Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(22): eadk5011, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38809975

RESUMEN

Healthy behavioral patterns could modulate organ functions to enhance the body's immunity. However, how exercise regulates antiviral innate immunity remains elusive. Here, we found that exercise promotes type I interferon (IFN-I) production in the liver and enhances IFN-I immune activity of the body. Despite the possibility that many exercise-induced factors could affect IFN-I production, we identified Gpld1 as a crucial molecule, and the liver as the major organ to promote IFN-I production after exercise. Exercise largely loses the efficiency to induce IFN-I in Gpld1-/- mice. Further studies demonstrated that exercise-produced 3-hydroxybutanoic acid (3-HB) critically induces Gpld1 expression in the liver. Gpld1 blocks the PP2A-IRF3 interaction, thus enhancing IRF3 activation and IFN-I production, and eventually improving the body's antiviral ability. This study reveals that exercise improves antiviral innate immunity by linking the liver metabolism to systemic IFN-I activity and uncovers an unknown function of liver cells in innate immunity.


Asunto(s)
Inmunidad Innata , Factor 3 Regulador del Interferón , Interferón Tipo I , Hígado , Condicionamiento Físico Animal , Animales , Masculino , Ratones , Antivirales , Citocinas , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Hígado/metabolismo , Hígado/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Ubiquitinas , Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo
2.
J Biochem ; 171(6): 619-629, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35191956

RESUMEN

Glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) of Trypanosoma brucei, the causative protozoan parasite of African trypanosomiasis, is a membrane-bound enzyme essential for antigenic variation, because it catalyses the release of the membrane-bound form of variable surface glycoproteins. Here, we performed a fragment-based drug discovery of TbGPI-PLC inhibitors using a combination of enzymatic inhibition assay and water ligand observed via gradient spectroscopy (WaterLOGSY) NMR experiment. The TbGPI-PLC was cloned and overexpressed using an Escherichia coli expression system followed by purification using three-phase partitioning and gel filtration. Subsequently, the inhibitory activity of 873 fragment compounds against the recombinant TbGPI-PLC led to the identification of 66 primary hits. These primary hits were subjected to the WaterLOGSY NMR experiment where 10 fragment hits were confirmed to directly bind to the TbGPI-PLC. These included benzothiazole, chlorobenzene, imidazole, indole, pyrazol and quinolinone derivatives. Molecular docking simulation indicated that six of them share a common binding site, which corresponds to the catalytic pocket. The present study identified chemically diverse fragment hits that could directly bind and inhibit the TbGPI-PLC activity, which constructed a framework for fragment optimization or linking towards the design of novel drugs for African trypanosomiasis.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Descubrimiento de Drogas , Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Análisis Espectral , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Fosfolipasas de Tipo C/metabolismo , Agua
4.
Ukr Biochem J ; 87(1): 127-33, 2015.
Artículo en Ucraniano | MEDLINE | ID: mdl-26036139

RESUMEN

The involvement of Ca2+ into the signal transduction of exogenous brassinosteroids (BS) (24-epi-brassinolide-24-EBL and 24-epicastasterone-24-ECS) causing the increase of heat resistance of the cells of wheat (Triticum aestivum L.) coleoptiles was investigated using calcium chelator EGTA and inhibitor of phosphatidylinositol-specific phospholipase C--neomycin. Twenty-four-hour treatment of coleoptile segments with 10 nM solutions of 24-EBL and 24-ECS led to a transient increase in the generation of superoxide anion radical by cell surface and the subsequent activation of superoxide dismutase and catalase. Pretreatment of coleoptiles with EGTA and neomycin depressed to a considerable extent these effects and leveled the increase in heat resistance of wheat coleoptiles that were caused by BS. Possible mechanisms of involvement of calcium signaling into the formation of reactive oxygen species in plant cells and induction of heat resistance of plant cells by the action of exogenous BS have been discussed.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Brasinoesteroides/farmacología , Calcio/metabolismo , Colestanoles/farmacología , Cotiledón/efectos de los fármacos , Esteroides Heterocíclicos/farmacología , Triticum/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Catalasa/metabolismo , Cotiledón/metabolismo , Ácido Egtácico/farmacología , Inhibidores Enzimáticos/farmacología , Glicosilfosfatidilinositol Diacilglicerol-Liasa/antagonistas & inhibidores , Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Calor , Neomicina/farmacología , Proteínas de Plantas/metabolismo , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo , Triticum/metabolismo
5.
PLoS Pathog ; 9(8): e1003566, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990786

RESUMEN

In Trypanosoma brucei, glycosylphosphatidylinositol phospholipase C (GPI-PLC) is a virulence factor that releases variant surface glycoprotein (VSG) from dying cells. In live cells, GPI-PLC is localised to the plasma membrane where it is concentrated on the flagellar membrane, so activity or access must be tightly regulated as very little VSG is shed. Little is known about regulation except that acylation within a short internal motif containing three cysteines is necessary for GPI-PLC to access VSG in dying cells. Here, GPI-PLC mutants have been analysed both for subcellular localisation and for the ability to release VSG from dying cells. Two sequence determinants necessary for concentration on the flagellar membrane were identified. First, all three cysteines are required for full concentration on the flagellar membrane. Mutants with two cysteines localise predominantly to the plasma membrane but lose some of their flagellar concentration, while mutants with one cysteine are mainly localised to membranes between the nucleus and flagellar pocket. Second, a proline residue close to the C-terminus, and distant from the acylated cysteines, is necessary for concentration on the flagellar membrane. The localisation of GPI-PLC to the plasma but not flagellar membrane is necessary for access to the VSG in dying cells. Cellular structures necessary for concentration on the flagellar membrane were identified by depletion of components. Disruption of the flagellar pocket collar caused loss of concentration whereas detachment of the flagellum from the cell body after disruption of the flagellar attachment zone did not. Thus, targeting to the flagellar membrane requires: a titratable level of acylation, a motif including a proline, and a functional flagellar pocket. These results provide an insight into how the segregation of flagellar membrane proteins from those present in the flagellar pocket and cell body membranes is achieved.


Asunto(s)
Membrana Celular/enzimología , Flagelos/enzimología , Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Oligosacáridos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/enzimología , Animales , Línea Celular , Membrana Celular/genética , Flagelos/genética , Glicosilfosfatidilinositol Diacilglicerol-Liasa/genética , Ratones , Ratones Noqueados , Mutación , Oligosacáridos/genética , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética
6.
PLoS One ; 6(10): e25843, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21998707

RESUMEN

The urokinase-type plasminogen activator receptor (uPAR), a glycosylphosphatidylinositol (GPI) anchored membrane protein, regulates urokinase (uPA) protease activity, chemotaxis, cell-cell interactions, and phagocytosis of apoptotic cells. uPAR expression is increased in cytokine or bacteria activated cell populations, including macrophages and monocytes. However, it is unclear if uPAR has direct involvement in the response of inflammatory cells, such as neutrophils and macrophages, to Toll like receptor (TLR) stimulation. In this study, we found that uPAR is required for optimal neutrophil activation after TLR2, but not TLR4 stimulation. We found that the expression of TNF-α and IL-6 induced by TLR2 engagement in uPAR-/- neutrophils was less than that in uPAR+/+ (WT) neutrophils. Pretreatment of neutrophils with PI-PLC, which cleaves GPI moieties, significantly decreased TLR2 induced expression of TNF-α in WT neutrophils, but demonstrated only marginal effects on TNF-α expression in PAM treated uPAR-/- neutrophils. IκB-α degradation and NF-κB activation were not different in uPAR-/- or WT neutrophils after TLR2 stimulation. However, uPAR is required for optimal p38 MAPK activation after TLR2 engagement. Consistent with the in vitro findings that uPAR modulates TLR2 engagement induced neutrophil activation, we found that pulmonary and systemic inflammation induced by TLR2, but not TLR4 stimulation is reduced in uPAR-/- mice compared to WT counterparts. Therefore, our data suggest that neutrophil associated uPAR could be a potential target for treating acute inflammation, sepsis, and organ injury related to severe bacterial and other microbial infections in which TLR2 engagement plays a major role.


Asunto(s)
Neutrófilos/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Activación Enzimática/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Lipopéptidos/metabolismo , Lipopéptidos/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Neutrófilos/efectos de los fármacos , Receptores del Activador de Plasminógeno Tipo Uroquinasa/deficiencia , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Receptor Toll-Like 4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
PLoS One ; 5(1): e8538, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20049089

RESUMEN

Small molecule regulation of cell function is an understudied area of trypanosomatid biology. In Trypanosoma brucei diacylglycerol (DAG) stimulates endocytosis of transferrin (Tf). However, it is not known whether other trypanosomatidae respond similarly to the lipid. Further, the biochemical pathways involved in DAG signaling to the endocytic system in T. brucei are unknown, as the parasite genome does not encode canonical DAG receptors (e.g. C1-domains). We established that DAG stimulates endocytosis of Tf in Leishmania major, and we evaluated possible effector enzymes in the pathway with multiple approaches. First, a heterologously expressed glycosylphosphatidylinositol phospholipase C (GPI-PLC) activated endocytosis of Tf 300% in L. major. Second, exogenous phorbol ester and DAGs promoted Tf endocytosis in L. major. In search of possible effectors of DAG signaling, we discovered a novel C1-like domain (i.e. C1_5) in trypanosomatids, and we identified protein Tyr kinases (PTKs) linked with C1_5 domains in T. brucei, T. cruzi, and L. major. Consequently, we hypothesized that trypanosome PTKs might be effector enzymes for DAG signaling. General uptake of Tf was reduced by inhibitors of either Ser/Thr or Tyr kinases. However, DAG-stimulated endocytosis of Tf was blocked only by an inhibitor of PTKs, in both T. brucei and L. major. We conclude that (i) DAG activates Tf endocytosis in L. major, and that (ii) PTKs are effectors of DAG-stimulated endocytosis of Tf in trypanosomatids. DAG-stimulated endocytosis of Tf may be a T. brucei adaptation to compete effectively with host cells for vertebrate Tf in blood, since DAG does not enhance endocytosis of Tf in human cells.


Asunto(s)
Diglicéridos/fisiología , Endocitosis , Proteínas Tirosina Quinasas/metabolismo , Transferrina/metabolismo , Trypanosoma/metabolismo , Secuencia de Aminoácidos , Animales , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Datos de Secuencia Molecular , Proteína Quinasa C/metabolismo , Proteínas Protozoarias/química , Homología de Secuencia de Aminoácido , Transducción de Señal , Acetato de Tetradecanoilforbol/farmacología , Trypanosoma/efectos de los fármacos , Trypanosoma/enzimología
8.
Exp Parasitol ; 125(3): 222-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20109448

RESUMEN

The protozoan parasite Trypanosoma brucei lives in the bloodstream of vertebrates or in a tsetse fly. Expression of a GPI-phospholipase C polypeptide (GPI-PLCp) in the parasite is restricted to the bloodstream form. Events controlling the amount of GPI-PLCp expressed during differentiation are not completely understood. Our metabolic "pulse-chase" analysis reveals that GPI-PLCp is stable in bloodstream form. However, during differentiation of bloodstream to insect stage (procyclic) T. brucei, translation GPI-PLC mRNA ceases within 8h of initiating transformation. GPI-PLCp is not lost precipitously from newly transformed procyclic trypanosomes. Nascent procyclics contain 400-fold more GPI-PLCp than established insect stage T. brucei. Reduction of GPI-PLCp in early-stage procyclics is linked to parasite replication. Sixteen cell divisions are required to reduce the amount of GPI-PLCp in newly differentiated procyclics to levels present in the established procyclic. GPI-PLCp is retained in strains of T. brucei that fail to replicate after differentiation of the bloodstream to the procyclic form. Thus, at least two factors control levels of GPI-PLCp during differentiation of bloodstream T. brucei; (i) repression of GPI-PLC mRNA translation, and (ii) sustained replication of newly transformed procyclic T. brucei. These studies illustrate the importance of repeated cell divisions in controlling the steady-state amount of GPI-PLCp during differentiation of the African trypanosome.


Asunto(s)
Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Línea Celular Transformada , Glicosilfosfatidilinositol Diacilglicerol-Liasa/genética , Ratones , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ratas , Transformación Genética , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/enzimología
9.
PLoS One ; 4(12): e8221, 2009 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-20011040

RESUMEN

BACKGROUND: A hallmark of the prion diseases is the conversion of the host-encoded cellular prion protein (PrP(C)) into a disease related, alternatively folded isoform (PrP(Sc)). The accumulation of PrP(Sc) within the brain is associated with synapse loss and ultimately neuronal death. Novel therapeutics are desperately required to treat neurodegenerative diseases including the prion diseases. PRINCIPAL FINDINGS: Treatment with glimepiride, a sulphonylurea approved for the treatment of diabetes mellitus, induced the release of PrP(C) from the surface of prion-infected neuronal cells. The cell surface is a site where PrP(C) molecules may be converted to PrP(Sc) and glimepiride treatment reduced PrP(Sc) formation in three prion infected neuronal cell lines (ScN2a, SMB and ScGT1 cells). Glimepiride also protected cortical and hippocampal neurones against the toxic effects of the prion-derived peptide PrP82-146. Glimepiride treatment significantly reduce both the amount of PrP82-146 that bound to neurones and PrP82-146 induced activation of cytoplasmic phospholipase A(2) (cPLA(2)) and the production of prostaglandin E(2) that is associated with neuronal injury in prion diseases. Our results are consistent with reports that glimepiride activates an endogenous glycosylphosphatidylinositol (GPI)-phospholipase C which reduced PrP(C) expression at the surface of neuronal cells. The effects of glimepiride were reproduced by treatment of cells with phosphatidylinositol-phospholipase C (PI-PLC) and were reversed by co-incubation with p-chloromercuriphenylsulphonate, an inhibitor of endogenous GPI-PLC. CONCLUSIONS: Collectively, these results indicate that glimepiride may be a novel treatment to reduce PrP(Sc) formation and neuronal damage in prion diseases.


Asunto(s)
Citoprotección/efectos de los fármacos , Neurotoxinas/toxicidad , Péptidos/toxicidad , Proteínas PrPC/metabolismo , Proteínas PrPSc/biosíntesis , Compuestos de Sulfonilurea/farmacología , 4-Cloromercuribencenosulfonato/farmacología , Animales , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Activación Enzimática/efectos de los fármacos , Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Fosfolipasas A2 Grupo IV/metabolismo , Humanos , Ratones , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/metabolismo , Unión Proteica/efectos de los fármacos
10.
PLoS Pathog ; 5(6): e1000468, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19503825

RESUMEN

Bloodstream forms of Trypanosoma brucei contain a glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) that cleaves the GPI-anchor of the variable surface glycoprotein (VSG). Its location in trypanosomes has been controversial. Here, using confocal microscopy and surface labelling techniques, we show that the GPI-PLC is located exclusively in a linear array on the outside of the flagellar membrane, close to the flagellar attachment zone, but does not co-localize with the flagellar attachment zone protein, FAZ1. Consequently, the GPI-PLC and the VSG occupy the same plasma membrane leaflet, which resolves the topological problem associated with the cleavage reaction if the VSG and the GPI-PLC were on opposite sides of the membrane. The exterior location requires the enzyme to be tightly regulated to prevent VSG release under basal conditions. During stimulated VSG release in intact cells, the GPI-PLC did not change location, suggesting that the release mechanism involves lateral diffusion of the VSG in the plane of the membrane to the fixed position of the GPI-PLC.


Asunto(s)
Membrana Celular/metabolismo , Flagelos/metabolismo , Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Trypanosoma brucei brucei/enzimología , Secuencia de Aminoácidos , Animales , Western Blotting , Detergentes/química , Glicosilfosfatidilinositol Diacilglicerol-Liasa/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Conejos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Temperatura , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
11.
Biochem J ; 417(3): 685-94, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18785878

RESUMEN

GPI-PLC (glycosylphosphatidylinositol-specific phospholipase C) is expressed in bloodstream-form Trypanosoma brucei, a protozoan that causes human African trypanosomiasis. Loss of genes encoding GPI-PLC reduces the virulence of a pleomorphic strain of the parasite, for reasons that are not clear. In the present paper, we report that GPI-PLC stimulates endocytosis of transferrin by 300-500%. Surprisingly, GPI-PLC is not detected at endosomes, suggesting that the enzyme does not interact directly with the endosomal machinery. We therefore hypothesized that a diffusible product of the GPI-PLC enzyme reaction [possibly DAG (diacylglycerol)] mediated the biological effects of the protein. Two sets of data support this assertion. First, a catalytically inactive Q81L mutant of GPI-PLC, expressed in a GPI-PLC-null background, had no effect on endocytosis, indicating that enzyme activity is essential for the protein to stimulate endocytosis. Secondly, the exogenous DAGs OAG (1-oleyl-2-acetyl-sn-glycerol) and DMG (dimyristoylglycerol) independently stimulated endocytosis of transferrin. Furthermore, the DAG mimic PMA, a phorbol ester, also activated endocytosis in T. brucei. DAG-stimulated endocytosis is a novel pathway in the trypanosome. We surmise that (i) GPI-PLC regulates transferrin endocytosis in T. brucei, (ii) GPI-PLC is a signalling enzyme, and (iii) DAG is a second messenger for GPI-PLC. We propose that regulation of endocytosis is a physiological function of GPI-PLC in bloodstream T. brucei.


Asunto(s)
Endocitosis/fisiología , Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Proteínas Protozoarias/metabolismo , Transferrina/metabolismo , Trypanosoma brucei brucei/enzimología , Animales , Diglicéridos/metabolismo , Glicosilfosfatidilinositol Diacilglicerol-Liasa/genética , Microscopía Fluorescente , Ésteres del Forbol/metabolismo , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/metabolismo
12.
Biochimie ; 91(3): 445-52, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19084045

RESUMEN

Alkaline phosphatase (ALP) exists as several isoenzymes and many isoforms present in tissues and serum. The objective of this study was to separate tissue ALP forms in rats and humans and characterise their properties. The materials for the investigation were intestinal, bone, and liver tissue of rats and commercially available human preparations of tissue ALP. Two methods of separation were used: high-performance liquid chromatography (HPLC) and agarose gel electrophoresis. Using HPLC in the rat tissues, two ALP isoforms in the intestine, one in the bone, and three in the liver were identified. In humans three intestinal, two bone, and one liver isoform were resolved. Electrophoresis showed two ALP activity bands in rat intestine, one wide band in the bone, and three bands in the liver. ALP of human tissues was visualised as a single wide band, with a different mobility observed for each organ. In both species the presence of a form with properties characteristic of the bone isoform of the tissue-nonspecific isoenzyme was observed in the intestine. HPLC offers a higher resolution than electrophoresis with respect to tissue ALP fractions in rats and in humans, but electrophoresis visualises high-molecular-mass insoluble enzyme forms.


Asunto(s)
Fosfatasa Alcalina/análisis , Cromatografía Líquida de Alta Presión/métodos , Electroforesis en Gel de Agar/métodos , Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Isoenzimas/análisis , Animales , Bacillus cereus/enzimología , Huesos/enzimología , Glicosilfosfatidilinositol Diacilglicerol-Liasa/farmacología , Calor , Humanos , Intestinos/enzimología , Cinética , Lectinas/farmacología , Hígado/enzimología , Masculino , Fenilalanina/farmacología , Ratas , Ratas Wistar , Urea/farmacología
13.
Eur J Pharmacol ; 597(1-3): 6-18, 2008 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-18789917

RESUMEN

Inhibition of lipolysis by palmitate, H2O2 and the anti-diabetic sulfonylurea drug, glimepiride, in isolated rat adipocytes has previously been shown to rely on the degradation of cyclic adenosine monophosphate by the phosphodiesterase, Gce1, and the 5'-nucleotidase, CD73. These glycosylphosphatidylinositol (GPI)-anchored proteins are translocated from plasma membrane lipid rafts to intracellular lipid droplets upon H2O2-induced activation of a GPI-specific phospholipase C (GPI-PLC) in response to palmitate and glimepiride in intact adipocytes and, as demonstrated here, in cell-free systems as well. The same agents are also known to stimulate the incorporation of fatty acids into triacylglycerol. Here the involvement of H2O2 production, GPI-PLC activation and translocation of Gce1 and CD73 in the agent-induced esterification and accompanying lipid droplet formation was tested in rat adipocytes using relevant inhibitors. The results demonstrate that upregulation of the esterification and accumulation of triacylglycerol by glimepiride depends on the sequential H2O2-induced GPI-PLC activation and GPI-protein translocation as does inhibition of lipolysis. In contrast, stimulation of the esterification and triacylglycerol accumulation by palmitate relies on insulin-independent tyrosine phosphorylation and thus differs from its anti-lipolytic mechanism. As expected, insulin regulates lipid metabolism via typical insulin signalling independent of H2O2 production, GPI-PLC activation and GPI-protein translocation, albeit these processes are moderately stimulated by insulin. In conclusion, triacylglycerol and lipid droplet formation in response to glimepiride and H2O2 may involve the hydrolysis of cyclic adenosine monophosphate by lipid droplet-associated Gce1 and CD73 which may regulate lipid droplet-associated triacylglycerol-synthesizing and hydrolyzing enzymes in coordinated and inverse fashion.


Asunto(s)
Adipocitos/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Hipoglucemiantes/farmacología , Lipólisis/efectos de los fármacos , Ácido Palmítico/metabolismo , Compuestos de Sulfonilurea/farmacología , 5'-Nucleotidasa/metabolismo , Adipocitos/enzimología , Adipocitos/metabolismo , Animales , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Esterificación , Glucosa/metabolismo , Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Hidrólisis , Insulina/metabolismo , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , NADPH Oxidasas/metabolismo , Fosforilación , Transporte de Proteínas , Ratas , Factores de Tiempo , Triglicéridos/metabolismo
14.
Br J Pharmacol ; 154(4): 901-13, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18454169

RESUMEN

BACKGROUND: The insulin-independent inhibition of lipolysis by palmitate, the anti-diabetic sulphonylurea glimepiride and H2O2 in rat adipocytes involves stimulation of the glycosylphosphatidylinositol (GPI)-specific phospholipase-C (GPI-PLC) and subsequent translocation of the GPI-anchored membrane ectoproteins (GPI-proteins), Gce1 and cluster of differentiation antigen (CD73), from specialized plasma membrane microdomains (DIGs) to cytosolic lipid droplets (LDs). This results in cAMP degradation at the LD surface and failure to activate hormone-sensitive lipase. Reactive oxygen species (ROS) may trigger this sequence of events in response to palmitate and glimepiride. EXPERIMENTAL APPROACH: The effects of various inhibitors of ROS production on the release of H2O2, GPI anchor cleavage and translocation of the photoaffinity-labelled or metabolically labelled Gce1 and CD73 from DIGs to LD and inhibition of lipolysis by different fatty acids and sulphonylureas were studied with primary rat adipocytes. KEY RESULTS: Glimepiride and palmitate induced the production of H2O2 via the plasma membrane NADPH oxidase and mitochondrial complexes I and III, respectively. Inhibition of ROS production was accompanied by the loss of (i) GPI-PLC activation, (ii) Gce1 and CD73 translocation and (iii) lipolysis inhibition in response to palmitate and glimepiride. Non-metabolizable fatty acids and the sulphonylurea drug tolbutamide were inactive. NADPH oxidase and GPI-PLC activities colocalized at DIGs were stimulated by glimepiride but not tolbutamide. CONCLUSIONS AND IMPLICATIONS: The data suggest that ROS mediate GPI-PLC activation at DIGs and subsequent GPI-protein translocation from DIGs to LD in adipocytes which leads to inhibition of lipolysis by palmitate and glimepiride. This insulin-independent anti-lipolytic mechanism may be engaged by future anti-diabetic drugs.


Asunto(s)
Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , 5'-Nucleotidasa/metabolismo , Adipocitos , Animales , AMP Cíclico/metabolismo , Ácidos Grasos/farmacología , Lipólisis/efectos de los fármacos , Microdominios de Membrana/metabolismo , NADPH Oxidasas/metabolismo , Transporte de Proteínas , Ratas , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Compuestos de Sulfonilurea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA