Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.619
Filtrar
1.
J Transl Med ; 22(1): 419, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702818

RESUMEN

BACKGROUND: Glioblastoma is an aggressive brain tumor linked to significant angiogenesis and poor prognosis. Anti-angiogenic therapies with vascular endothelial growth factor receptor 2 (VEGFR2) inhibition have been investigated as an alternative glioblastoma treatment. However, little is known about the effect of VEGFR2 blockade on glioblastoma cells per se. METHODS: VEGFR2 expression data in glioma patients were retrieved from the public database TCGA. VEGFR2 intervention was implemented by using its selective inhibitor Ki8751 or shRNA. Mitochondrial biogenesis of glioblastoma cells was assessed by immunofluorescence imaging, mass spectrometry, and western blot analysis. RESULTS: VEGFR2 expression was higher in glioma patients with higher malignancy (grade III and IV). VEGFR2 inhibition hampered glioblastoma cell proliferation and induced cell apoptosis. Mass spectrometry and immunofluorescence imaging showed that the anti-glioblastoma effects of VEGFR2 blockade involved mitochondrial biogenesis, as evidenced by the increases of mitochondrial protein expression, mitochondria mass, mitochondrial oxidative phosphorylation (OXPHOS), and reactive oxygen species (ROS) production, all of which play important roles in tumor cell apoptosis, growth inhibition, cell cycle arrest and cell senescence. Furthermore, VEGFR2 inhibition exaggerated mitochondrial biogenesis by decreased phosphorylation of AKT and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), which mobilized PGC1α into the nucleus, increased mitochondrial transcription factor A (TFAM) expression, and subsequently enhanced mitochondrial biogenesis. CONCLUSIONS: VEGFR2 blockade inhibits glioblastoma progression via AKT-PGC1α-TFAM-mitochondria biogenesis signaling cascade, suggesting that VEGFR2 intervention might bring additive therapeutic values to anti-glioblastoma therapy.


Asunto(s)
Apoptosis , Proliferación Celular , Glioblastoma , Mitocondrias , Biogénesis de Organelos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proliferación Celular/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
2.
J Mol Neurosci ; 74(2): 52, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724832

RESUMEN

Treatment of glioblastoma multiforme (GBM) remains challenging. Unraveling the orchestration of glutamine metabolism may provide a novel viewpoint on GBM therapy. The study presented a full and comprehensive comprehending of the glutamine metabolism atlas and heterogeneity in GBM for facilitating the development of a more effective therapeutic choice. Transcriptome data from large GBM cohorts were integrated in this study. A glutamine metabolism-based classification was established through consensus clustering approach, and a classifier by LASSO analysis was defined for differentiating the classification. Prognosis, signaling pathway activity, tumor microenvironment, and responses to immune checkpoint blockade (ICB) and small molecular drugs were characterized in each cluster. A combinational therapy of glutaminase inhibitor CB839 with dihydroartemisinin (DHA) was proposed, and the influence on glutamine metabolism, apoptosis, reactive oxygen species (ROS), and migration was measured in U251 and U373 cells. We discovered that GBM presented heterogeneous glutamine metabolism-based clusters, with unique survival outcomes, activity of signaling pathways, tumor microenvironment, and responses to ICB and small molecular compounds. In addition, the classifier could accurately differentiate the two clusters. Strikingly, the combinational therapy of CB839 with DHA synergistically attenuated glutamine metabolism, triggered apoptosis and ROS accumulation, and impaired migrative capacity in GBM cells, demonstrating the excellent preclinical efficacy. Altogether, our findings unveil the glutamine metabolism heterogeneity in GBM and propose an innovative combination therapy of CB839 with DHA for this malignant disease.


Asunto(s)
Artemisininas , Neoplasias Encefálicas , Glioblastoma , Glutamina , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Humanos , Glutamina/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Artemisininas/uso terapéutico , Artemisininas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Glutaminasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Microambiente Tumoral , Apoptosis , Tiadiazoles/farmacología , Tiadiazoles/uso terapéutico , Movimiento Celular , Bencenoacetamidas/farmacología , Bencenoacetamidas/uso terapéutico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología
3.
Int J Biol Sci ; 20(7): 2440-2453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725860

RESUMEN

Glioblastoma is the prevailing and highly malignant form of primary brain neoplasm with poor prognosis. Exosomes derived from glioblastoma cells act a vital role in malignant progression via regulating tumor microenvironment (TME), exosomal tetraspanin protein family members (TSPANs) are important actors of cell communication in TME. Among all the TSPANs, TSPAN6 exhibited predominantly higher expression levels in comparison to normal tissues. Meanwhile, glioblastoma patients with high level of TSPAN6 had shorter overall survival compared with low level of TSPAN6. Furthermore, TSPAN6 promoted the malignant progression of glioblastoma via promoting the proliferation and metastatic potential of glioblastoma cells. More interestingly, TSPAN6 overexpression in glioblastoma cells promoted the migration of vascular endothelial cell, and exosome secretion inhibitor reversed the migrative ability of vascular endothelial cells enhanced by TSPAN6 overexpressing glioblastoma cells, indicating that TSPAN6 might reinforce angiogenesis via exosomes in TME. Mechanistically, TSPAN6 enhanced the malignant progression of glioblastoma by interacting with CDK5RAP3 and regulating STAT3 signaling pathway. In addition, TSPAN6 overexpression in glioblastoma cells enhanced angiogenesis via regulating TME and STAT3 signaling pathway. Collectively, TSPAN6 has the potential to serve as both a therapeutic target and a prognostic biomarker for the treatment of glioblastoma.


Asunto(s)
Glioblastoma , Factor de Transcripción STAT3 , Transducción de Señal , Tetraspaninas , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Humanos , Factor de Transcripción STAT3/metabolismo , Tetraspaninas/metabolismo , Tetraspaninas/genética , Línea Celular Tumoral , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Animales , Proliferación Celular/genética , Exosomas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Movimiento Celular/genética , Progresión de la Enfermedad , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones
4.
Front Immunol ; 15: 1388769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726003

RESUMEN

Background: Newer 3D culturing approaches are a promising way to better mimic the in vivo tumor microenvironment and to study the interactions between the heterogeneous cell populations of glioblastoma multiforme. Like many other tumors, glioblastoma uses extracellular vesicles as an intercellular communication system to prepare surrounding tissue for invasive tumor growth. However, little is known about the effects of 3D culture on extracellular vesicles. The aim of this study was to comprehensively characterize extracellular vesicles in 3D organoid models and compare them to conventional 2D cell culture systems. Methods: Primary glioblastoma cells were cultured as 2D and 3D organoid models. Extracellular vesicles were obtained by precipitation and immunoaffinity, with the latter allowing targeted isolation of the CD9/CD63/CD81 vesicle subpopulation. Comprehensive vesicle characterization was performed and miRNA expression profiles were generated by smallRNA-sequencing. In silico analysis of differentially regulated miRNAs was performed to identify mRNA targets and corresponding signaling pathways. The tumor cell media and extracellular vesicle proteome were analyzed by high-resolution mass spectrometry. Results: We observed an increased concentration of extracellular vesicles in 3D organoid cultures. Differential gene expression analysis further revealed the regulation of twelve miRNAs in 3D tumor organoid cultures (with nine miRNAs down and three miRNAs upregulated). MiR-23a-3p, known to be involved in glioblastoma invasion, was significantly increased in 3D. MiR-7-5p, which counteracts glioblastoma malignancy, was significantly decreased. Moreover, we identified four miRNAs (miR-323a-3p, miR-382-5p, miR-370-3p, miR-134-5p) located within the DLK1-DIO3 domain, a cancer-associated genomic region, suggesting a possible importance of this region in glioblastoma progression. Overrepresentation analysis identified alterations of extracellular vesicle cargo in 3D organoids, including representation of several miRNA targets and proteins primarily implicated in the immune response. Conclusion: Our results show that 3D glioblastoma organoid models secrete extracellular vesicles with an altered cargo compared to corresponding conventional 2D cultures. Extracellular vesicles from 3D cultures were found to contain signaling molecules associated with the immune regulatory signaling pathways and as such could potentially change the surrounding microenvironment towards tumor progression and immunosuppressive conditions. These findings suggest the use of 3D glioblastoma models for further clinical biomarker studies as well as investigation of new therapeutic options.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , MicroARNs , Organoides , Microambiente Tumoral , Humanos , Glioblastoma/inmunología , Glioblastoma/patología , Glioblastoma/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Organoides/inmunología , MicroARNs/genética , Microambiente Tumoral/inmunología , Transducción de Señal , Células Tumorales Cultivadas , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Técnicas de Cultivo Tridimensional de Células/métodos
5.
Cancer Rep (Hoboken) ; 7(5): e2051, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702989

RESUMEN

BACKGROUND: Glioblastomas are characterized by aggressive behavior. Surgery, radiotherapy, and alkylating agents, including temozolomide are the most common treatment options for glioblastoma. Often, conventional therapies fail to treat these tumors since they develop drug resistance. There is a need for newer agents to combat this deadly tumor. Natural products such as gedunin have shown efficacy in several human diseases. A comprehensive study of gedunin, an heat shock protein (HSP)90 inhibitor, has not been thoroughly investigated in glioblastoma cell lines with different genetic modifications. AIMS: A key objective of this study was to determine how gedunin affects the biological and signaling mechanisms in glioblastoma cells, and to determine how those mechanisms affect the proliferation and apoptosis of glioblastoma cells. METHODS: The viability potentials of gedunin were tested using MTT, cell counts, and wound healing assays. Gedunin's effects on glioma cells were further validated using LDH and colony formation assays. In addition, we investigated the survival and apoptotic molecular signaling targets perturbed by gedunin using Western blot analysis and flow cytometry. RESULTS: Our results show that there was a reduction in cell viability and inhibition of wound healing in the cells tested. Western blot analysis of the gene expression data revealed genes such as EGFR and mTOR/Akt/NF kappa B to be associated with gedunin sensitivity. Gedunin treatment induced apoptosis by cleaving poly ADP-ribose polymerase, activating caspases, and downregulating BCL-xL. Based on these results, gedunin suppressed cell growth and HSP client proteins, resulting in apoptosis in glioblastoma cell lines. CONCLUSION: Our data provide in vitro support for the anticancer activity of gedunin in glioma cells by downregulating cancer survival proteins.


Asunto(s)
Apoptosis , Proliferación Celular , Glioblastoma , Limoninas , Humanos , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología
6.
Front Immunol ; 15: 1342977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698847

RESUMEN

Introduction: Aberrant reactive oxygen species (ROS) production is one of the hallmarks of cancer. During their growth and dissemination, cancer cells control redox signaling to support protumorigenic pathways. As a consequence, cancer cells become reliant on major antioxidant systems to maintain a balanced redox tone, while avoiding excessive oxidative stress and cell death. This concept appears especially relevant in the context of glioblastoma multiforme (GBM), the most aggressive form of brain tumor characterized by significant heterogeneity, which contributes to treatment resistance and tumor recurrence. From this viewpoint, this study aims to investigate whether gene regulatory networks can effectively capture the diverse redox states associated with the primary phenotypes of GBM. Methods: In this study, we utilized publicly available GBM datasets along with proprietary bulk sequencing data. Employing computational analysis and bioinformatics tools, we stratified GBM based on their antioxidant capacities and evaluated the distinctive functionalities and prognostic values of distinct transcriptional networks in silico. Results: We established three distinct transcriptional co-expression networks and signatures (termed clusters C1, C2, and C3) with distinct antioxidant potential in GBM cancer cells. Functional analysis of each cluster revealed that C1 exhibits strong antioxidant properties, C2 is marked with a discrepant inflammatory trait and C3 was identified as the cluster with the weakest antioxidant capacity. Intriguingly, C2 exhibited a strong correlation with the highly aggressive mesenchymal subtype of GBM. Furthermore, this cluster holds substantial prognostic importance: patients with higher gene set variation analysis (GSVA) scores of the C2 signature exhibited adverse outcomes in overall and progression-free survival. Conclusion: In summary, we provide a set of transcriptional signatures that unveil the antioxidant potential of GBM, offering a promising prognostic application and a guide for therapeutic strategies in GBM therapy.


Asunto(s)
Antioxidantes , Neoplasias Encefálicas , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioblastoma , Oxidación-Reducción , Fenotipo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Antioxidantes/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Biología Computacional/métodos , Pronóstico , Perfilación de la Expresión Génica , Transcriptoma
7.
Med Oncol ; 41(6): 140, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713310

RESUMEN

Glioblastoma (GBM) is an extremely aggressive primary brain tumor with poor prognosis, short survival time post-diagnosis and high recurrence. Currently, no cure for GBM exists. The identification of an effective therapeutic modality for GBM remains a high priority amongst medical professionals and researches. In recent studies, inhalant cannabidiol (CBD) has demonstrated promise in effectively inhibiting GBM tumor growth. However, exactly how CBD treatment affects the physiology of these tumor cells remains unclear. Stress granules (SG) (a sub-class of biomolecular condensates (BMC)) are dynamic, membrane-less intracellular microstructures which contain proteins and nucleic acids. The formation and signaling of SGs and BMCs plays a significant role in regulating malignancies. This study investigates whether inhaled CBD may play an intervening role towards SGs in GBM tumor cells. Integrated bioinformatics approaches were preformed to gain further insights. This includes use of Immunohistochemistry and flow cytometry to measure SGs, as well as expression and phosphorylation of eukaryotic initiation factor-2α (eIF2α). The findings of this study reveal that CBD receptors (and co-regulated genes) have the potential to play an important biological role in the formation of BMCs within GBM. In this experiment, CBD treatment significantly increased the volume of TIAR-1. This increase directly correlated with elevation in both eIF2α expression and p-eIF2α in CBD treated tissues in comparison to the placebo group (p < 0.05). These results suggest that inhalant CBD significantly up-regulated SGs in GBM, and thus support a theory of targeting BMCs as a potential therapeutic substrate for treating GBM.


Asunto(s)
Neoplasias Encefálicas , Cannabidiol , Glioblastoma , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Cannabidiol/farmacología , Humanos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Gránulos de Estrés/metabolismo , Gránulos de Estrés/efectos de los fármacos , Línea Celular Tumoral , Factor 2 Eucariótico de Iniciación/metabolismo
9.
Sci Rep ; 14(1): 10692, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724609

RESUMEN

Glioblastoma multiforme (GBM), the most aggressive form of primary brain tumor, poses a considerable challenge in neuro-oncology. Despite advancements in therapeutic approaches, the prognosis for GBM patients remains bleak, primarily attributed to its inherent resistance to conventional treatments and a high recurrence rate. The primary goal of this study was to acquire molecular insights into GBM by constructing a gene co-expression network, aiming to identify and predict key genes and signaling pathways associated with this challenging condition. To investigate differentially expressed genes between various grades of Glioblastoma (GBM), we employed Weighted Gene Co-expression Network Analysis (WGCNA) methodology. Through this approach, we were able to identify modules with specific expression patterns in GBM. Next, genes from these modules were performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using ClusterProfiler package. Our findings revealed a negative correlation between biological processes associated with neuronal development and functioning and GBM. Conversely, the processes related to the cell cycle, glomerular development, and ECM-receptor interaction exhibited a positive correlation with GBM. Subsequently, hub genes, including SYP, TYROBP, and ANXA5, were identified. This study offers a comprehensive overview of the existing research landscape on GBM, underscoring the challenges encountered by clinicians and researchers in devising effective therapeutic strategies.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Ontología de Genes , Biología Computacional/métodos
10.
J Exp Clin Cancer Res ; 43(1): 139, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725030

RESUMEN

BACKGROUND: LncRNAs regulate tumorigenesis and development in a variety of cancers. We substantiate for the first time that LINC00606 is considerably expressed in glioblastoma (GBM) patient specimens and is linked with adverse prognosis. This suggests that LINC00606 may have the potential to regulate glioma genesis and progression, and that the biological functions and molecular mechanisms of LINC00606 in GBM remain largely unknown. METHODS: The expression of LINC00606 and ATP11B in glioma and normal brain tissues was evaluated by qPCR, and the biological functions of the LINC00606/miR-486-3p/TCF12/ATP11B axis in GBM were verified through a series of in vitro and in vivo experiments. The molecular mechanism of LINC00606 was elucidated by immunoblotting, FISH, RNA pulldown, CHIP-qPCR, and a dual-luciferase reporter assay. RESULTS: We demonstrated that LINC00606 promotes glioma cell proliferation, clonal expansion and migration, while reducing apoptosis levels. Mechanistically, on the one hand, LINC00606 can sponge miR-486-3p; the target gene TCF12 of miR-486-3p affects the transcriptional initiation of LINC00606, PTEN and KLLN. On the other hand, it can also regulate the PI3K/AKT signaling pathway to mediate glioma cell proliferation, migration and apoptosis by binding to ATP11B protein. CONCLUSIONS: Overall, the LINC00606/miR-486-3p/TCF12/ATP11B axis is involved in the regulation of GBM progression and plays a role in tumor regulation at transcriptional and post-transcriptional levels primarily through LINC00606 sponging miR-486-3p and targeted binding to ATP11B. Therefore, our research on the regulatory network LINC00606 could be a novel therapeutic strategy for the treatment of GBM.


Asunto(s)
Glioblastoma , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Animales , Ratones , Progresión de la Enfermedad , Línea Celular Tumoral , Proliferación Celular , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Ratones Desnudos , Apoptosis
11.
Cells ; 13(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38727288

RESUMEN

Glioblastoma (GBM) is a devastating brain cancer for which new effective therapies are urgently needed. GBM, after an initial response to current treatment regimens, develops therapeutic resistance, leading to rapid patient demise. Cancer cells exhibit an inherent elevation of endoplasmic reticulum (ER) stress due to uncontrolled growth and an unfavorable microenvironment, including hypoxia and nutrient deprivation. Cancer cells utilize the unfolded protein response (UPR) to maintain ER homeostasis, and failure of this response promotes cell death. In this study, as integrins are upregulated in cancer, we have evaluated the therapeutic potential of individually targeting all αß1 integrin subunits using RNA interference. We found that GBM cells are uniquely susceptible to silencing of integrin α3. Knockdown of α3-induced proapoptotic markers such as PARP cleavage and caspase 3 and 8 activation. Remarkably, we discovered a non-canonical function for α3 in mediating the maturation of integrin ß1. In its absence, generation of full length ß1 was reduced, immature ß1 accumulated, and the cells underwent elevated ER stress with upregulation of death receptor 5 (DR5) expression. Targeting α3 sensitized TRAIL-resistant GBM cancer cells to TRAIL-mediated apoptosis and led to growth inhibition. Our findings offer key new insights into integrin α3's role in GBM survival via the regulation of ER homeostasis and its value as a therapeutic target.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Glioblastoma , Integrina alfa3 , Integrina beta1 , Ligando Inductor de Apoptosis Relacionado con TNF , Humanos , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Apoptosis/genética , Línea Celular Tumoral , Integrina beta1/metabolismo , Integrina beta1/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Integrina alfa3/metabolismo , Integrina alfa3/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética
12.
Cells ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727302

RESUMEN

We have previously shown that the transmembrane protein ODZ1 promotes cytoskeletal remodeling of glioblastoma (GBM) cells and invasion of the surrounding parenchyma through the activation of a RhoA-ROCK pathway. We also described that GBM cells can control the expression of ODZ1 through transcriptional mechanisms triggered by the binding of IL-6 to its receptor and a hypoxic environment. Epidermal growth factor (EGF) plays a key role in the invasive capacity of GBM. However, the molecular mechanisms that enable tumor cells to acquire the morphological changes to migrate out from the tumor core have not been fully characterized. Here, we show that EGF is able to induce the expression of ODZ1 in primary GBM cells. We analyzed the levels of the EGF receptor (EGFR) in 20 GBM primary cell lines and found expression in 19 of them by flow cytometry. We selected two cell lines that do or do not express the EGFR and found that EGFR-expressing cells responded to the EGF ligand by increasing ODZ1 at the mRNA and protein levels. Moreover, blockade of EGF-EGFR binding by Cetuximab, inhibition of the p38 MAPK pathway, or Additionally, the siRNA-mediated knockdown of MAPK11 (p38ß MAPK) reduced the induction of ODZ1 in response to EGF. Overall, we show that EGF may activate an EGFR-mediated signaling pathway through p38ß MAPK, to upregulate the invasion factor ODZ1, which may initiate morphological changes for tumor cells to invade the surrounding parenchyma. These data identify a new candidate of the EGF-EGFR pathway for novel therapeutic approaches.


Asunto(s)
Factor de Crecimiento Epidérmico , Receptores ErbB , Glioblastoma , Regulación hacia Arriba , Humanos , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Receptores ErbB/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/metabolismo , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Invasividad Neoplásica
13.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189105, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701938

RESUMEN

The present study explores the complex roles of High Mobility Group Box 1 (HMGB1) in the context of cancer development, emphasizing glioblastoma (GBM) and other central nervous system (CNS) cancers. HMGB1, primarily known for its involvement in inflammation and angiogenesis, emerges as a multifaceted player in the tumorigenesis of GBM. The overexpression of HMGB1 correlates with glioma malignancy, influencing key pathways like RAGE/MEK/ERK and RAGE/Rac1. Additionally, HMGB1 secretion is linked to the maintenance of glioma stem cells (GSCs) and contributes to the tumor microenvironment's (TME) vascular leakiness. Henceforth, our review discusses the bidirectional impact of HMGB1, acting as both a promoter of tumor progression and a mediator of anti-tumor immune responses. Notably, HMGB1 exhibits tumor-suppressive roles by inducing apoptosis, limiting cellular proliferation, and enhancing the sensitivity of GBM to therapeutic interventions. This dualistic nature of HMGB1 calls for a nuanced understanding of its implications in GBM pathogenesis, offering potential avenues for more effective and personalized treatment strategies. The findings underscore the need to explore HMGB1 as a prognostic marker, therapeutic target, and a promising tool for stimulating anti-tumor immunity in GBM.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Glioblastoma , Proteína HMGB1 , Microambiente Tumoral , Humanos , Proteína HMGB1/metabolismo , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/inmunología , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Animales , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Proliferación Celular
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167220, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718847

RESUMEN

Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma.


Asunto(s)
Aminoácidos de Cadena Ramificada , Apoptosis , GTP Fosfohidrolasas , Glioblastoma , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Glioblastoma/metabolismo , Glioblastoma/patología , GTP Fosfohidrolasas/metabolismo , Animales , Aminoácidos de Cadena Ramificada/metabolismo , Línea Celular Tumoral , Ratones , Proteínas Mitocondriales/metabolismo , Ubiquitina/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Ubiquitinación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
15.
Sci Rep ; 14(1): 11418, 2024 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-38763954

RESUMEN

Numerous studies have highlighted the pivotal role of mitochondria-related genes (MRGs) in the initiation and progression of glioblastoma (GBM). However, the specific contributions of MRGs coding proteins to GBM pathology remain incompletely elucidated. The identification of prognostic MRGs in GBM holds promise for the development of personalized targeted therapies and the enhancement of patient prognosis. We combined differential expression with univariate Cox regression analysis to screen prognosis-associated MRGs in GBM. Based on the nine MRGs, the hazard ratio model was conducted using a multivariate Cox regression algorithm. SHC-related survival, pathway, and immune analyses in GBM cohorts were obtained from the Biomarker Exploration of the Solid Tumor database. The proliferation and migration of U87 cells were measured by CCK-8 and transwell assay. Apoptosis in U87 cells was evaluated using flow cytometry. Confocal microscopy was employed to measure mitochondrial reactive oxygen species (ROS) levels and morphology. The expression levels of SHC1 and other relevant proteins were examined via western blotting. We screened 15 prognosis-associated MRGs and constructed a 9 MRGs-based model. Validation of the model's risk score confirmed its efficacy in predicting the prognosis of patients with GBM. Furthermore, analysis revealed that SHC1, a constituent MRG of the prognostic model, was upregulated and implicated in the progression, migration, and immune infiltration of GBM. In vitro experiments elucidated that p66Shc, the longest isoform of SHC1, modulates mitochondrial ROS production and morphology, consequently promoting the proliferation and migration of U87 cells. The 9 MRGs-based prognostic model could predict the prognosis of GBM. SHC1 was upregulated and correlated with the prognosis of patients by involvement in immune infiltration. Furthermore, in vitro experiments demonstrated that p66Shc promotes U87 cell proliferation and migration by mediating mitochondrial ROS production. Thus, p66Shc may serve as a promising biomarker and therapeutic target for GBM.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Mitocondrias , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Pronóstico , Línea Celular Tumoral , Mitocondrias/metabolismo , Mitocondrias/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Especies Reactivas de Oxígeno/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Movimiento Celular/genética , Apoptosis/genética , Genes Mitocondriales , Femenino , Masculino
16.
Sci Adv ; 10(20): eadj3301, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758780

RESUMEN

Myeloid cells are highly prevalent in glioblastoma (GBM), existing in a spectrum of phenotypic and activation states. We now have limited knowledge of the tumor microenvironment (TME) determinants that influence the localization and the functions of the diverse myeloid cell populations in GBM. Here, we have utilized orthogonal imaging mass cytometry with single-cell and spatial transcriptomic approaches to identify and map the various myeloid populations in the human GBM tumor microenvironment (TME). Our results show that different myeloid populations have distinct and reproducible compartmentalization patterns in the GBM TME that is driven by tissue hypoxia, regional chemokine signaling, and varied homotypic and heterotypic cellular interactions. We subsequently identified specific tumor subregions in GBM, based on composition of identified myeloid cell populations, that were linked to patient survival. Our results provide insight into the spatial organization of myeloid cell subpopulations in GBM, and how this is predictive of clinical outcome.


Asunto(s)
Glioblastoma , Células Mieloides , Microambiente Tumoral , Glioblastoma/patología , Glioblastoma/metabolismo , Humanos , Células Mieloides/metabolismo , Células Mieloides/patología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Análisis de la Célula Individual , Hipoxia/metabolismo , Perfilación de la Expresión Génica
17.
Immunity ; 57(5): 1105-1123.e8, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38703775

RESUMEN

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.


Asunto(s)
Glioblastoma , Glucosa , Histonas , Macrófagos , Glioblastoma/inmunología , Glioblastoma/metabolismo , Glioblastoma/patología , Animales , Histonas/metabolismo , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Glucosa/metabolismo , Humanos , Línea Celular Tumoral , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Interleucina-10/metabolismo , Glucólisis , Microglía/metabolismo , Microglía/inmunología , Ratones Endogámicos C57BL , Linfocitos T/inmunología , Linfocitos T/metabolismo , Tolerancia Inmunológica
18.
Cell Death Dis ; 15(5): 338, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744809

RESUMEN

Epitranscriptomic RNA modifications are crucial for the maintenance of glioma stem cells (GSCs), the most malignant cells in glioblastoma (GBM). 3-methylcytosine (m3C) is a new epitranscriptomic mark on RNAs and METTL8 represents an m3C writer that is dysregulated in cancer. Although METTL8 has an established function in mitochondrial tRNA (mt-tRNA) m3C modification, alternative splicing of METTL8 can also generate isoforms that localize to the nucleolus where they may regulate R-loop formation. The molecular basis for METTL8 dysregulation in GBM, and which METTL8 isoform(s) may influence GBM cell fate and malignancy remain elusive. Here, we investigated the role of METTL8 in regulating GBM stemness and tumorigenicity. In GSC, METTL8 is exclusively localized to the mitochondrial matrix where it installs m3C on mt-tRNAThr/Ser(UCN) for mitochondrial translation and respiration. High expression of METTL8 in GBM is attributed to histone variant H2AZ-mediated chromatin accessibility of HIF1α and portends inferior glioma patient outcome. METTL8 depletion impairs the ability of GSC to self-renew and differentiate, thus retarding tumor growth in an intracranial GBM xenograft model. Interestingly, METTL8 depletion decreases protein levels of HIF1α, which serves as a transcription factor for several receptor tyrosine kinase (RTK) genes, in GSC. Accordingly, METTL8 loss inactivates the RTK/Akt axis leading to heightened sensitivity to Akt inhibitor treatment. These mechanistic findings, along with the intimate link between METTL8 levels and the HIF1α/RTK/Akt axis in glioma patients, guided us to propose a HIF1α/Akt inhibitor combination which potently compromises GSC proliferation/self-renewal in vitro. Thus, METTL8 represents a new GBM dependency that is therapeutically targetable.


Asunto(s)
Glioblastoma , Subunidad alfa del Factor 1 Inducible por Hipoxia , Metiltransferasas , Células Madre Neoplásicas , Proteínas Proto-Oncogénicas c-akt , Humanos , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Animales , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Carcinogénesis/genética , Carcinogénesis/patología , Carcinogénesis/metabolismo , Transducción de Señal , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Mitocondrias/metabolismo , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Proliferación Celular
19.
J Transl Med ; 22(1): 441, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730481

RESUMEN

Microtubule targeting agents (MTAs) are commonly prescribed to treat cancers and predominantly kill cancer cells in mitosis. Significantly, some MTA-treated cancer cells escape death in mitosis, exit mitosis and become malignant polyploid giant cancer cells (PGCC). Considering the low number of cancer cells undergoing mitosis in tumor tissues, killing them in interphase may represent a favored antitumor approach. We discovered that ST-401, a mild inhibitor of microtubule (MT) assembly, preferentially kills cancer cells in interphase as opposed to mitosis, a cell death mechanism that avoids the development of PGCC. Single cell RNA sequencing identified mRNA transcripts regulated by ST-401, including mRNAs involved in ribosome and mitochondrial functions. Accordingly, ST-401 induces a transient integrated stress response, reduces energy metabolism, and promotes mitochondria fission. This cell response may underly death in interphase and avoid the development of PGCC. Considering that ST-401 is a brain-penetrant MTA, we validated these results in glioblastoma cell lines and found that ST-401 also reduces energy metabolism and promotes mitochondria fission in GBM sensitive lines. Thus, brain-penetrant mild inhibitors of MT assembly, such as ST-401, that induce death in interphase through a previously unanticipated antitumor mechanism represent a potentially transformative new class of therapeutics for the treatment of GBM.


Asunto(s)
Muerte Celular , Células Gigantes , Interfase , Microtúbulos , Poliploidía , Humanos , Interfase/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Línea Celular Tumoral , Muerte Celular/efectos de los fármacos , Células Gigantes/efectos de los fármacos , Células Gigantes/metabolismo , Células Gigantes/patología , Dinámicas Mitocondriales/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/genética , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
20.
J Nanobiotechnology ; 22(1): 264, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760771

RESUMEN

Glioblastoma (GBM) is the most aggressive primary brain tumor with low survival rate. Currently, temozolomide (TMZ) is the first-line drug for GBM treatment of which efficacy is unfortunately hindered by short circulation time and drug resistance associated to hypoxia and redox tumor microenvironment. Herein, a dual-targeted and multi-responsive nanoplatform is developed by loading TMZ in hollow manganese dioxide nanoparticles functionalized by polydopamine and targeting ligands RAP12 for photothermal and receptor-mediated dual-targeted delivery, respectively. After accumulated in GBM tumor site, the nanoplatform could respond to tumor microenvironment and simultaneously release manganese ion (Mn2+), oxygen (O2) and TMZ. The hypoxia alleviation via O2 production, the redox balance disruption via glutathione consumption and the reactive oxygen species generation, together would down-regulate the expression of O6-methylguanine-DNA methyltransferase under TMZ medication, which is considered as the key to drug resistance. These strategies could synergistically alleviate hypoxia microenvironment and overcome TMZ resistance, further enhancing the anti-tumor effect of chemotherapy/chemodynamic therapy against GBM. Additionally, the released Mn2+ could also be utilized as a magnetic resonance imaging contrast agent for monitoring treatment efficiency. Our study demonstrated that this nanoplatform provides an alternative approach to the challenges including low delivery efficiency and drug resistance of chemotherapeutics, which eventually appears to be a potential avenue in GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Resistencia a Antineoplásicos , Glioblastoma , Compuestos de Manganeso , Nanopartículas , Óxidos , Temozolomida , Microambiente Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Temozolomida/farmacología , Temozolomida/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Línea Celular Tumoral , Animales , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Nanopartículas/química , Neoplasias Encefálicas/tratamiento farmacológico , Óxidos/química , Óxidos/farmacología , Ratones , Sistemas de Liberación de Medicamentos/métodos , Indoles/química , Indoles/farmacología , Polímeros/química , Ratones Desnudos , Ratones Endogámicos BALB C , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA