Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 880
Filtrar
1.
Biochem Biophys Res Commun ; 716: 150019, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38703555

RESUMEN

- Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a life-threatening condition marked by severe lung inflammation and increased lung endothelial barrier permeability. Endothelial glycocalyx deterioration is the primary factor of vascular permeability changes in ARDS/ALI. Although previous studies have shown that phospholipase D2 (PLD2) is closely related to the onset and progression of ARDS/ALI, its role and mechanism in the damage of endothelial cell glycocalyx remains unclear. We used LPS-induced ARDS/ALI mice (in vivo) and LPS-stimulated injury models of EA.hy926 endothelial cells (in vitro). We employed C57BL/6 mice, including wild-type and PLD2 knockout (PLD2-/-) mice, to establish the ARDS/ALI model. We applied immunofluorescence and ELISA to examine changes in syndecan-1 (SDC-1), matrix metalloproteinase-9 (MMP9), inflammatory cytokines (TNF-α, IL-6, and IL-1ß) levels and the effect of external factors, such as phosphatidic acid (PA), 1-butanol (a PLD inhibitor), on SDC-1 and MMP9 expression levels. We found that PLD2 deficiency inhibits SDC-1 degradation and MMP9 expression in LPS-induced ARDS/ALI. Externally added PA decreases SDC-1 levels and increases MMP9 in endothelial cells, hence underlining PA's role in SDC-1 degradation. Additionally, PLD2 deficiency decreases the production of inflammatory cytokines (TNF-α, IL-6, and IL-1ß) in LPS-induced ARDS/ALI. In summary, these findings suggest that PLD2 deficiency plays a role in inhibiting the inflammatory process and protecting against endothelial glycocalyx injury in LPS-induced ARDS/ALI.


Asunto(s)
Lesión Pulmonar Aguda , Glicocálix , Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfolipasa D , Síndrome de Dificultad Respiratoria , Animales , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Glicocálix/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/etiología , Ratones , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Sindecano-1/metabolismo , Sindecano-1/genética , Citocinas/metabolismo , Línea Celular
2.
Proc Natl Acad Sci U S A ; 121(20): e2322688121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709925

RESUMEN

Brain metastatic breast cancer is particularly lethal largely due to therapeutic resistance. Almost half of the patients with metastatic HER2-positive breast cancer develop brain metastases, representing a major clinical challenge. We previously described that cancer-associated fibroblasts are an important source of resistance in primary tumors. Here, we report that breast cancer brain metastasis stromal cell interactions in 3D cocultures induce therapeutic resistance to HER2-targeting agents, particularly to the small molecule inhibitor of HER2/EGFR neratinib. We investigated the underlying mechanisms using a synthetic Notch reporter system enabling the sorting of cancer cells that directly interact with stromal cells. We identified mucins and bulky glycoprotein synthesis as top-up-regulated genes and pathways by comparing the gene expression and chromatin profiles of stroma-contact and no-contact cancer cells before and after neratinib treatment. Glycoprotein gene signatures were also enriched in human brain metastases compared to primary tumors. We confirmed increased glycocalyx surrounding cocultures by immunofluorescence and showed that mucinase treatment increased sensitivity to neratinib by enabling a more efficient inhibition of EGFR/HER2 signaling in cancer cells. Overexpression of truncated MUC1 lacking the intracellular domain as a model of increased glycocalyx-induced resistance to neratinib both in cell culture and in experimental brain metastases in immunodeficient mice. Our results highlight the importance of glycoproteins as a resistance mechanism to HER2-targeting therapies in breast cancer brain metastases.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Resistencia a Antineoplásicos , Glicocálix , Quinolinas , Receptor ErbB-2 , Células del Estroma , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Glicocálix/metabolismo , Animales , Línea Celular Tumoral , Células del Estroma/metabolismo , Células del Estroma/patología , Quinolinas/farmacología , Ratones , Comunicación Celular , Técnicas de Cocultivo , Mucina-1/metabolismo , Mucina-1/genética , Transducción de Señal , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores
4.
Sci Rep ; 14(1): 10477, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714743

RESUMEN

Endothelial glycocalyx (eGC) covers the inner surface of the vessels and plays a role in vascular homeostasis. Syndecan is considered the "backbone" of this structure. Several studies have shown eGC shedding in sepsis and its involvement in organ dysfunction. Matrix metalloproteinases (MMP) contribute to eGC shedding through their ability for syndecan-1 cleavage. This study aimed to investigate if doxycycline, a potent MMP inhibitor, could protect against eGC shedding in lipopolysaccharide (LPS)-induced sepsis and if it could interrupt the vascular hyperpermeability, neutrophil transmigration, and microvascular impairment. Rats that received pretreatment with doxycycline before LPS displayed ultrastructural preservation of the eGC observed using transmission electronic microscopy of the lung and heart. In addition, these animals exhibited lower serum syndecan-1 levels, a biomarker of eGC injury, and lower perfused boundary region (PBR) in the mesenteric video capillaroscopy, which is inversely related to the eGC thickness compared with rats that only received LPS. Furthermore, this study revealed that doxycycline decreased sepsis-related vascular hyperpermeability in the lung and heart, reduced neutrophil transmigration in the peritoneal lavage and inside the lungs, and improved some microvascular parameters. These findings suggest that doxycycline protects against LPS-induced eGC shedding, and it could reduce vascular hyperpermeability, neutrophils transmigration, and microvascular impairment.


Asunto(s)
Doxiciclina , Glicocálix , Lipopolisacáridos , Sepsis , Glicocálix/metabolismo , Glicocálix/efectos de los fármacos , Animales , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Doxiciclina/farmacología , Ratas , Masculino , Permeabilidad Capilar/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Sindecano-1/metabolismo , Ratas Wistar , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Inhibidores de la Metaloproteinasa de la Matriz/farmacología
5.
Sci Signal ; 17(834): eadq0353, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687824

RESUMEN

Displacement of the glycocalyx by membrane blebbing enables macrophages to recognize apoptotic cells.


Asunto(s)
Apoptosis , Glicocálix , Macrófagos , Humanos , Glicocálix/metabolismo , Animales , Macrófagos/metabolismo , Macrófagos/citología , Fagocitos/metabolismo , Fagocitos/citología , Fagocitosis , Ratones
6.
Cell Commun Signal ; 22(1): 191, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528533

RESUMEN

BACKGROUND: The incidence of diabetic kidney disease (DKD) continues to rapidly increase, with limited available treatment options. One of the hallmarks of DKD is persistent inflammation, but the underlying molecular mechanisms of early diabetic kidney injury remain poorly understood. C-X-C chemokine receptor 2 (CXCR2), plays an important role in the progression of inflammation-related vascular diseases and may bridge between glomerular endothelium and persistent inflammation in DKD. METHODS: Multiple methods were employed to assess the expression levels of CXCR2 and its ligands, as well as renal inflammatory response and endothelial glycocalyx shedding in patients with DKD. The effects of CXCR2 on glycocalyx shedding, and persistent renal inflammation was examined in a type 2 diabetic mouse model with Cxcr2 knockout specifically in endothelial cells (DKD-Cxcr2 eCKO mice), as well as in glomerular endothelial cells (GECs), cultured in high glucose conditions. RESULTS: CXCR2 was associated with early renal decline in DKD patients, and endothelial-specific knockout of CXCR2 significantly improved renal function in DKD mice, reduced inflammatory cell infiltration, and simultaneously decreased the expression of proinflammatory factors and chemokines in renal tissue. In DKD conditions, glycocalyx shedding was suppressed in endothelial Cxcr2 knockout mice compared to Cxcr2 L/L mice. Modulating CXCR2 expression also affected high glucose-induced inflammation and glycocalyx shedding in GECs. Mechanistically, CXCR2 deficiency inhibited the activation of NF-κB signaling, thereby regulating inflammation, restoring the endothelial glycocalyx, and alleviating DKD. CONCLUSIONS: Taken together, under DKD conditions, activation of CXCR2 exacerbates inflammation through regulation of the NF-κB pathway, leading to endothelial glycocalyx shedding and deteriorating renal function. Endothelial CXCR2 deficiency has a protective role in inflammation and glycocalyx dysfunction, suggesting its potential as a promising therapeutic target for DKD treatment.


Asunto(s)
Nefropatías Diabéticas , FN-kappa B , Receptores de Interleucina-8B , Animales , Humanos , Ratones , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Células Endoteliales/metabolismo , Endotelio/metabolismo , Glucosa , Glicocálix/metabolismo , Inflamación/metabolismo , Ratones Noqueados , FN-kappa B/metabolismo , Receptores de Quimiocina/uso terapéutico , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/metabolismo
7.
Shock ; 61(5): 776-782, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517274

RESUMEN

ABSTRACT: Background : This study aims to determine the impact and mechanism of miR-21-3p on intestinal injury and intestinal glycocalyx during fluid resuscitation in traumatic hemorrhagic shock (THS), and the different impacts of sodium lactate Ringer's solution (LRS) and sodium bicarbonate Ringer's solution (BRS) for resuscitation on intestinal damage. Methods : A rat model of THS was induced by hemorrhage from the left femur fracture. The pathological changes of intestinal tissues and glycocalyx structure were observed by hematoxylin-eosin staining and transmission electron microscope. MiR-21-3p expression in intestinal tissues was detected by real-time quantitative polymerase chain reaction. The expression of glycocalyx-, cell junction-, and PI3K/Akt/NF-κB signaling pathway-related proteins was analyzed by western blot. Results : MiR-21-3p expression was increased in THS rats, which was suppressed by resuscitation with BRS. BRS or LRS aggravated the intestinal injury and damaged intestinal glycocalyx in THS rats. The expression of SDC-1, HPA, ß-catenin, MMP2, and MMP9 was upregulated, the expression of E-cad was downregulated, and the PI3K/Akt/NF-κB signaling pathway was activated in THS rats, which were further aggravated by BRS or LRS. The adverse effect of LRS was more serious than BRS. MiR-21-3p overexpression deteriorated the injury of intestinal tissues and intestinal glycocalyx; increased the expression of SDC-1, HPA, ß-catenin, MMP2, and MMP9 while decreasing E-cad expression; and activated the PI3K/Akt/NF-κB signaling pathway in BRS-resuscitated THS rats. Conclusion : MiR-21-3p aggravated intestinal tissue injury and intestinal glycocalyx damage through activating PI3K/Akt/NF-κB signaling pathway in rats with THS resuscitated with BRS.


Asunto(s)
Intestinos , MicroARNs , Solución de Ringer , Choque Hemorrágico , Animales , Masculino , Ratas , Glicocálix/efectos de los fármacos , Glicocálix/metabolismo , Glicocálix/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Intestinos/patología , Intestinos/efectos de los fármacos , Intestinos/lesiones , Soluciones Isotónicas/farmacología , Soluciones Isotónicas/uso terapéutico , MicroARNs/metabolismo , MicroARNs/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Resucitación , Choque Hemorrágico/tratamiento farmacológico , Choque Hemorrágico/metabolismo , Choque Hemorrágico/complicaciones , Transducción de Señal/efectos de los fármacos , Bicarbonato de Sodio/uso terapéutico , Bicarbonato de Sodio/farmacología , Solución de Ringer/farmacología , Solución de Ringer/uso terapéutico
8.
Environ Toxicol ; 39(6): 3578-3596, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38488667

RESUMEN

OBJECTIVE: Endothelial glycocalyx (EG) maintains vascular homeostasis and is destroyed after one-lung ventilation (OLV)-induced lung injury. Long noncoding RNAs (lncRNAs) are critically involved in various lung injuries. This study aimed to investigate the role and regulatory mechanism of KCNQ1 overlapping transcript 1 (KCNQ1OT1) in OLV-induced lung injury and LPS-induced type II alveolar epithelial cell (AECII) apoptosis. METHODS: The rat OLV model was established, and the effects of KCNQ1OT1 on OLV-induced ALI in vivo were explored. Bax and Caspase-3 expression in rat lung tissues was measured by immunochemistry (IHC). AECIIs were isolated from rat lungs and treated with LPS or normal saline (control) for in vitro analysis. The expression of KCNQ1OT1, miR-129-5p, and HMGB1 was measured by quantitative real-time PCR (qRT-PCR) or Western blot (WB). Cell proliferation and apoptosis were examined by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) and flow cytometry. The downstream targets of KCNQ1OT1 were predicted by bioinformatics, and the binding relationship between KCNQ1OT1 and miR-129-3p was verified by dual-luciferase reporter assays. The potential target of miR-129-5p was further explored on the Targetscan website and revealed to target HMGB1. Enzyme-linked immunosorbent assay (ELISA) or WB was adopted to determine the levels of IL-1ß, TNF-α, MDA, SOD, heparanase (HPA), matrix metalloproteinase 9 (MMP9), heparan sulfate (HS) and syndecan-1 (SDC-1). RESULTS: KCNQ1OT1 and HMGB1 were up-regulated during OLV-induced lung injury, and their expression was positively correlated. KCNQ1OT1 knockdown reduced OLV-induced pulmonary edema and lung epithelial cell apoptosis, increased vascular permeability, reduced IL-1ß, TNF-α, MDA, and SOD levels and glycocalyx markers by targeting miR-129-5p or upregulating HMGB1. Overexpressing KCNQ1OT1 promoted cell apoptosis, reduced cell proliferation, aggravated inflammation and oxidative stress, and up-regulated HMGB1, HPA and MMP9 in LPS-treated AECIIs, while the HMGB1 silencing showed the opposite effects. MiR-129-5p mimics partially eliminated the KCNQ1OT1-induced effects, while recombinant HMGB1 restored the effects of miR-129-5p overexpression on AECIIs. Additionally, KCNQ1OT1 was demonstrated to promote the activation of the p38 MAPK/Akt/ERK signaling pathways in AECIIs via HMGB1. CONCLUSION: KCNQ1OT1 knockdown alleviated AECII apoptosis and EG damage during OLV by targeting miR-129-5p/HMGB1 to inactivate the p38 MAPK/Akt/ERK signaling. The findings of our study might deepen our understanding of the molecular basis in OLV-induced lung injury and provide clues for the targeted disease management.


Asunto(s)
Células Epiteliales Alveolares , Apoptosis , Regulación hacia Abajo , Glicocálix , Proteína HMGB1 , MicroARNs , Ratas Sprague-Dawley , Animales , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis/genética , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Masculino , Ratas , Glicocálix/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
9.
Diabetes ; 73(6): 964-976, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38530908

RESUMEN

Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes.


Asunto(s)
Adiponectina , Diabetes Mellitus Tipo 2 , Glicocálix , Glomérulos Renales , Animales , Glicocálix/metabolismo , Glicocálix/efectos de los fármacos , Adiponectina/metabolismo , Adiponectina/genética , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Glomérulos Renales/efectos de los fármacos , Humanos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Masculino , Barrera de Filtración Glomerular/metabolismo , Barrera de Filtración Glomerular/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Sindecano-4/metabolismo , Sindecano-4/genética , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
10.
J Vasc Res ; 61(2): 77-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38503274

RESUMEN

INTRODUCTION: Previous studies have confirmed that low shear stress (LSS) induces glycocalyx disruption, leading to endothelial dysfunction. However, the role of autophagy in LSS-induced glycocalyx disruption and relevant mechanism are not clear. In this study, we hypothesized that LSS may promote autophagy, disrupting the endothelium glycocalyx. METHODS: Human umbilical vein endothelial cells were subjected to physiological shear stress and LSS treatments, followed by the application of autophagy inducers and inhibitors. Additionally, cells were treated with specific matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) inhibitor. The expression of autophagic markers, glycocalyx, MMP-2, and MMP-9 was measured. RESULTS: LSS impacted the expression of endothelium autophagy markers, increasing the expression of LC3II.LC3I-1 and Beclin-1, and decreasing the levels of p62, accompanied by glycocalyx disturbance. Moreover, LSS upregulated the expression of MMP-2 and MMP-9 and downregulated the levels of syndecan-1 and heparan sulfate (HS). Additionally, expression of MMP-2 and MMP-9 was increased by an autophagy promoter but was decreased by autophagy inhibitor treatment under LSS. Autophagy and MMP-2 and MMP-9 further caused glycocalyx disruption. CONCLUSION: LSS promotes autophagy, leading to glycocalyx disruption. Autophagy increases the expression of MMP-2 and MMP-9, which are correlated with the glycocalyx destruction induced by LSS.


Asunto(s)
Glicocálix , Metaloproteinasa 2 de la Matriz , Humanos , Glicocálix/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Autofagia , Estrés Mecánico
11.
Cardiovasc Pathol ; 70: 107629, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38461960

RESUMEN

BACKGROUND: Abdominal aortic aneurysm is a weakening and expansion of the abdominal aorta. Currently, there is no drug treatment to limit abdominal aortic aneurysm growth. The glycocalyx is the outermost layer of the cell surface, mainly composed of glycosaminoglycans and proteoglycans. OBJECTIVE: The aim of this review was to identify a potential relationship between glycocalyx disruption and abdominal aortic aneurysm pathogenesis. METHODS: A narrative review of relevant published research was conducted. RESULTS: Glycocalyx disruption has been reported to enhance vascular permeability, impair immune responses, dysregulate endothelial function, promote extracellular matrix remodeling and modulate mechanotransduction. All these effects are implicated in abdominal aortic aneurysm pathogenesis. Glycocalyx disruption promotes inflammation through exposure of adhesion molecules and release of proinflammatory mediators. Glycocalyx disruption affects how the endothelium responds to shear stress by reducing nitric oxide availabilty and adversely affecting the storage and release of several antioxidants, growth factors, and antithromotic proteins. These changes exacerbate oxidative stress, stimulate vascular smooth muscle cell dysfunction, and promote thrombosis, all effects implicated in abdominal aortic aneurysm pathogenesis. Deficiency of key component of the glycocalyx, such as syndecan-4, were reported to promote aneurysm formation and rupture in the angiotensin-II and calcium chloride induced mouse models of abdominal aortic aneurysm. CONCLUSION: This review provides a summary of past research which suggests that glycocalyx disruption may play a role in abdominal aortic aneurysm pathogenesis. Further research is needed to establish a causal link between glycocalyx disruption and abdominal aortic aneurysm development.


Asunto(s)
Aorta Abdominal , Aneurisma de la Aorta Abdominal , Glicocálix , Glicocálix/patología , Glicocálix/metabolismo , Aneurisma de la Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/fisiopatología , Humanos , Animales , Aorta Abdominal/patología , Aorta Abdominal/metabolismo , Aorta Abdominal/fisiopatología , Estrés Oxidativo , Mecanotransducción Celular , Permeabilidad Capilar , Transducción de Señal , Remodelación Vascular
12.
J Appl Toxicol ; 44(6): 908-918, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396353

RESUMEN

Cadmium (Cd) is one of the most polluting heavy metal in the environment. Cd exposure has been elucidated to cause dysfunction of the glomerular filtration barrier (GFB). However, the underlying mechanism remains unclear. C57BL/6J male mice were administered with 2.28 mg/kg cadmium chloride (CdCl2) dissolved in distilled water by oral gavage for 14 days. The expression of SDC4 in the kidney tissues was detected. Human renal glomerular endothelial cells (HRGECs) were exposed to varying concentrations of CdCl2 for 24 h. The mRNA levels of SDC4, along with matrix metalloproteinase (MMP)-2 and 9, were analyzed by quantitative PCR. Additionally, the protein expression levels of SDC4, MMP-2/9, and both total and phosphorylated forms of Smad2/3 (P-Smad2/3) were detected by western blot. The extravasation rate of fluorescein isothiocyanate-dextran through the Transwell was used to evaluate the permeability of HRGECs. SB431542 was used as an inhibitor of transforming growth factor (TGF)-ß signaling pathway to further investigate the role of TGF-ß. Cd reduced SDC4 expression in both mouse kidney tissues and HRGECs. In addition, Cd exposure increased permeability and upregulated P-Smad2/3 levels in HRGECs. SB431542 treatment inhibited the phosphorylation of Smad2/3, Cd-induced SDC4 downregulation, and hyperpermeability. MMP-2/9 levels increased by Cd exposure was also blocked by SB431542, demonstrating the involvement of TGF-ß/Smad pathway in low-dose Cd-induced SDC4 reduction in HRGECs. Given that SDC4 is an essential component of glycocalyx, protection or repair of endothelial glycocalyx is a potential strategy for preventing or treating kidney diseases associated with environmental Cd exposure.


Asunto(s)
Células Endoteliales , Glicocálix , Glomérulos Renales , Ratones Endogámicos C57BL , Sindecano-4 , Animales , Masculino , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Sindecano-4/metabolismo , Sindecano-4/genética , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/metabolismo , Ratones , Glicocálix/efectos de los fármacos , Glicocálix/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Cadmio/toxicidad , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
13.
Invest Ophthalmol Vis Sci ; 65(2): 20, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38334701

RESUMEN

Purpose: To compare regional conjunctival expression of membrane-associated mucins (MAMs) MUC1, MUC4, and MUC16 in normal and dry eye (DE) subjects. Methods: Adults with and without signs and symptoms of DE were recruited. Impression cytology was performed to collect MAMs from four bulbar and upper eyelid palpebral conjunctival regions of both eyes. After protein extraction, samples from both eyes of a single subject were pooled by region, and expression was analyzed using a capillary electrophoresis nano-immunoassay system. The chemiluminescence intensity of each antigen binding signal was calculated after normalization to the total protein amount. Statistical analyses were conducted using GraphPad Prime 9. Results: Samples from thirteen to sixteen DE and seven to eleven normal subjects were analyzed. In normal samples, MUC1 expression from the nasal bulbar conjunctiva was significantly greater than superior (P = 0.004) and inferior (P = 0.005). In DE samples, MUC1 expression was highest superiorly. Significant differences in MUC4 and MUC16 expression were not seen in normal samples. MUC4 and MUC16 expression was upregulated superiorly (P < 0.0001) and inferiorly (P < 0.0001) in DE compared with those regions in normal samples. Conclusions: Although MAMs form a hydrophilic barrier called the glycocalyx, each mucin may have unique functions that are currently unexplored. All MAMs were expressed in the upper palpebral conjunctiva. Increased MUC1 expression nasally in healthy subjects suggests a functional need for increased protection. When comparing DE with normal eyes, upregulation of MUC1 superiorly, and in both MUC4 and MUC16 both superiorly and inferiorly, may indicate a need to decrease eyelid friction during blinking, especially in DE.


Asunto(s)
Síndromes de Ojo Seco , Mucinas , Adulto , Humanos , Mucinas/metabolismo , Glicocálix/metabolismo , Conjuntiva/metabolismo , Antígeno Ca-125/metabolismo , Síndromes de Ojo Seco/metabolismo
14.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L524-L538, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38375572

RESUMEN

Lung surfactant collectins, surfactant protein A (SP-A) and D (SP-D), are oligomeric C-type lectins involved in lung immunity. Through their carbohydrate recognition domain, they recognize carbohydrates at pathogen surfaces and initiate lung innate immune response. Here, we propose that they may also be able to bind to other carbohydrates present in typical cell surfaces, such as the alveolar epithelial glycocalyx. To test this hypothesis, we analyzed and quantified the binding affinity of SP-A and SP-D to different sugars and glycosaminoglycans (GAGs) by microscale thermophoresis (MST). In addition, by changing the calcium concentration, we aimed to characterize any consequences on the binding behavior. Our results show that both oligomeric proteins bind with high affinity (in nanomolar range) to GAGs, such as hyaluronan (HA), heparan sulfate (HS) and chondroitin sulfate (CS). Binding to HS and CS was calcium-independent, as it was not affected by changing calcium concentration in the buffer. Quantification of GAGs in bronchoalveolar lavage (BAL) fluid from animals deficient in either SP-A or SP-D showed changes in GAG composition, and electron micrographs showed differences in alveolar glycocalyx ultrastructure in vivo. Taken together, SP-A and SP-D bind to model sulfated glycosaminoglycans of the alveolar epithelial glycocalyx in a multivalent and calcium-independent way. These findings provide a potential mechanism for SP-A and SP-D as an integral part of the alveolar epithelial glycocalyx binding and interconnecting free GAGs, proteoglycans, and other glycans in glycoproteins, which may influence glycocalyx composition and structure.NEW & NOTEWORTHY SP-A and SP-D function has been related to innate immunity of the lung based on their binding to sugar residues at pathogen surfaces. However, their function in the healthy alveolus was considered as limited to interaction with surfactant lipids. Here, we demonstrated that these proteins bind to glycosaminoglycans present at typical cell surfaces like the alveolar epithelial glycocalyx. We propose a model where these proteins play an important role in interconnecting alveolar epithelial glycocalyx components.


Asunto(s)
Calcio , Glicocálix , Glicosaminoglicanos , Alveolos Pulmonares , Proteína A Asociada a Surfactante Pulmonar , Proteína D Asociada a Surfactante Pulmonar , Animales , Humanos , Ratones , Células Epiteliales Alveolares/metabolismo , Líquido del Lavado Bronquioalveolar , Calcio/metabolismo , Glicocálix/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Ratones Endogámicos C57BL , Unión Proteica , Alveolos Pulmonares/metabolismo , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo
15.
Dev Cell ; 59(7): 853-868.e7, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38359833

RESUMEN

Phagocytes remove dead and dying cells by engaging "eat-me" ligands such as phosphatidylserine (PtdSer) on the surface of apoptotic targets. However, PtdSer is obscured by the bulky exofacial glycocalyx, which also exposes ligands that activate "don't-eat-me" receptors such as Siglecs. Clearly, unshielding the juxtamembrane "eat-me" ligands is required for the successful engulfment of apoptotic cells, but the mechanisms underlying this process have not been described. Using human and murine cells, we find that apoptosis-induced retraction and weakening of the cytoskeleton that anchors transmembrane proteins cause an inhomogeneous redistribution of the glycocalyx: actin-depleted blebs emerge, lacking the glycocalyx, while the rest of the apoptotic cell body retains sufficient actin to tether the glycocalyx in place. Thus, apoptotic blebs can be engaged by phagocytes and are targeted for engulfment. Therefore, in cells with an elaborate glycocalyx, such as mucinous cancer cells, this "don't-come-close-to-me" barrier must be removed to enable clearance by phagocytosis.


Asunto(s)
Actinas , Glicocálix , Animales , Humanos , Ratones , Glicocálix/metabolismo , Actinas/metabolismo , Fagocitos , Fagocitosis/fisiología , Ligandos , Apoptosis/fisiología , Fosfatidilserinas/metabolismo
16.
Cardiovasc Diabetol ; 23(1): 50, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302978

RESUMEN

BACKGROUND: Diabetes mellitus is a chronic disease which is detrimental to cardiovascular health, often leading to secondary microvascular complications, with huge global health implications. Therapeutic interventions that can be applied to multiple vascular beds are urgently needed. Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are characterised by early microvascular permeability changes which, if left untreated, lead to visual impairment and renal failure, respectively. The heparan sulphate cleaving enzyme, heparanase, has previously been shown to contribute to diabetic microvascular complications, but the common underlying mechanism which results in microvascular dysfunction in conditions such as DR and DKD has not been determined. METHODS: In this study, two mouse models of heparan sulphate depletion (enzymatic removal and genetic ablation by endothelial specific Exotosin-1 knock down) were utilized to investigate the impact of endothelial cell surface (i.e., endothelial glycocalyx) heparan sulphate loss on microvascular barrier function. Endothelial glycocalyx changes were measured using fluorescence microscopy or transmission electron microscopy. To measure the impact on barrier function, we used sodium fluorescein angiography in the eye and a glomerular albumin permeability assay in the kidney. A type 2 diabetic (T2D, db/db) mouse model was used to determine the therapeutic potential of preventing heparan sulphate damage using treatment with a novel heparanase inhibitor, OVZ/HS-1638. Endothelial glycocalyx changes were measured as above, and microvascular barrier function assessed by albumin extravasation in the eye and a glomerular permeability assay in the kidney. RESULTS: In both models of heparan sulphate depletion, endothelial glycocalyx depth was reduced and retinal solute flux and glomerular albumin permeability was increased. T2D mice treated with OVZ/HS-1638 had improved endothelial glycocalyx measurements compared to vehicle treated T2D mice and were simultaneously protected from microvascular permeability changes associated with DR and DKD. CONCLUSION: We demonstrate that endothelial glycocalyx heparan sulphate plays a common mechanistic role in microvascular barrier function in the eye and kidney. Protecting the endothelial glycocalyx damage in diabetes, using the novel heparanase inhibitor OVZ/HS-1638, effectively prevents microvascular permeability changes associated with DR and DKD, demonstrating a novel systemic approach to address diabetic microvascular complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Angiopatías Diabéticas , Nefropatías Diabéticas , Glucuronidasa , Animales , Ratones , Glicocálix/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/prevención & control , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacología , Albúminas/farmacología , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/prevención & control , Angiopatías Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
17.
Nat Mater ; 23(3): 429-438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361041

RESUMEN

Cancer cell glycocalyx is a major line of defence against immune surveillance. However, how specific physical properties of the glycocalyx are regulated on a molecular level, contribute to immune evasion and may be overcome through immunoengineering must be resolved. Here we report how cancer-associated mucins and their glycosylation contribute to the nanoscale material thickness of the glycocalyx and consequently modulate the functional interactions with cytotoxic immune cells. Natural-killer-cell-mediated cytotoxicity is inversely correlated with the glycocalyx thickness of the target cells. Changes in glycocalyx thickness of approximately 10 nm can alter the susceptibility to immune cell attack. Enhanced stimulation of natural killer and T cells through equipment with chimeric antigen receptors can improve the cytotoxicity against mucin-bearing target cells. Alternatively, cytotoxicity can be enhanced through engineering effector cells to display glycocalyx-editing enzymes, including mucinases and sialidases. Together, our results motivate the development of immunoengineering strategies that overcome the glycocalyx armour of cancer cells.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Glicocálix/metabolismo , Mucinas/metabolismo , Antineoplásicos/metabolismo , Neoplasias/terapia
18.
Am J Physiol Renal Physiol ; 326(5): F681-F693, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205540

RESUMEN

Intermittent fasting has become of interest for its possible metabolic benefits and reduction of inflammation and oxidative damage, all of which play a role in the pathophysiology of diabetic nephropathy. We tested in a streptozotocin (60 mg/kg)-induced diabetic apolipoprotein E knockout mouse model whether repeated fasting mimicking diet (FMD) prevents glomerular damage. Diabetic mice received 5 FMD cycles in 10 wk, and during cycles 1 and 5 caloric measurements were performed. After 10 wk, glomerular endothelial morphology was determined together with albuminuria, urinary heparanase-1 activity, and spatial mass spectrometry imaging to identify specific glomerular metabolic dysregulation. During FMD cycles, blood glucose levels dropped while a temporal metabolic switch was observed to increase fatty acid oxidation. Overall body weight at the end of the study was reduced together with albuminuria, although urine production was dramatically increased without affecting urinary heparanase-1 activity. Weight loss was found to be due to lean mass and water, not fat mass. Although capillary loop morphology and endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced together with the presence of UDP-glucuronic acid. Mass spectrometry imaging further revealed reduced protein catabolic breakdown products and increased oxidative stress, not different from diabetic mice. In conclusion, although FMD preserves partially glomerular endothelial glycocalyx, loss of lean mass and increased glomerular oxidative stress argue whether such diet regimes are safe in patients with diabetes.NEW & NOTEWORTHY Repeated fasting mimicking diet (FMD) partially prevents glomerular damage in a diabetic mouse model; however, although endothelial glycocalyx heparan sulfate contents were preserved, hyaluronan surface expression was reduced in the presence of UDP-glucuronic acid. The weight loss observed was of lean mass, not fat mass, and increased glomerular oxidative stress argue whether such a diet is safe in patients with diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ayuno , Glicocálix , Glomérulos Renales , Estrés Oxidativo , Animales , Glicocálix/metabolismo , Glicocálix/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Masculino , Glucemia/metabolismo , Albuminuria/metabolismo , Ratones , Glucuronidasa/metabolismo , Ratones Noqueados para ApoE , Ratones Endogámicos C57BL , Dieta
19.
Microvasc Res ; 153: 104658, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38266910

RESUMEN

Endothelial permeability deterioration is involved in ventilator-induced lung injury (VILI). The integrality of vascular endothelial glycocalyx (EG) is closely associated with endothelial permeability. The hypothesis was that vascular EG shedding participates in VILI through promoting endothelial permeability. In the present study, male Sprague-Dawley (SD) rats were ventilated with high tidal volume (VT =40 ml/kg) or low tidal volume (VT =8 ml/kg) to investigate the effects of different tidal volume and ventilation durations on EG in vivo. We report disruption of EG during the period of high tidal volume ventilation characterized by increased glycocalyx structural components (such as syndecan-1, heparan sulfate, hyaluronan) in the plasma and decreased the expression of syndecan-1 in the lung tissues. Mechanistically, the disruption of EG was associated with increased proinflammatory cytokines and matrix metalloproteinase in the lung tissues. Collectively, these results demonstrate that the degradation of EG is involved in the occurrence and development of VILI in rats, and the inflammatory mechanism mediated by activation of the NF-κB signaling pathway may be partly responsible for the degradation of EG in VILI in rats. This study enhances our understanding of the pathophysiological processes underlying VILI, shedding light on potential therapeutic targets to mitigate VILI.


Asunto(s)
Sindecano-1 , Lesión Pulmonar Inducida por Ventilación Mecánica , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Glicocálix/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/tratamiento farmacológico , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Pulmón/metabolismo
20.
FEBS J ; 291(8): 1719-1731, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38275079

RESUMEN

Trastuzumab is widely used in human epidermal growth factor receptor 2 (HER2)-positive gastric cancer (GC) therapy, but ubiquitous resistance limits its clinical application. In this study, we first showed that CD44 antigen is a significant predictor of overall survival for patients with HER2-positive GC. Next, we found that CD44 could be co-immunoprecipitated and co-localized with HER2 on the membrane of GC cells. By analyzing the interaction between CD44 and HER2, we identified that CD44 could upregulate HER2 protein by inhibiting its proteasome degradation. Notably, the overexpression of CD44 could decrease the sensitivity of HER2-positive GC cells to trastuzumab. Further mechanistic study showed that CD44 upregulation could induce its ligand, hyaluronan (HA), to deposit on the cancer cell surface, resulting in covering up the binding sites of trastuzumab to HER2. Removing the HA glycocalyx restored sensitivity of the cells to trastuzumab. Collectively, our findings suggested a role for CD44 in regulating trastuzumab sensitivity and provided novel insights into HER2-targeted therapy.


Asunto(s)
Ácido Hialurónico , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Glicocálix/metabolismo , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Trastuzumab/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA