Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.500
Filtrar
1.
J Hematol Oncol ; 17(1): 31, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720342

RESUMEN

Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.


Asunto(s)
Neoplasias Encefálicas , Células Supresoras de Origen Mieloide , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Células Supresoras de Origen Mieloide/inmunología , Glioma/inmunología , Glioma/terapia , Glioma/patología , Glioblastoma/inmunología , Glioblastoma/terapia , Glioblastoma/patología , Animales , Inmunoterapia/métodos , Linfocitos T Reguladores/inmunología
2.
Medicine (Baltimore) ; 103(19): e37999, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728502

RESUMEN

Glioma is a typical malignant tumor of the nervous system. It is of great significance to identify new biomarkers for accurate diagnosis of glioma. In this context, THOC6 has been studied as a highly diagnostic prognostic biomarker, which contributes to improve the dilemma in diagnosing gliomas. We used online databases and a variety of statistical methods, such as Wilcoxon rank sum test, Dunn test and t test. We analyzed the mutation, location and expression profile of THOC6, revealing the network of THOC6 interaction with disease. Wilcoxon rank sum test showed that THOC6 is highly expressed in gliomas (P < 0.001). Dunn test, Wilcoxon rank sum test and t test showed that THOC6 expression was correlated with multiple clinical features. Logistic regression analysis further confirmed that THOC6 gene expression was a categorical dependent variable related to clinical features of poor prognosis. Kaplan-Meier survival analysis showed that the overall survival (OS) of glioma patients with high expression of THOC6 was poor (P < 0.001). Both univariate (P < 0.001) and multivariate (P = 0.04) Cox analysis confirmed that THOC6 gene expression was an independent risk factor for OS in patients with glioma. ROC curve analysis showed that THOC6 had a high diagnostic value in glioma (AUC = 0.915). Based on this, we constructed a nomogram to predict patient survival. Enrichment analysis showed that THOC6 expression was associated with multiple signal pathways. Immuno-infiltration analysis showed that the expression of THOC6 in glioma was closely related to the infiltration level of multiple immune cells. Molecular docking results showed that THOC6 might be the target of anti-glioma drugs. THOC6 is a novel diagnostic factor and prognostic biomarker of glioma.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Biología Computacional , Glioma , Simulación del Acoplamiento Molecular , Humanos , Glioma/genética , Glioma/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biología Computacional/métodos , Pronóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Femenino , Masculino , Estimación de Kaplan-Meier
3.
Neurosurg Rev ; 47(1): 212, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727935

RESUMEN

We aimed to evaluate the relationship between imaging features, therapeutic responses (comparative cross-product and volumetric measurements), and overall survival (OS) in pediatric diffuse intrinsic pontine glioma (DIPG). A total of 134 patients (≤ 18 years) diagnosed with DIPG were included. Univariate and multivariate analyses were performed to evaluate correlations of clinical and imaging features and therapeutic responses with OS. The correlation between cross-product (CP) and volume thresholds in partial response (PR) was evaluated by linear regression. The log-rank test was used to compare OS patients with discordant therapeutic response classifications and those with concordant classifications. In univariate analysis, characteristics related to worse OS included lower Karnofsky, larger extrapontine extension, ring-enhancement, necrosis, non-PR, and increased ring enhancement post-radiotherapy. In the multivariate analysis, Karnofsky, necrosis, extrapontine extension, and therapeutic response can predict OS. A 25% CP reduction (PR) correlated with a 32% volume reduction (R2 = 0.888). Eight patients had discordant therapeutic response classifications according to CP (25%) and volume (32%). This eight patients' median survival time was 13.0 months, significantly higher than that in the non-PR group (8.9 months), in which responses were consistently classified as non-PR based on CP (25%) and volume (32%). We identified correlations between imaging features, therapeutic responses, and OS; this information is crucial for future clinical trials. Tumor volume may represent the DIPG growth pattern more accurately than CP measurement and can be used to evaluate therapeutic response.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Humanos , Neoplasias del Tronco Encefálico/diagnóstico por imagen , Neoplasias del Tronco Encefálico/terapia , Neoplasias del Tronco Encefálico/mortalidad , Neoplasias del Tronco Encefálico/patología , Masculino , Niño , Femenino , Adolescente , Glioma Pontino Intrínseco Difuso/terapia , Preescolar , Resultado del Tratamiento , Imagen por Resonancia Magnética , Lactante , Estudios Retrospectivos , Glioma/terapia , Glioma/patología , Glioma/diagnóstico por imagen , Glioma/mortalidad
4.
Sci Rep ; 14(1): 10722, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729956

RESUMEN

Application of optical coherence tomography (OCT) in neurosurgery mostly includes the discrimination between intact and malignant tissues aimed at the detection of brain tumor margins. For particular tissue types, the existing approaches demonstrate low performance, which stimulates the further research for their improvement. The analysis of speckle patterns of brain OCT images is proposed to be taken into account for the discrimination between human brain glioma tissue and intact cortex and white matter. The speckle properties provide additional information of tissue structure, which could help to increase the efficiency of tissue differentiation. The wavelet analysis of OCT speckle patterns was applied to extract the power of local brightness fluctuations in speckle and its standard deviation. The speckle properties are analysed together with attenuation ones using a set of ex vivo brain tissue samples, including glioma of different grades. Various combinations of these features are considered to perform linear discriminant analysis for tissue differentiation. The results reveal that it is reasonable to include the local brightness fluctuations at first two wavelet decomposition levels in the analysis of OCT brain images aimed at neurosurgical diagnosis.


Asunto(s)
Neoplasias Encefálicas , Glioma , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Glioma/diagnóstico por imagen , Glioma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Análisis de Ondículas
5.
Sci Rep ; 14(1): 10507, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714727

RESUMEN

Glioma, particularly glioblastomas (GBM), is incurable brain tumor. The most targeted receptor tyrosine kinase (RTKs) drugs did not bring benefit to GBM patients. The mechanism of glioma growth continues to be explored to find more effective treatment. Here, we reported that Ser/Thr protein kinase YANK2 (yet another kinase 2) is upregulated in glioma tissues and promotes the growth and proliferation of glioma in vitro and in vivo. Further, we confirmed that oncogene Fyn directly activated YANK2 through phosphorylation its Y110, and Fyn-mediated YANK2 phosphorylation at Y110 site promotes glioma growth by increasing its stability. Finally, YANK2 was proved to be a novel upstream kinase of p70S6K and promotes glioma growth by directly phosphorylating p70S6K at T389. Taken together, we found a new mTOR-independent p70S6K activation pathway, Fyn-YANK2-p70S6K, which promotes glioma growth, and YANK2 is a potential oncogene and serves as a novel therapeutic target for glioma.


Asunto(s)
Proliferación Celular , Glioma , Proteínas Proto-Oncogénicas c-fyn , Proteínas Quinasas S6 Ribosómicas 70-kDa , Transducción de Señal , Serina-Treonina Quinasas TOR , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Humanos , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Proto-Oncogénicas c-fyn/genética , Serina-Treonina Quinasas TOR/metabolismo , Glioma/metabolismo , Glioma/patología , Glioma/genética , Animales , Línea Celular Tumoral , Fosforilación , Carcinogénesis/genética , Carcinogénesis/metabolismo , Ratones , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica
6.
Acta Neuropathol Commun ; 12(1): 72, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711090

RESUMEN

The RE1-silencing transcription factor (REST) acts either as a repressor or activator of transcription depending on the genomic and cellular context. REST is a key player in brain cell differentiation by inducing chromatin modifications, including DNA methylation, in a proximity of its binding sites. Its dysfunction may contribute to oncogenesis. Mutations in IDH1/2 significantly change the epigenome contributing to blockade of cell differentiation and glioma development. We aimed at defining how REST modulates gene activation and repression in the context of the IDH mutation-related phenotype in gliomas. We studied the effects of REST knockdown, genome wide occurrence of REST binding sites, and DNA methylation of REST motifs in IDH wild type and IDH mutant gliomas. We found that REST target genes, REST binding patterns, and TF motif occurrence proximal to REST binding sites differed in IDH wild-type and mutant gliomas. Among differentially expressed REST targets were genes involved in glial cell differentiation and extracellular matrix organization, some of which were differentially methylated at promoters or gene bodies. REST knockdown differently impacted invasion of the parental or IDH1 mutant glioma cells. The canonical REST-repressed gene targets showed significant correlation with the GBM NPC-like cellular state. Interestingly, results of REST or KAISO silencing suggested the interplay between these TFs in regulation of REST-activated and repressed targets. The identified gene regulatory networks and putative REST cooperativity with other TFs, such as KAISO, show distinct REST target regulatory networks in IDH-WT and IDH-MUT gliomas, without concomitant DNA methylation changes. We conclude that REST could be an important therapeutic target in gliomas.


Asunto(s)
Neoplasias Encefálicas , Metilación de ADN , Redes Reguladoras de Genes , Glioma , Isocitrato Deshidrogenasa , Mutación , Isocitrato Deshidrogenasa/genética , Glioma/genética , Glioma/patología , Glioma/metabolismo , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Regulación Neoplásica de la Expresión Génica/genética
7.
Am Soc Clin Oncol Educ Book ; 44(3): e431450, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723228

RESUMEN

Low-grade gliomas present a formidable challenge in neuro-oncology because of the challenges imposed by the blood-brain barrier, predilection for the young adult population, and propensity for recurrence. In the past two decades, the systematic examination of genomic alterations in adults and children with primary brain tumors has uncovered profound new insights into the pathogenesis of these tumors, resulting in more accurate tumor classification and prognostication. It also identified several common recurrent genomic alterations that now define specific brain tumor subtypes and have provided a new opportunity for molecularly targeted therapeutic intervention. Adult-type diffuse low-grade gliomas are frequently associated with mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), resulting in production of 2-hydroxyglutarate, an oncometabolite important for tumorigenesis. Recent studies of IDH inhibitors have yielded promising results in patients at early stages of disease with prolonged progression-free survival (PFS) and delayed time to radiation and chemotherapy. Pediatric-type gliomas have high rates of alterations in BRAF, including BRAF V600E point mutations or BRAF-KIAA1549 rearrangements. BRAF inhibitors, often combined with MEK inhibitors, have resulted in radiographic response and improved PFS in these patients. This article reviews emerging approaches to the treatment of low-grade gliomas, including a discussion of targeted therapies and how they integrate with the current treatment modalities of surgical resection, chemotherapy, and radiation.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Clasificación del Tumor , Humanos , Glioma/genética , Glioma/terapia , Glioma/tratamiento farmacológico , Glioma/patología , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Manejo de la Enfermedad , Mutación , Terapia Molecular Dirigida
8.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38701414

RESUMEN

Gliomas are the most common type of malignant brain tumors, with glioblastoma multiforme (GBM) having a median survival of 15 months due to drug resistance and relapse. The treatment of gliomas relies on surgery, radiotherapy and chemotherapy. Only 12 anti-brain tumor chemotherapies (AntiBCs), mostly alkylating agents, have been approved so far. Glioma subtype-specific metabolic models were reconstructed to simulate metabolite exchanges, in silico knockouts and the prediction of drug and drug combinations for all three subtypes. The simulations were confronted with literature, high-throughput screenings (HTSs), xenograft and clinical trial data to validate the workflow and further prioritize the drug candidates. The three subtype models accurately displayed different degrees of dependencies toward glutamine and glutamate. Furthermore, 33 single drugs, mainly antimetabolites and TXNRD1-inhibitors, as well as 17 drug combinations were predicted as potential candidates for gliomas. Half of these drug candidates have been previously tested in HTSs. Half of the tested drug candidates reduce proliferation in cell lines and two-thirds in xenografts. Most combinations were predicted to be efficient for all three glioma types. However, eflornithine/rifamycin and cannabidiol/adapalene were predicted specifically for GBM and low-grade glioma, respectively. Most drug candidates had comparable efficiency in preclinical tests, cerebrospinal fluid bioavailability and mode-of-action to AntiBCs. However, fotemustine and valganciclovir alone and eflornithine and celecoxib in combination with AntiBCs improved the survival compared to AntiBCs in two-arms, phase I/II and higher glioma clinical trials. Our work highlights the potential of metabolic modeling in advancing glioma drug discovery, which accurately predicted metabolic vulnerabilities, repurposable drugs and combinations for the glioma subtypes.


Asunto(s)
Glioma , Humanos , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Cannabidiol/uso terapéutico , Cannabidiol/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Animales , Modelos Biológicos , Línea Celular Tumoral , Compuestos Organofosforados/uso terapéutico , Compuestos Organofosforados/farmacología
9.
Clinics (Sao Paulo) ; 79: 100367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692010

RESUMEN

OBJECTIVE: This study investigated the relationship between PDZK1 expression and Dynamic Contrast-Enhanced MRI (DCE-MRI) perfusion parameters in High-Grade Glioma (HGG). METHODS: Preoperative DCE-MRI scanning was performed on 80 patients with HGG to obtain DCE perfusion transfer coefficient (Ktrans), vascular plasma volume fraction (vp), extracellular volume fraction (ve), and reverse transfer constant (kep). PDZK1 in HGG patients was detected, and its correlation with DCE-MRI perfusion parameters was assessed by the Pearson method. An analysis of Cox regression was performed to determine the risk factors affecting survival, while Kaplan-Meier and log-rank tests to evaluate PDZK1's prognostic significance, and ROC curve analysis to assess its diagnostic value. RESULTS: PDZK1 was upregulated in HGG patients and predicted poor overall survival and progression-free survival. Moreover, PDZK1 expression distinguished grade III from grade IV HGG. PDZK1 expression was positively correlated with Ktrans 90, and ve_90, and negatively correlated with kep_max, and kep_90. CONCLUSION: PDZK1 is upregulated in HGG, predicts poor survival, and differentiates tumor grading in HGG patients. PDZK1 expression is correlated with DCE-MRI perfusion parameters.


Asunto(s)
Neoplasias Encefálicas , Medios de Contraste , Glioma , Imagen por Resonancia Magnética , Clasificación del Tumor , Humanos , Glioma/diagnóstico por imagen , Glioma/patología , Glioma/irrigación sanguínea , Masculino , Femenino , Persona de Mediana Edad , Adulto , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Anciano , Pronóstico , Estimación de Kaplan-Meier , Curva ROC , Adulto Joven
10.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700903

RESUMEN

Collectively migrating cells consist of leaders and followers with different features. In this issue, Kim et al. (https://doi.org/10.1083/jcb.202401057) characterize the leader and follower cells in collective glioma migration and uncover important roles of YAP1/TAZ-mediated regulation of N-cadherin in the leader cells.


Asunto(s)
Cadherinas , Glioma , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Cadherinas/metabolismo , Cadherinas/genética , Movimiento Celular , Glioma/metabolismo , Glioma/patología , Glioma/genética , Transporte de Proteínas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismo
11.
Medicine (Baltimore) ; 103(18): e37910, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701282

RESUMEN

To illustrate the clinical characteristics and prognostic factors of adult patients pathologically confirmed with brainstem gliomas (BSGs). Clinical data of 40 adult patients pathologically diagnosed with BSGs admitted to Beijing Shijitan Hospital from 2009 to 2022 were recorded and retrospectively analyzed. The primary parameters included relevant symptoms, duration of symptoms, Karnofsky performance status (KPS), tumor location, type of surgical resection, diagnosis, treatment, and survival. Univariate and multivariate analyses were evaluated by Cox regression models. The gliomas were located in the midbrain of 9 patients, in the pons of 14 cases, in the medulla of 5 cases, in the midbrain and pons of 6 cases and invading the medulla and pons of 6 cases, respectively. The proportion of patients with low-grade BSGs was 42.5%. Relevant symptoms consisted of visual disturbance, facial paralysis, dizziness, extremity weakness, ataxia, paresthesia, headache, bucking, dysphagia, dysacousia, nausea, dysphasia, dysosmia, hypomnesia and nystagmus. 23 (57.5%) patients accepted stereotactic biopsy, 17 (42.5%) patients underwent surgical resection. 39 patients received radiotherapy and 34 cases were treated with temozolomide. The median overall survival (OS) of all patients was 26.2 months and 21.5 months for the median progression-free survival (PFS). Both duration of symptoms (P = .007) and tumor grading (P = .002) were the influencing factors for OS, and tumor grading was significantly associated with PFS (P = .001). Duration of symptoms for more than 2 months and low-grade are favorable prognostic factors for adult patients with BSGs.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma , Humanos , Masculino , Femenino , Estudios Retrospectivos , Adulto , Neoplasias del Tronco Encefálico/terapia , Neoplasias del Tronco Encefálico/patología , Neoplasias del Tronco Encefálico/diagnóstico , Neoplasias del Tronco Encefálico/mortalidad , Persona de Mediana Edad , Glioma/patología , Glioma/terapia , Glioma/mortalidad , Glioma/diagnóstico , Pronóstico , Adulto Joven , Estado de Ejecución de Karnofsky , Anciano
12.
BMC Med Imaging ; 24(1): 104, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702613

RESUMEN

BACKGROUND: The role of isocitrate dehydrogenase (IDH) mutation status for glioma stratification and prognosis is established. While structural magnetic resonance image (MRI) is a promising biomarker, it may not be sufficient for non-invasive characterisation of IDH mutation status. We investigated the diagnostic value of combined diffusion tensor imaging (DTI) and structural MRI enhanced by a deep radiomics approach based on convolutional neural networks (CNNs) and support vector machine (SVM), to determine the IDH mutation status in Central Nervous System World Health Organization (CNS WHO) grade 2-4 gliomas. METHODS: This retrospective study analyzed the DTI-derived fractional anisotropy (FA) and mean diffusivity (MD) images and structural images including fluid attenuated inversion recovery (FLAIR), non-enhanced T1-, and T2-weighted images of 206 treatment-naïve gliomas, including 146 IDH mutant and 60 IDH-wildtype ones. The lesions were manually segmented by experienced neuroradiologists and the masks were applied to the FA and MD maps. Deep radiomics features were extracted from each subject by applying a pre-trained CNN and statistical description. An SVM classifier was applied to predict IDH status using imaging features in combination with demographic data. RESULTS: We comparatively assessed the CNN-SVM classifier performance in predicting IDH mutation status using standalone and combined structural and DTI-based imaging features. Combined imaging features surpassed stand-alone modalities for the prediction of IDH mutation status [area under the curve (AUC) = 0.846; sensitivity = 0.925; and specificity = 0.567]. Importantly, optimal model performance was noted following the addition of demographic data (patients' age) to structural and DTI imaging features [area under the curve (AUC) = 0.847; sensitivity = 0.911; and specificity = 0.617]. CONCLUSIONS: Imaging features derived from DTI-based FA and MD maps combined with structural MRI, have superior diagnostic value to that provided by standalone structural or DTI sequences. In combination with demographic information, this CNN-SVM model offers a further enhanced non-invasive prediction of IDH mutation status in gliomas.


Asunto(s)
Neoplasias Encefálicas , Imagen de Difusión Tensora , Glioma , Isocitrato Deshidrogenasa , Mutación , Humanos , Isocitrato Deshidrogenasa/genética , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/patología , Imagen de Difusión Tensora/métodos , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Adulto , Anciano , Clasificación del Tumor , Máquina de Vectores de Soporte , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Radiómica
13.
Nat Commun ; 15(1): 3768, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704409

RESUMEN

Accurate intraoperative differentiation of primary central nervous system lymphoma (PCNSL) remains pivotal in guiding neurosurgical decisions. However, distinguishing PCNSL from other lesions, notably glioma, through frozen sections challenges pathologists. Here we sought to develop and validate a deep learning model capable of precisely distinguishing PCNSL from non-PCNSL lesions, especially glioma, using hematoxylin and eosin (H&E)-stained frozen whole-slide images. Also, we compared its performance against pathologists of varying expertise. Additionally, a human-machine fusion approach integrated both model and pathologic diagnostics. In external cohorts, LGNet achieved AUROCs of 0.965 and 0.972 in distinguishing PCNSL from glioma and AUROCs of 0.981 and 0.993 in differentiating PCNSL from non-PCNSL lesions. Outperforming several pathologists, LGNet significantly improved diagnostic performance, further augmented to some extent by fusion approach. LGNet's proficiency in frozen section analysis and its synergy with pathologists indicate its valuable role in intraoperative diagnosis, particularly in discriminating PCNSL from glioma, alongside other lesions.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Aprendizaje Profundo , Secciones por Congelación , Glioma , Linfoma , Humanos , Neoplasias del Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/cirugía , Neoplasias del Sistema Nervioso Central/diagnóstico , Linfoma/patología , Linfoma/diagnóstico , Linfoma/cirugía , Glioma/cirugía , Glioma/patología , Prueba de Estudio Conceptual , Masculino , Femenino , Diagnóstico Diferencial , Persona de Mediana Edad , Anciano , Periodo Intraoperatorio
14.
Acta Neuropathol Commun ; 12(1): 71, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38706008

RESUMEN

Diffuse Intrinsic Pontine Glioma (DIPG) is a highly aggressive and fatal pediatric brain cancer. One pre-requisite for tumor cells to infiltrate is adhesion to extracellular matrix (ECM) components. However, it remains largely unknown which ECM proteins are critical in enabling DIPG adhesion and migration and which integrin receptors mediate these processes. Here, we identify laminin as a key ECM protein that supports robust DIPG cell adhesion and migration. To study DIPG infiltration, we developed a DIPG-neural assembloid model, which is composed of a DIPG spheroid fused to a human induced pluripotent stem cell-derived neural organoid. Using this assembloid model, we demonstrate that knockdown of laminin-associated integrins significantly impedes DIPG infiltration. Moreover, laminin-associated integrin knockdown improves DIPG response to radiation and HDAC inhibitor treatment within the DIPG-neural assembloids. These findings reveal the critical role of laminin-associated integrins in mediating DIPG progression and drug response. The results also provide evidence that disrupting integrin receptors may offer a novel therapeutic strategy to enhance DIPG treatment outcomes. Finally, these results establish DIPG-neural assembloid models as a powerful tool to study DIPG disease progression and enable drug discovery.


Asunto(s)
Neoplasias del Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Integrinas , Laminina , Humanos , Laminina/metabolismo , Integrinas/metabolismo , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/patología , Neoplasias del Tronco Encefálico/metabolismo , Neoplasias del Tronco Encefálico/terapia , Glioma Pontino Intrínseco Difuso/patología , Glioma Pontino Intrínseco Difuso/genética , Adhesión Celular/efectos de los fármacos , Movimiento Celular , Línea Celular Tumoral , Glioma/patología , Glioma/metabolismo , Glioma/genética , Glioma/terapia
15.
Adv Tech Stand Neurosurg ; 49: 231-254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38700687

RESUMEN

Brain tumors are the second most common malignancy in childhood. Around 15-20% of pediatric brain tumors occur in the brainstem. The most common type of brainstem tumor are diffuse tumors in the ventral pons, whereas focal tumors tend to arise from the midbrain, medulla, and dorsal pons. Glioma is the most common pathological entity. Contemporary management consists of surgery, radiotherapy, chemotherapy, and other adjuvant treatment. Surgical options range from biopsy to radical excision. Biopsy can be performed for diagnostic and prognostic purposes, or in the setting of clinical trials, mainly for diffuse intrinsic pontine gliomas. For focal tumors, surgeons need to carefully balance clinical outcomes against possible neurological sequelae in order to achieve maximal safe resection. Radiotherapy is essential for control of high-grade tumors and may be applied to residual or recurrent low-grade tumors. Proton therapy may provide similar efficacy and less neurotoxicity in comparison to conventional photon therapy. Oncological treatment continues to evolve from conventional chemotherapy to targeted therapy, immunotherapy, and other novel treatment methods and holds great potential as adjuvant therapy for pediatric brainstem tumors.


Asunto(s)
Neoplasias del Tronco Encefálico , Humanos , Neoplasias del Tronco Encefálico/terapia , Neoplasias del Tronco Encefálico/patología , Niño , Glioma/terapia , Glioma/patología , Procedimientos Neuroquirúrgicos/métodos , Terapia Combinada
16.
Adv Tech Stand Neurosurg ; 49: 181-200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38700685

RESUMEN

BACKGROUND: The role of surgery in the management of malignant gliomas has been feverishly deliberated after the publication of the first expansive case series, the last two decades reinvigorating the discussion regarding the value of total removal in improving survivability. Despite numerous technologies being implemented to increase the resection rates of malignant gliomas, the role of surgical experience has been largely overlooked. This article aims to discuss the importance of a single surgeon's experience in treating high-grade gliomas over a period of 20 years. MATERIAL AND METHODS: In order to demonstrate the role of surgical experience, we divided the patients operated by a single neurosurgeon into two distinct intervals: between 2000 and 2009 and between 2012 and 2020, respectively. Only cases with subsequent adjuvant radio-chemotherapy were included. For objective reasons, no technologies that could assist the extent of resection (EOR) such as intraoperative MRI (iMRI) or 5-ALA could be used in the country of our study. Gross total resection was the main goal whenever possible, whereas subtotal removal was defined as a clear remnant on contrasted MRI or CT performed 24-48 h postoperatively. Using the Kaplan-Meier method, we analyzed the survival and disease-free interval of our patients according to age, pathology, and degree of resection. RESULTS: In the 20-year interval of our retrospective study, the main author (ISF) operated 1591 cases of gliomas in a total of 1878 surgeries, including recurrences. The number of high-grade glioma (HGG) patients was 909 (57.10%), 495 of which were male (54.5%) and 414 (45.5%) female. The mean age of the HGG population was 51.9 years. The most common type of HGG subtype were glioblastomas with a total number 620 cases (68.2%). Regarding overall survival (OS), average survival at 12 months was better by 1.6%, and 12.1% improved at 18 months and 17.8% longer at 24 months in the 2012-2020 interval. The mean OS in the earlier interval was 11.00 months compared to the second when it reached 13.441 months (CI, 12.642-14.24). CONCLUSION: Surgical treatment represents a critical step in the multimodal treatment of malignant gliomas. According to our results, surgical experience improves not only overall survival in a manner equivalent to adjuvant chemotherapy but also the quality of life. As such, a special qualification in neurooncology may prove necessary in offering these patients a second chance at life.


Asunto(s)
Neoplasias Encefálicas , Glioma , Procedimientos Neuroquirúrgicos , Humanos , Glioma/cirugía , Glioma/mortalidad , Glioma/patología , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Persona de Mediana Edad , Masculino , Femenino , Adulto , Procedimientos Neuroquirúrgicos/métodos , Anciano , Estudios Retrospectivos , Adulto Joven
17.
Folia Neuropathol ; 62(1): 13-20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741433

RESUMEN

The accurate diagnosis of brain tumour is very important in modern neuro-oncology medicine. Magnetic resonance spectroscopy (MRS) is supposed to be a promising tool for detecting cancerous lesions. However, the interpretation of MRS data is complicated by the fact that not all cancerous lesions exhibit elevated choline (Cho) levels. The main goal of our study was to investigate the lack of Cho lesion /Cho ref elevation in the population of grade II-III gliomas. 89 cases of gliomas grade II and III were used for the retrospective analysis - glioma (astrocytoma or oligodendroglioma) grade II (74 out of 89 cases [83%]) and III (15 out of 89 cases [17%]) underwent conventional MRI extended by MRS before treatment. Histopathological diagnosis was obtained either by biopsy or surgical resection. Gliomas were classified to the group of no-choline elevation when the ratio of choline measured within the tumour (Cho lesion ) to choline from NABT (Cho ref ) were equal to or lower than 1. Significant differences were observed between ratios of Cho lesion /Cr lesion calculated for no-choline elevation and glial tumour groups as well as in the NAA lesion /Cr lesion ratio between the no-choline elevation group and glial tumour group. With consistent data concerning choline level elevation and slightly lower NAA value, the Cho lesion /NAA lesion ratio is significantly higher in the WHO II glial tumour group compared to the no-choline elevation cases ( p < 0.000). In the current study the results demonstrated possibility of lack of choline elevation in patients with grade II-III gliomas, so it is important to remember that the lack of elevated choline levels does not exclude neoplastic lesion.


Asunto(s)
Neoplasias Encefálicas , Colina , Glioma , Humanos , Colina/metabolismo , Colina/análisis , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/metabolismo , Glioma/patología , Glioma/diagnóstico , Glioma/metabolismo , Persona de Mediana Edad , Adulto , Femenino , Masculino , Estudios Retrospectivos , Espectroscopía de Protones por Resonancia Magnética/métodos , Anciano , Espectroscopía de Resonancia Magnética/métodos , Clasificación del Tumor , Adulto Joven
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124351, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38692109

RESUMEN

Epidermal growth factor receptor (EGFR) plays a pivotal role in the initiation and progression of gliomas. In particular, in glioblastoma, EGFR amplification emerges as a catalyst for invasion, proliferation, and resistance to radiotherapy and chemotherapy. Current approaches are not capable of providing rapid diagnostic results of molecular pathology. In this study, we propose a terahertz spectroscopic approach for predicting the EGFR amplification status of gliomas for the first time. A machine learning model was constructed using the terahertz response of the measured glioma tissues, including the absorption coefficient, refractive index, and dielectric loss tangent. The novelty of our model is the integration of three classical base classifiers, i.e., support vector machine, random forest, and extreme gradient boosting. The ensemble learning method combines the advantages of various base classifiers, this model has more generalization ability. The effectiveness of the proposed method was validated by applying an individual test set. The optimal performance of the integrated algorithm was verified with an area under the curve (AUC) maximum of 85.8 %. This signifies a significant stride toward more effective and rapid diagnostic tools for guiding postoperative therapy in gliomas.


Asunto(s)
Receptores ErbB , Glioma , Espectroscopía de Terahertz , Humanos , Glioma/genética , Glioma/patología , Glioma/diagnóstico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Espectroscopía de Terahertz/métodos , Aprendizaje Automático , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Amplificación de Genes , Algoritmos , Máquina de Vectores de Soporte
19.
Comput Biol Med ; 175: 108532, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703547

RESUMEN

BACKGROUND: Glioma is a malignant brain tumor originating from glial cells, and there still a challenge to accurately predict the prognosis. Programmed cell death (PCD) plays a key role in tumorigenesis and immune response. However, the crosstalk and potential role of various PCDs in prognosis and tumor microenvironment remains unknown. Therefore, we comprehensively discussed the relationship between different models of PCD and the prognosis of glioma and provided new ideas for the optimal targeted therapy of glioma. MATERIALS AND METHODS: We compared and analyzed the role of 14 PCD patterns on the prognosis from different levels. We constructed the cell death risk score (CDRS) index and conducted a comprehensive analysis of CDRS and TME characteristics, clinical characteristics, and drug response. RESULTS: Effects of different PCDs at the genomic, functional, and immune microenvironment levels were discussed. CDRS index containing 6 gene signatures and a nomogram were established. High CDRS is associated with a worse prognosis. Through transcriptome and single-cell data, we found that patients with high CDRS showed stronger immunosuppressive characteristics. Moreover, the high-CDRS group was resistant to the traditional glioma chemotherapy drug Vincristine, but more sensitive to the Temozolomide and the clinical experimental drug Bortezomib. In addition, we identified 19 key potential therapeutic targets during malignant differentiation of tumor cells. CONCLUSION: Overall, we provide the first systematic description of the role of 14 PCDs in glioma. A new CDRS model was built to predict the prognosis and to provide a new idea for the targeted therapy of glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Humanos , Glioma/genética , Glioma/tratamiento farmacológico , Glioma/inmunología , Glioma/patología , Glioma/mortalidad , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Pronóstico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Transcriptoma , Apoptosis/efectos de los fármacos
20.
ACS Biomater Sci Eng ; 10(5): 3470-3477, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38652035

RESUMEN

The laminar flow profiles in microfluidic systems coupled to rapid diffusion at flow streamlines have been widely utilized to create well-controlled chemical gradients in cell cultures for spatially directing cell migration. However, within hydrogel-based closed microfluidic systems of limited depth (≤0.1 mm), the biomechanical cues for the cell culture are dominated by cell interactions with channel surfaces rather than with the hydrogel microenvironment. Also, leaching of poly(dimethylsiloxane) (PDMS) constituents in closed systems and the adsorption of small molecules to PDMS alter chemotactic profiles. To address these limitations, we present the patterning and integration of a PDMS-free open fluidic system, wherein the cell-laden hydrogel directly adjoins longitudinal channels that are designed to create chemotactic gradients across the 3D culture width, while maintaining uniformity across its ∼1 mm depth to enhance cell-biomaterial interactions. This hydrogel-based open fluidic system is assessed for its ability to direct migration of U87 glioma cells using a hybrid hydrogel that includes hyaluronic acid (HA) to mimic the brain tumor microenvironment and gelatin methacrylate (GelMA) to offer the adhesion motifs for promoting cell migration. Chemotactic gradients to induce cell migration across the hydrogel width are assessed using the chemokine CXCL12, and its inhibition by AMD3100 is validated. This open-top hydrogel-based fluidic system to deliver chemoattractant cues over square-centimeter-scale areas and millimeter-scale depths can potentially serve as a robust screening platform to assess emerging glioma models and chemotherapeutic agents to eradicate them.


Asunto(s)
Movimiento Celular , Quimiotaxis , Glioma , Hidrogeles , Humanos , Glioma/patología , Glioma/metabolismo , Movimiento Celular/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Quimiotaxis/efectos de los fármacos , Línea Celular Tumoral , Técnicas de Cultivo Tridimensional de Células/métodos , Microambiente Tumoral/efectos de los fármacos , Quimiocina CXCL12/farmacología , Quimiocina CXCL12/metabolismo , Ciclamas/farmacología , Ciclamas/química , Técnicas de Cultivo de Célula/métodos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Gelatina/química , Bencilaminas/farmacología , Bencilaminas/química , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA