decision-making in female primates performing a conflict decision-making task, by directly microstimulating the subgenual cingulate cortex while simultaneously recording FCS local field potentials (LFPs). The artificially induced negative bias in decision-making was associated with a significant decrease in functional connectivity from cognitive to limbic FCS regions, represented by a reduction in Granger causality in beta-range LFPs from the dlPFC to the other regions. The loss of top-down directional influence from cognitive to limbic regions, we suggest, could underlie negative biases in decision-making as observed in depressive states.


Asunto(s)
Toma de Decisiones , Giro del Cíngulo , Animales , Giro del Cíngulo/fisiología , Toma de Decisiones/fisiología , Femenino , Cuerpo Estriado/fisiología , Macaca mulatta/fisiología , Corteza Prefontal Dorsolateral/fisiología , Corteza Prefrontal/fisiología , Estimulación Eléctrica , Red Nerviosa/fisiología , Vías Nerviosas/fisiología
2.
Brain Cogn ; 177: 106162, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703528

RESUMEN

OBJECTIVE: Poorer performance on the Stroop task has been reported after prenatal famine exposure at age 58, potentially indicating cognitive decline. We investigated whether brain activation during Stroop task performance at age 74 differed between individuals exposed to famine prenatally, individuals born before and individuals conceived after the famine. METHOD: In the Dutch famine birth cohort, we performed a Stroop task fMRI study of individuals exposed (n = 22) or unexposed (born before (n = 18) or conceived after (n = 25)) to famine in early gestation. We studied group differences in task-related mean activation of the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC) and posterior parietal cortex (PPC). Additionally, we explored potential disconnectivity of the DLPFC using psychophysiological interaction analysis. RESULTS: We observed similar activation patterns in the DLPFC, ACC and PPC in individuals born before and individuals exposed to famine, while individuals conceived after famine had generally higher activation patterns. However, activation patterns were not significantly different between groups. Task-related decreases in connectivity were observed between left DLPFC-left PPC and right DLPFC-right PPC, but were not significantly different between groups. CONCLUSIONS: Although not statistically significant, the observed patterns of activation may reflect a combined effect of general brain aging and prenatal famine exposure.


Asunto(s)
Hambruna , Imagen por Resonancia Magnética , Efectos Tardíos de la Exposición Prenatal , Test de Stroop , Humanos , Femenino , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Anciano , Países Bajos , Corteza Prefrontal/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Encéfalo
3.
Commun Biol ; 7(1): 576, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755409

RESUMEN

Avoidance, a hallmark of anxiety-related psychopathology, often comes at a cost; avoiding threat may forgo the possibility of a reward. Theories predict that optimal approach-avoidance arbitration depends on threat-induced psychophysiological states, like freezing-related bradycardia. Here we used model-based fMRI analyses to investigate whether and how bradycardia states are linked to the neurocomputational underpinnings of approach-avoidance arbitration under varying reward and threat magnitudes. We show that bradycardia states are associated with increased threat-induced avoidance and more pronounced reward-threat value comparison (i.e., a stronger tendency to approach vs. avoid when expected reward outweighs threat). An amygdala-striatal-prefrontal circuit supports approach-avoidance arbitration under threat, with specific involvement of the amygdala and dorsal anterior cingulate (dACC) in integrating reward-threat value and bradycardia states. These findings highlight the role of human freezing states in value-based decision making, relevant for optimal threat coping. They point to a specific role for amygdala/dACC in state-value integration under threat.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Masculino , Adulto , Femenino , Adulto Joven , Bradicardia/fisiopatología , Reacción de Prevención/fisiología , Amígdala del Cerebelo/fisiología , Recompensa , Giro del Cíngulo/fisiología , Miedo/fisiología , Ansiedad/fisiopatología , Frecuencia Cardíaca/fisiología , Toma de Decisiones/fisiología
4.
Neuroimage ; 293: 120634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705431

RESUMEN

Spatial image transformation of the self-body is a fundamental function of visual perspective-taking. Recent research underscores the significance of intero-exteroceptive information integration to construct representations of our embodied self. This raises the intriguing hypothesis that interoceptive processing might be involved in the spatial image transformation of the self-body. To test this hypothesis, the present study used functional magnetic resonance imaging to measure brain activity during an arm laterality judgment (ALJ) task. In this task, participants were tasked with discerning whether the outstretched arm of a human figure, viewed from the front or back, was the right or left hand. The reaction times for the ALJ task proved longer when the stimulus presented orientations of 0°, 90°, and 270° relative to the upright orientation, and when the front view was presented rather than the back view. Reflecting the increased reaction time, increased brain activity was manifested in a cluster centered on the dorsal anterior cingulate cortex (ACC), suggesting that the activation reflects the involvement of an embodied simulation in ALJ. Furthermore, this cluster of brain activity exhibited overlap with regions where the difference in activation between the front and back views positively correlated with the participants' interoceptive sensitivity, as assessed through the heartbeat discrimination task, within the pregenual ACC. These results suggest that the ACC plays an important role in integrating intero-exteroceptive cues to spatially transform the image of our self-body.


Asunto(s)
Mapeo Encefálico , Giro del Cíngulo , Imagen por Resonancia Magnética , Humanos , Giro del Cíngulo/fisiología , Giro del Cíngulo/diagnóstico por imagen , Femenino , Masculino , Adulto Joven , Adulto , Mapeo Encefálico/métodos , Interocepción/fisiología , Imagen Corporal , Lateralidad Funcional/fisiología , Tiempo de Reacción/fisiología , Percepción Espacial/fisiología , Brazo/fisiología
5.
Transl Psychiatry ; 14(1): 206, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782961

RESUMEN

Interoception is the perception of afferent information that arises from anywhere and everywhere within the body. Recently, interoceptive accuracy could be enhanced by cognitive training. Given that the anterior insula cortex (AIC) is a key node of interoception, we hypothesized that resting functional connectivity (RSFC) from AIC was involved in an effect of interoceptive training. To address this issue, we conducted a longitudinal intervention study using interoceptive training and obtained RSFC using fMRI before and after the intervention. A heartbeat perception task evaluated interoceptive accuracy. Twenty-two healthy volunteers (15 females, age 19.9 ± 2.0 years) participated. After the intervention, interoceptive accuracy was enhanced, and anxiety levels and somatic symptoms were reduced. Also, RSFC from AIC to the dorsolateral prefrontal cortex (DLPFC), superior marginal gyrus (SMG), anterior cingulate cortex (ACC), and brain stem, including nucleus tractus solitarius (NTS) were enhanced, and those from AIC to the visual cortex (VC) were decreased according to enhanced interoceptive accuracy. The neural circuit of AIC, ACC, and NTS is involved in the bottom-up process of interoception. The neural circuit of AIC, DLPFC, and SMG is involved in the top-down process of interoception, which was thought to represent the cognitive control of emotion. The findings provided a better understanding of neural underpinnings of the effect of interoceptive training on somatic symptoms and anxiety levels by enhancing both bottom-up and top-down processes of interoception, which has a potential contribution to the structure of psychotherapies based on the neural mechanism of psychosomatics.


Asunto(s)
Corteza Insular , Interocepción , Imagen por Resonancia Magnética , Humanos , Femenino , Interocepción/fisiología , Masculino , Corteza Insular/fisiología , Corteza Insular/diagnóstico por imagen , Adulto Joven , Adulto , Ansiedad/fisiopatología , Estudios Longitudinales , Vías Nerviosas/fisiología , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagen , Giro del Cíngulo/fisiología , Giro del Cíngulo/diagnóstico por imagen
6.
Nat Commun ; 15(1): 4313, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773109

RESUMEN

Our brain is constantly extracting, predicting, and recognising key spatiotemporal features of the physical world in order to survive. While neural processing of visuospatial patterns has been extensively studied, the hierarchical brain mechanisms underlying conscious recognition of auditory sequences and the associated prediction errors remain elusive. Using magnetoencephalography (MEG), we describe the brain functioning of 83 participants during recognition of previously memorised musical sequences and systematic variations. The results show feedforward connections originating from auditory cortices, and extending to the hippocampus, anterior cingulate gyrus, and medial cingulate gyrus. Simultaneously, we observe backward connections operating in the opposite direction. Throughout the sequences, the hippocampus and cingulate gyrus maintain the same hierarchical level, except for the final tone, where the cingulate gyrus assumes the top position within the hierarchy. The evoked responses of memorised sequences and variations engage the same hierarchical brain network but systematically differ in terms of temporal dynamics, strength, and polarity. Furthermore, induced-response analysis shows that alpha and beta power is stronger for the variations, while gamma power is enhanced for the memorised sequences. This study expands on the predictive coding theory by providing quantitative evidence of hierarchical brain mechanisms during conscious memory and predictive processing of auditory sequences.


Asunto(s)
Corteza Auditiva , Percepción Auditiva , Magnetoencefalografía , Humanos , Masculino , Femenino , Adulto , Percepción Auditiva/fisiología , Adulto Joven , Corteza Auditiva/fisiología , Encéfalo/fisiología , Estimulación Acústica , Mapeo Encefálico , Música , Giro del Cíngulo/fisiología , Memoria/fisiología , Hipocampo/fisiología , Reconocimiento en Psicología/fisiología
7.
PLoS One ; 19(4): e0300575, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578743

RESUMEN

Human cingulate sulcus visual area (CSv) was first identified as an area that responds selectively to visual stimulation indicative of self-motion. It was later shown that the area is also sensitive to vestibular stimulation as well as to bodily motion compatible with locomotion. Understanding the anatomical connections of CSv will shed light on how CSv interacts with other parts of the brain to perform information processing related to self-motion and navigation. A previous neuroimaging study (Smith et al. 2018, Cerebral Cortex, 28, 3685-3596) used diffusion-weighted magnetic resonance imaging (dMRI) to examine the structural connectivity of CSv, and demonstrated connections between CSv and the motor and sensorimotor areas in the anterior and posterior cingulate sulcus. The present study aimed to complement this work by investigating the relationship between CSv and adjacent major white matter tracts, and to map CSv's structural connectivity onto known white matter tracts. By re-analysing the dataset from Smith et al. (2018), we identified bundles of fibres (i.e. streamlines) from the whole-brain tractography that terminate near CSv. We then assessed to which white matter tracts those streamlines may belong based on previously established anatomical prescriptions. We found that a significant number of CSv streamlines can be categorised as part of the dorsalmost branch of the superior longitudinal fasciculus (SLF I) and the cingulum. Given current thinking about the functions of these white matter tracts, our results support the proposition that CSv provides an interface between sensory and motor systems in the context of self-motion.


Asunto(s)
Corteza Sensoriomotora , Sustancia Blanca , Humanos , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiología , Sustancia Blanca/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Mapeo Encefálico
8.
Dev Psychobiol ; 66(4): e22492, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643360

RESUMEN

During adolescence, emotion regulation and reactivity are still developing and are in many ways qualitatively different from adulthood. However, the neurobiological processes underpinning these differences remain poorly understood, including the role of maturing neurotransmitter systems. We combined magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (dACC) and self-reported emotion regulation and reactivity in a sample of typically developed adolescents (n = 37; 13-16 years) and adults (n = 39; 30-40 years), and found that adolescents had higher levels of glutamate to total creatine (tCr) ratio in the dACC than adults. A glutamate Í age group interaction indicated a differential relation between dACC glutamate levels and emotion regulation in adolescents and adults, and within-group follow-up analyses showed that higher levels of glutamate/tCr were related to worse emotion regulation skills in adolescents. We found no age-group differences in gamma-aminobutyric acid+macromolecules (GABA+) levels; however, emotion reactivity was positively related to GABA+/tCr in the adult group, but not in the adolescent group. The results demonstrate that there are developmental changes in the concentration of glutamate, but not GABA+, within the dACC from adolescence to adulthood, in accordance with previous findings indicating earlier maturation of the GABA-ergic than the glutamatergic system. Functionally, glutamate and GABA+ are positively related to emotion regulation and reactivity, respectively, in the mature brain. In the adolescent brain, however, glutamate is negatively related to emotion regulation, and GABA+ is not related to emotion reactivity. The findings are consistent with synaptic pruning of glutamatergic synapses from adolescence to adulthood and highlight the importance of brain maturational processes underlying age-related differences in emotion processing.


Asunto(s)
Regulación Emocional , Ácido Glutámico , Adulto , Humanos , Adolescente , Giro del Cíngulo/química , Giro del Cíngulo/fisiología , Ácido gamma-Aminobutírico/análisis , Receptores de Antígenos de Linfocitos T/análisis
9.
Behav Brain Res ; 466: 114979, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38582409

RESUMEN

OBJECTIVE: Reward anticipation is important for future decision-making, possibly due to re-evaluation of prior decisions. However, the exact relationship between reward anticipation and prior effort-expenditure decision-making, and its neural substrates are unknown. METHOD: Thirty-three healthy participants underwent fMRI scanning while performing the Effort-based Pleasure Experience Task (E-pet). Participants were required to make effort-expenditure decisions and anticipate the reward. RESULTS: We found that stronger anticipatory activation at the posterior cingulate cortex was correlated with slower reaction time while making decisions with a high-probability of reward. Moreover, the substantia nigra was significantly activated in the prior decision-making phase, and involved in reward-anticipation in view of its strengthened functional connectivity with the mammillary body and the putamen in trial conditions with a high probability of reward. CONCLUSIONS: These findings support the role of reward anticipation in re-evaluating decisions based on the brain-behaviour correlation. Moreover, the study revealed the neural interaction between reward anticipation and decision-making.


Asunto(s)
Anticipación Psicológica , Toma de Decisiones , Imagen por Resonancia Magnética , Tiempo de Reacción , Recompensa , Humanos , Masculino , Toma de Decisiones/fisiología , Anticipación Psicológica/fisiología , Femenino , Adulto Joven , Adulto , Tiempo de Reacción/fisiología , Giro del Cíngulo/fisiología , Giro del Cíngulo/diagnóstico por imagen , Mapeo Encefálico , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Sustancia Negra/fisiología , Sustancia Negra/diagnóstico por imagen
10.
Proc Natl Acad Sci U S A ; 121(18): e2322157121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648473

RESUMEN

Affective touch-a slow, gentle, and pleasant form of touch-activates a different neural network than which is activated during discriminative touch in humans. Affective touch perception is enabled by specialized low-threshold mechanoreceptors in the skin with unmyelinated fibers called C tactile (CT) afferents. These CT afferents are conserved across mammalian species, including macaque monkeys. However, it is unknown whether the neural representation of affective touch is the same across species and whether affective touch's capacity to activate the hubs of the brain that compute socioaffective information requires conscious perception. Here, we used functional MRI to assess the preferential activation of neural hubs by slow (affective) vs. fast (discriminative) touch in anesthetized rhesus monkeys (Macaca mulatta). The insula, anterior cingulate cortex (ACC), amygdala, and secondary somatosensory cortex were all significantly more active during slow touch relative to fast touch, suggesting homologous activation of the interoceptive-allostatic network across primate species during affective touch. Further, we found that neural responses to affective vs. discriminative touch in the insula and ACC (the primary cortical hubs for interoceptive processing) changed significantly with age. Insula and ACC in younger animals differentiated between slow and fast touch, while activity was comparable between conditions for aged monkeys (equivalent to >70 y in humans). These results, together with prior studies establishing conserved peripheral nervous system mechanisms of affective touch transduction, suggest that neural responses to affective touch are evolutionarily conserved in monkeys, significantly impacted in old age, and do not necessitate conscious experience of touch.


Asunto(s)
Estado de Conciencia , Macaca mulatta , Imagen por Resonancia Magnética , Percepción del Tacto , Animales , Estado de Conciencia/fisiología , Percepción del Tacto/fisiología , Masculino , Tacto/fisiología , Evolución Biológica , Corteza Somatosensorial/fisiología , Encéfalo/fisiología , Envejecimiento/fisiología , Femenino , Giro del Cíngulo/fisiología
11.
Neuron ; 112(8): 1202-1204, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38636453

RESUMEN

Insomnia is an important comorbidity of chronic pain. In this issue of Neuron, Li et al. report that chronic-pain-induced insomnia is mediated by the pyramidal neurons in the anterior cingulate cortex and their dopaminergic projections to the dorsal medial striatum.


Asunto(s)
Dolor Crónico , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Giro del Cíngulo/fisiología , Cuerpo Estriado , Células Piramidales , Neostriado
12.
Neuroimage ; 292: 120612, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38648868

RESUMEN

Transcranial alternating current stimulation (tACS) is an efficient neuromodulation technique that enhances cognitive function in a non-invasive manner. Using functional magnetic resonance imaging, we investigated whether tACS with different phase lags (0° and 180°) between the dorsal anterior cingulate and left dorsolateral prefrontal cortices modulated inhibitory control performance during the Stroop task. We found out-of-phase tACS mediated improvements in task performance, which was neurodynamically reflected as putamen, dorsolateral prefrontal, and primary motor cortical activation as well as prefrontal-based top-down functional connectivity. Our observations uncover the neurophysiological bases of tACS-phase-dependent neuromodulation and provide a feasible non-invasive approach to effectively modulate inhibitory control.


Asunto(s)
Inhibición Psicológica , Imagen por Resonancia Magnética , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Masculino , Femenino , Adulto , Adulto Joven , Test de Stroop , Giro del Cíngulo/fisiología , Giro del Cíngulo/diagnóstico por imagen , Corteza Prefontal Dorsolateral/fisiología , Corteza Prefontal Dorsolateral/diagnóstico por imagen , Función Ejecutiva/fisiología , Mapeo Encefálico/métodos , Corteza Motora/fisiología , Corteza Motora/diagnóstico por imagen
13.
J Neurosci ; 44(20)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569923

RESUMEN

Our prior research has identified neural correlates of cognitive control in the anterior cingulate cortex (ACC), leading us to hypothesize that the ACC is necessary for increasing attention as rats flexibly learn new contingencies during a complex reward-guided decision-making task. Here, we tested this hypothesis by using optogenetics to transiently inhibit the ACC, while rats of either sex performed the same two-choice task. ACC inhibition had a profound impact on behavior that extended beyond deficits in attention during learning when expected outcomes were uncertain. We found that ACC inactivation slowed and reduced the number of trials rats initiated and impaired both their accuracy and their ability to complete sessions. Furthermore, drift-diffusion model analysis suggested that free-choice performance and evidence accumulation (i.e., reduced drift rates) were degraded during initial learning-leading to weaker associations that were more easily overridden in later trial blocks (i.e., stronger bias). Together, these results suggest that in addition to attention-related functions, the ACC contributes to the ability to initiate trials and generally stay on task.


Asunto(s)
Giro del Cíngulo , Optogenética , Ratas Long-Evans , Animales , Giro del Cíngulo/fisiología , Masculino , Ratas , Femenino , Atención/fisiología , Recompensa , Conducta de Elección/fisiología , Toma de Decisiones/fisiología , Inhibición Neural/fisiología
14.
Curr Biol ; 34(9): 1987-1995.e4, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38614081

RESUMEN

The anterior cingulate cortex (ACC) is critical for the perception and unpleasantness of pain.1,2,3,4,5,6 It receives nociceptive information from regions such as the thalamus and amygdala and projects to several cortical and subcortical regions of the pain neuromatrix.7,8 ACC hyperexcitability is one of many functional changes associated with chronic pain, and experimental activation of ACC pyramidal cells produces hypersensitivity to innocuous stimuli (i.e., allodynia).9,10,11,12,13,14 A less-well-studied projection to the ACC arises from a small forebrain region, the claustrum.15,16,17,18,19,20 Stimulation of excitatory claustrum projection neurons preferentially activates GABAergic interneurons, generating feed-forward inhibition onto excitatory cortical networks.21,22,23,24 Previous work has shown that claustrocingulate projections display altered activity in prolonged pain25,26,27; however, it remains unclear whether and how the claustrum participates in nociceptive processing and high-order pain behaviors. Inhibition of ACC activity reverses mechanical allodynia in animal models of persistent and neuropathic pain,1,9,28 suggesting claustrum inputs may function to attenuate pain processing. In this study, we sought to define claustrum function in acute and chronic pain. We found enhanced claustrum activity after a painful stimulus that was attenuated in chronic inflammatory pain. Selective inhibition of claustrocingulate projection neurons enhanced acute nociception but blocked pain learning. Inversely, chemogenetic activation of claustrocingulate neurons had no effect on basal nociception but rescued inflammation-induced mechanical allodynia. Together, these results suggest that claustrocingulate neurons are a critical component of the pain neuromatrix, and dysregulation of this connection may contribute to chronic pain.


Asunto(s)
Claustro , Giro del Cíngulo , Animales , Giro del Cíngulo/fisiología , Giro del Cíngulo/fisiopatología , Claustro/fisiología , Ratones , Masculino , Nocicepción/fisiología , Vías Nerviosas/fisiopatología , Vías Nerviosas/fisiología , Ratones Endogámicos C57BL , Dolor/fisiopatología
15.
Cell Rep ; 43(3): 113943, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483907

RESUMEN

The maturation of engrams from recent to remote time points involves the recruitment of CA1 neurons projecting to the anterior cingulate cortex (CA1→ACC). Modifications of G-protein-coupled receptor pathways in CA1 astrocytes affect recent and remote recall in seemingly contradictory ways. To address this inconsistency, we manipulated these pathways in astrocytes during memory acquisition and tagged c-Fos-positive engram cells and CA1→ACC cells during recent and remote recall. The behavioral results were coupled with changes in the recruitment of CA1→ACC projection cells to the engram: Gq pathway activation in astrocytes caused enhancement of recent recall alone and was accompanied by earlier recruitment of CA1→ACC projecting cells to the engram. In contrast, Gi pathway activation in astrocytes resulted in the impairment of only remote recall, and CA1→ACC projecting cells were not recruited during remote memory. Finally, we provide a simple working model, hypothesizing that Gq and Gi pathway activation affect memory differently, by modulating the same mechanism: CA1→ACC projection.


Asunto(s)
Astrocitos , Memoria a Largo Plazo , Memoria a Largo Plazo/fisiología , Memoria/fisiología , Recuerdo Mental/fisiología , Neuronas/fisiología , Giro del Cíngulo/fisiología , Hipocampo/fisiología
16.
Proc Natl Acad Sci U S A ; 121(14): e2314918121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38527192

RESUMEN

Subcallosal cingulate (SCC) deep brain stimulation (DBS) is an emerging therapy for refractory depression. Good clinical outcomes are associated with the activation of white matter adjacent to the SCC. This activation produces a signature cortical evoked potential (EP), but it is unclear which of the many pathways in the vicinity of SCC is responsible for driving this response. Individualized biophysical models were built to achieve selective engagement of two target bundles: either the forceps minor (FM) or cingulum bundle (CB). Unilateral 2 Hz stimulation was performed in seven patients with treatment-resistant depression who responded to SCC DBS, and EPs were recorded using 256-sensor scalp electroencephalography. Two distinct EPs were observed: a 120 ms symmetric response spanning both hemispheres and a 60 ms asymmetrical EP. Activation of FM correlated with the symmetrical EPs, while activation of CB was correlated with the asymmetrical EPs. These results support prior model predictions that these two pathways are predominantly activated by clinical SCC DBS and provide first evidence of a link between cortical EPs and selective fiber bundle activation.


Asunto(s)
Estimulación Encefálica Profunda , Sustancia Blanca , Humanos , Estimulación Encefálica Profunda/métodos , Giro del Cíngulo/fisiología , Cuerpo Calloso , Potenciales Evocados
17.
Curr Biol ; 34(8): 1657-1669.e5, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38537637

RESUMEN

Intrusive memories are a core symptom of posttraumatic stress disorder. Compared with memories of everyday events, they are characterized by several seemingly contradictory features: intrusive memories contain distinct sensory and emotional details of the traumatic event and can be triggered by various perceptually similar cues, but they are poorly integrated into conceptual memory. Here, we conduct exploratory whole-brain analyses to investigate the neural representations of trauma-analog experiences and how they are reactivated during memory intrusions. We show that trauma-analog movies induce excessive processing and generalized representations in sensory areas but decreased blood-oxygen-level-dependent (BOLD) responses and highly distinct representations in conceptual/semantic areas. Intrusive memories activate generalized representations in sensory areas and reactivate memory traces specific to trauma-analog events in the anterior cingulate cortex. These findings provide the first evidence of how traumatic events could distort memory representations in the human brain, which may form the basis for future confirmatory research on the neural representations of traumatic experiences.


Asunto(s)
Memoria , Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/psicología , Trastornos por Estrés Postraumático/fisiopatología , Masculino , Adulto , Femenino , Memoria/fisiología , Adulto Joven , Imagen por Resonancia Magnética , Encéfalo/fisiología , Giro del Cíngulo/fisiología
18.
Sci Rep ; 14(1): 6367, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493201

RESUMEN

Lower urinary tract (LUT) function is controlled by the central nervous system, including higher-order cognitive brain regions. The anterior cingulate cortex (ACC) is one of these regions, but the role of its activity in LUT function remains poorly understood. In the present study, we conducted optogenetic experiments to manipulate neural activity in mouse ACC while monitoring bladder pressure to elucidate how the activity of ACC regulates LUT function. Selective optogenetic stimulation of excitatory neurons in ACC induced a sharp increase in bladder pressure, whereas activation of inhibitory neurons in ACC prolonged the interval between bladder contractions. Pharmacological manipulation of ACC also altered bladder contractions, consistent with those observed in optogenetic experiments. Optogenetic mapping of the cortical area responsible for eliciting the increase in bladder pressure revealed that stimulation to ACC showed more potent effects than the neighboring motor cortical areas. These results suggest that ACC plays a crucial role in initiating the bladder pressure change and the micturition reflex. Thus, the balance between excitation and inhibition in ACC may regulate the reflex bidirectionally.


Asunto(s)
Vejiga Urinaria , Micción , Ratones , Animales , Micción/fisiología , Giro del Cíngulo/fisiología , Optogenética , Neuronas/fisiología , Reflejo/fisiología
19.
Commun Biol ; 7(1): 330, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491200

RESUMEN

The anterior cingulate cortex (ACC) responds to noxious and innocuous sensory inputs, and integrates them to coordinate appropriate behavioral reactions. However, the role of the projections of ACC neurons to subcortical areas and their influence on sensory processing are not fully investigated. Here, we identified that ACC neurons projecting to the contralateral claustrum (ACC→contraCLA) preferentially respond to contralateral mechanical sensory stimulation. These sensory responses were enhanced during attending behavior. Optogenetic activation of ACC→contraCLA neurons silenced pyramidal neurons in the contralateral ACC by recruiting local circuit fast-spiking interneuron activation via an excitatory relay in the CLA. This circuit activation suppressed withdrawal behavior to mechanical stimuli ipsilateral to the ACC→contraCLA neurons. Chemogenetic silencing showed that the cross-hemispheric circuit has an important role in the suppression of contralateral nociceptive behavior during sensory-driven attending behavior. Our findings identify a cross-hemispheric cortical-subcortical-cortical arc allowing the brain to give attentional priority to competing innocuous and noxious inputs.


Asunto(s)
Claustro , Giro del Cíngulo , Giro del Cíngulo/fisiología , Neuronas/fisiología , Células Piramidales , Encéfalo
20.
J Cogn Neurosci ; 36(5): 836-853, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38357989

RESUMEN

Experience in bilingual language control is often accompanied by changes in the structure and function of the brain. Brain structural changes are also often closely related to changes in functions. Previous studies, however, have not directly explored the relationship between structural connectivity and effective functional connectivity of the brain during bilingual language control, and whether the two types of connectivity are associated with behavioral performance of language control. Using behavioral performance, functional, and diffusion imaging techniques, we found that: (1) during language control, the left dorsal lateral prefrontal cortex (dlPFC), left caudate nucleus (CN), inferior parietal lobe, precuneus, and dorsal anterior cingulate cortex (dACC)/pre-SMA were significantly activated. (2) In the language control model with left dlPFC, dACC/pre-SMA, and left CN as ROIs (selected based on activation results and language control models from previous studies), stimuli first enter dACC/pre-SMA and then to left CN. At the left CN, a bidirectional effective connectivity is formed with left dlPFC. (3) There is a nonlinear relationship between effective connectivity during language control and the structural connectivity of the second language learners' brains. Specifically, the fiber density between dACC/pre-SMA and left dlPFC has a positive influence on the bidirectional effective connectivity between left dlPFC and left CN. Findings of the present study contribute evidence toward functional effective connectivity during bilingual language control; toward structural connectivity in the brains of second language learners; as well as toward nonlinear relationships between functional effective connectivity, structural connectivity, and behavioral performance in relation to bilingual language control.


Asunto(s)
Encéfalo , Corteza Prefrontal , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Corteza Prefrontal/fisiología , Giro del Cíngulo/fisiología , Mapeo Encefálico/métodos , Lenguaje , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA